1
|
Wang C, Yang Z, He M, Hu YK, Lei Y, Hou Y, Suonan J, Wang Y, Yu L, Peñuelas J, Sardans J, Li X. Coordinated variations in leaf and root biogeochemical niches. THE NEW PHYTOLOGIST 2025; 246:947-960. [PMID: 40059428 DOI: 10.1111/nph.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/09/2025] [Indexed: 04/11/2025]
Abstract
The biogeochemical niche (BN) hypothesis posits that each species has a specific elemental composition. However, the BN of roots and its interaction with leaf BN have largely been neglected until now across diverse environmental conditions. We investigated the relationships between the elemental compositions of leaves and roots, phylogeny, and environmental variables, as well as the connection between leaf and root BN. We analyzed the concentrations of carbon, nitrogen, phosphorus, potassium, calcium, and magnesium in the leaves and roots of 12 394 individuals from 1238 species. Consistent with the BN hypothesis, despite significant differences in elemental concentrations and their ratios between leaves and roots, we observed strong legacy (phylogenetic + species) signals in the species-specific elemental compositions. This finding confirms that the elemental compositions of leaves and roots can contribute to identifying species niches. Our study revealed a higher phylogenetic conservatism for BN in leaves than in roots and provided evidence of a tight association between the species-specific BN of leaves and roots. Our results underscore the broad applicability of the BN hypothesis across diverse species and biomes and demonstrate the critical role of evolutionary legacy in driving coordinated dynamics in both above- and belowground ecological niches.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Zhihui Yang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Mingzhu He
- Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, 730000, China
| | - Yu-Kun Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yanbao Lei
- China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yanhui Hou
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Ji Suonan
- College of Life Sciences, Qinghai Normal University, Xining, 810008, China
| | - Yonghui Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, China
| | - Lingfei Yu
- School of Life Sciences, Hebei University, Baoding, Hebei, 071002, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CEAB-UAB, Bellaterra, 08193, Spain
- CREAF, Cerdanyola del Vallès, 08193, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CEAB-UAB, Bellaterra, 08193, Spain
- CREAF, Cerdanyola del Vallès, 08193, Spain
| | - Xiaona Li
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| |
Collapse
|
2
|
Julien A, Melles S. From headwaters to outlets: Bird species accrual curves are faster downstream with different implications for varying landcovers and ecoregions. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1081230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Terrestrial and aquatic systems are geographically connected, yet these systems are typically studied independently of each other. This approach omits a large amount of ecological information as landscapes are best described as mosaics in watersheds. Species Accumulation Curves (SACs) that incorporate sampling effort are familiar models of how biodiversity will change when landcovers are lost. In land-based systems, the consistent pattern of increased species richness with increasing number of sites sampled is an ecological norm. In freshwater systems, fish species discharge relationships are analogous to species-area relationships in terrestrial systems, but the relationship between terrestrial species and discharge remains largely unexplored. Although some studies investigate the effect of terrestrial systems on neighboring aquatic species, less work has been done on exploring the effect of aquatic systems on terrestrial species. Additionally, creating statistical models to observe these interactions need to be explored further. Using data from the Ontario Breeding Bird Atlas (2001–2005), we created bird SACs to explore how increases in diversity with sites sampled varies with watershed position on the Canadian side of the Great Lakes Basin (GLB). The mosaic landscape of the GLB was characterized using six majority land cover classes at a 15 m resolution. This work shows that rates of species accrual and potential maximum species richness vary as a function of watershed position, underlying land cover, and the Ecoregion in which sampling was performed. We also found that Urban landcover has the potential to retain relatively high levels of species richness, which is further modified by Ecoregion and watershed position. Through our ‘world building,’ we believe that we can increase knowledge around the importance of land-water interactions and further the goals of viewing landscapes as mosaic watersheds.
