1
|
Markley PT, Gross CP, Daru BH. The changing biodiversity of the Arctic flora in the Anthropocene. AMERICAN JOURNAL OF BOTANY 2025; 112:e16466. [PMID: 39887966 DOI: 10.1002/ajb2.16466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 02/01/2025]
Abstract
The plants of the circumpolar Arctic occupy a dynamic system that has been shaped by glacial cycles and climate change on evolutionary timescales. Yet rapid climatic change can compromise the floristic diversity of the tundra, and the ecological and evolutionary changes in the Arctic from anthropogenic forces remain understudied. In this review, we synthesize knowledge of Arctic floral biodiversity across the entirety of the region within the context of its climatic history. We present critical gaps and challenges in modeling and documenting the consequences of anthropogenic changes for Arctic flora, informed by data from the Late Quaternary (~20 ka). We found that previous forecasts of Arctic plant responses to climate change indicate widespread reductions in habitable area with increasing shrub growth and abundance as a function of annual temperature increase. Such shifts in the distribution and composition of extant Arctic flora will likely increase with global climate through changes to the carbon cycle, necessitating a unified global effort in conserving these plants. More data and research on the continuity of tundra communities are needed to firmly assess the risk climate change poses to the Arctic.
Collapse
Affiliation(s)
- Paul T Markley
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, California 94305, USA
| | - Collin P Gross
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, California 94305, USA
| | - Barnabas H Daru
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, California 94305, USA
| |
Collapse
|
3
|
Boyle JS, Angers-Blondin S, Assmann JJ, Myers-Smith IH. Summer temperature—but not growing season length—influences radial growth of Salix arctica in coastal Arctic tundra. Polar Biol 2022. [DOI: 10.1007/s00300-022-03074-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractArctic climate change is leading to an advance of plant phenology (the timing of life history events) with uncertain impacts on tundra ecosystems. Although the lengthening of the growing season is thought to lead to increased plant growth, we have few studies of how plant phenology change is altering tundra plant productivity. Here, we test the correspondence between 14 years of Salix arctica phenology data and radial growth on Qikiqtaruk–Herschel Island, Yukon Territory, Canada. We analysed stems from 28 individuals using dendroecology and linear mixed-effect models to test the statistical power of growing season length and climate variables to individually predict radial growth. We found that summer temperature best explained annual variation in radial growth. We