Collapse
|
3
|
Automation and Remote Control of an Aquatic Harvester Electric Vehicle. SUSTAINABILITY 2022. [DOI: 10.3390/su14106360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Electric boats are evolving, following the trend of imposing electric powered vehicles in all transportation solutions. For a research project, a reed and aquatic weed harvester, the author’s goal is to develop an experimental electrical vehicle aimed at solving several particular problems such as: small speed, big throttle, high maneuverability, big load capacity, small draught and affordable cost. The solution comprises of one electric motor powered by a converter supplied from Li-Ion batteries, which drives a hydraulic pump for simultaneous operation of two lateral-placed paddle wheels and one complex mechanism of cutter and conveyor. The control system of this vehicle consists of one remote controller, with bidirectional radio communication to three on-board controllers used for the management of the electro-hydraulic actuators, the electric motor and the battery storage system. The hardware and the software architectures are presented, underlining the automated operations designed to increase the safety, the maneuverability and the predictability of the vehicle. The advantages of the use of control electronics is the increasing operability of the vehicle by supervising the available stored energy and the predicted consumption of energy, the fast and remote assistance in case of operational failure using online diagnose and the operation optimization by selecting the best load profile for the cutter and for the paddles. The results of this research are the validation of the proposed hardware and software architectures used for the control of an electro-hydraulic vehicle and the feasibility of using radio communication and remote diagnose for vehicle control.
Collapse
|
4
|
Zhang B, Chen H, Deng M, Li J, González AL, Wang S. High dimensionality of stoichiometric niches in soil fauna. Ecology 2022; 103:e3741. [PMID: 35524916 DOI: 10.1002/ecy.3741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/25/2022] [Accepted: 03/18/2022] [Indexed: 11/09/2022]
Abstract
The ecological niche is a fundamental concept to understand species coexistence in natural communities. The recently developed framework of the multidimensional stoichiometric niche (MSN) characterizes species niches using chemical elements in living organisms. Despite the fact that living organisms are composed by multiple elements, stoichiometric studies have so far mostly focused on carbon (C), nitrogen (N), and phosphorus (P), and therefore a quantitative analysis of the dimensionality of the MSN in living organisms is still lacking, particularly for animals. Here we quantified ten elements composing the biomass of nine soil animal taxa (958 individuals) from three trophic groups. We found that all ten elements exhibited large variation among taxa, which was partially explained by their phylogeny. Overlaps of MSNs among the nine soil animal taxa were relatively smaller based on ten elements, compared with those based on only C, N, and P. Discriminant analysis using all ten elements successfully differentiated among the nine taxa (accuracy: 90%), whereas that using only C, N, and P resulted in a lower accuracy (60%). Our findings provide new evidence for MSN differentiation in soil fauna and demonstrate the high dimensionality of organismal stoichiometric niches beyond C, N, and P.
Collapse
Affiliation(s)
- Bing Zhang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Haozhen Chen
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Mingqin Deng
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Jingyi Li
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| | - Angélica L González
- Department of Biology & Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, USA
| | - Shaopeng Wang
- Key Laboratory for Earth Surface Processes of the Ministry of Education, Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing, China
| |
Collapse
|
5
|
Camp EF, Nitschke MR, Clases D, Gonzalez de Vega R, Reich HG, Goyen S, Suggett DJ. Micronutrient content drives elementome variability amongst the Symbiodiniaceae. BMC PLANT BIOLOGY 2022; 22:184. [PMID: 35395710 PMCID: PMC8994382 DOI: 10.1186/s12870-022-03512-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Elements are the basis of life on Earth, whereby organisms are essentially evolved chemical substances that dynamically interact with each other and their environment. Determining species elemental quotas (their elementome) is a key indicator for their success across environments with different resource availabilities. Elementomes remain undescribed for functionally diverse dinoflagellates within the family Symbiodiniaceae that includes coral endosymbionts. We used dry combustion and ICP-MS to assess whether Symbiodiniaceae (ten isolates spanning five genera Breviolum, Cladocopium, Durusdinium, Effrenium, Symbiodinium) maintained under long-term nutrient replete conditions have unique elementomes (six key macronutrients and nine micronutrients) that would reflect evolutionarily conserved preferential elemental acquisition. For three isolates we assessed how elevated temperature impacted their elementomes. Further, we tested whether Symbiodiniaceae conform to common stoichiometric hypotheses (e.g., the growth rate hypothesis) documented in other marine algae. This study considers whether Symbiodiniaceae isolates possess unique elementomes reflective of their natural ecologies, evolutionary histories, and resistance to environmental change. RESULTS Symbiodiniaceae isolates maintained under long-term luxury uptake conditions, all exhibited highly divergent elementomes from one another, driven primarily by differential content of micronutrients. All N:P and C:P ratios were below the Redfield ratio values, whereas C:N was close to the Redfield value. Elevated temperature resulted in a more homogenised elementome across isolates. The Family-level elementome was (C19.8N2.6 P1.0S18.8K0.7Ca0.1) · 1000 (Fe55.7Mn5.6Sr2.3Zn0.8Ni0.5Se0.3Cu0.2Mo0.1V0.04) mmol Phosphorous-1 versus (C25.4N3.1P1.0S23.1K0.9Ca0.4) · 1000 (Fe66.7Mn6.3Sr7.2Zn0.8Ni0.4Se0.2Cu0.2Mo0.2V0.05) mmol Phosphorous -1 at 27.4 ± 0.4 °C and 30.7 ± 0.01 °C, respectively. Symbiodiniaceae isolates tested here conformed to some, but not all, stoichiometric principles. CONCLUSIONS Elementomes for Symbiodiniaceae diverge from those reported for other marine algae, primarily via lower C:N:P and different micronutrient expressions. Long-term maintenance of Symbiodiniaceae isolates in culture under common nutrient replete conditions suggests isolates have evolutionary conserved preferential uptake for certain elements that allows these unique elementomes to be identified. Micronutrient content (normalised to phosphorous) commonly increased in the Symbiodiniaceae isolates in response to elevated temperature, potentially indicating a common elemental signature to warming.
Collapse
Affiliation(s)
- Emma F Camp
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, Ultimo, NSW, 2007, Australia.
| | - Matthew R Nitschke
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, Ultimo, NSW, 2007, Australia
- School of Biological Sciences, Victoria University, Wellington, 6012, New Zealand
| | - David Clases
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
- Institute of Chemistry, University of Graz, Graz, 8010, Austria
| | - Raquel Gonzalez de Vega
- The Atomic Medicine Initiative, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
- Institute of Chemistry, University of Graz, Graz, 8010, Austria
| | - Hannah G Reich
- Department of Biological Sciences, University of Rhode Island, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Samantha Goyen
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, Ultimo, NSW, 2007, Australia
| | - David J Suggett
- Climate Change Cluster (C3), University of Technology Sydney, PO Box 123, Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
6
|
Sobczyk Ł, Filipiak M, Czarnoleski M. Sexual Dimorphism in the Multielemental Stoichiometric Phenotypes and Stoichiometric Niches of Spiders. INSECTS 2020; 11:E484. [PMID: 32751585 PMCID: PMC7469175 DOI: 10.3390/insects11080484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022]
Abstract
Nutritional limitations may shape populations and communities of organisms. This phenomenon is often studied by treating populations and communities as pools of homogenous individuals with average nutritional optima and experiencing average constraints and trade-offs that influence their fitness in a standardized way. However, populations and communities consist of individuals belonging to different sexes, each with specific nutritional demands and limitations. Taking this into account, we used the ecological stoichiometry framework to study sexual differences in the stoichiometric phenotypes, reflecting stoichiometric niches, of four spider taxa differing in the hunting mode. The species and sexes differed fundamentally in their elemental phenotypes, including elements beyond those most commonly studied (C, N and P). Both species and sexes were distinguished by the C:N ratio and concentrations of Cu, K and Zn. Species additionally differed in concentrations of Na, Mg and Mn. Phosphorous was not involved in this differentiation. Sexual dimorphism in spiders' elemental phenotypes, related to differences in their stoichiometric niches, suggests different nutritional optima and differences in nutritional limitation experienced by different sexes and species. This may influence the structure and functioning of spider populations and communities.
Collapse
Affiliation(s)
| | - Michał Filipiak
- Institute of Environmental Sciences, Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland; (Ł.S.); (M.C.)
| | | |
Collapse
|
7
|
Penuelas J, Janssens IA, Ciais P, Obersteiner M, Sardans J. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. GLOBAL CHANGE BIOLOGY 2020; 26:1962-1985. [PMID: 31912629 DOI: 10.1111/gcb.14981] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
The availability of carbon (C) from high levels of atmospheric carbon dioxide (CO2 ) and anthropogenic release of nitrogen (N) is increasing, but these increases are not paralleled by increases in levels of phosphorus (P). The current unstoppable changes in the stoichiometries of C and N relative to P have no historical precedent. We describe changes in P and N fluxes over the last five decades that have led to asymmetrical increases in P and N inputs to the biosphere. We identified widespread and rapid changes in N:P ratios in air, soil, water, and organisms and important consequences to the structure, function, and biodiversity of ecosystems. A mass-balance approach found that the combined limited availability of P and N was likely to reduce C storage by natural ecosystems during the remainder of the 21st Century, and projected crop yields of the Millennium Ecosystem Assessment indicated an increase in nutrient deficiency in developing regions if access to P fertilizer is limited. Imbalances of the N:P ratio would likely negatively affect human health, food security, and global economic and geopolitical stability, with feedbacks and synergistic effects on drivers of global environmental change, such as increasing levels of CO2 , climatic warming, and increasing pollution. We summarize potential solutions for avoiding the negative impacts of global imbalances of N:P ratios on the environment, biodiversity, climate change, food security, and human health.
Collapse
Affiliation(s)
- Josep Penuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Valles, Spain
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| | - Ivan A Janssens
- Research Group Plants and Ecosystems (PLECO), Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, IPSL CEA CNRS UVSQ UPSACLAY, Gif-sur-Yvette, France
| | - Michael Obersteiner
- Ecosystems Services and Management, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Spain
- CREAF, Cerdanyola del Valles, Spain
- Global Change Research Institute, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
8
|
Filipiak M. Key pollen host plants provide balanced diets for wild bee larvae: A lesson for planting flower strips and hedgerows. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13383] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Michał Filipiak
- Institute of Environmental SciencesJagiellonian University Kraków Poland
| |
Collapse
|
9
|
Peñuelas J, Fernández‐Martínez M, Ciais P, Jou D, Piao S, Obersteiner M, Vicca S, Janssens IA, Sardans J. The bioelements, the elementome, and the biogeochemical niche. Ecology 2019; 100:e02652. [DOI: 10.1002/ecy.2652] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/26/2018] [Accepted: 01/16/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Josep Peñuelas
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra 08193 Spain
- CREAF Cerdanyola del Valles 08193 Spain
| | - Marcos Fernández‐Martínez
- CREAF Cerdanyola del Valles 08193 Spain
- Research Group Plants and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk B‐2610 Belgium
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement IPSL Gif‐sur‐Yvette 91191 France
| | - David Jou
- Department of Physics Universitat Autònoma de Barcelona Bellaterra 08193 Spain
| | - Shilong Piao
- Sino‐French Institute for Earth System Science College of Urban and Environmental Sciences Peking University Beijing 100871 China
| | - Michael Obersteiner
- International Institute for Applied Systems Analysis (IIASA), Ecosystems Services and Management Schlossplatz 1 Laxenburg A‐2361 Austria
| | - Sara Vicca
- Research Group Plants and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk B‐2610 Belgium
| | - Ivan A. Janssens
- Research Group Plants and Ecosystems (PLECO) Department of Biology University of Antwerp Wilrijk B‐2610 Belgium
| | - Jordi Sardans
- CSIC Global Ecology Unit CREAF‐CSIC‐UAB Bellaterra 08193 Spain
- CREAF Cerdanyola del Valles 08193 Spain
| |
Collapse
|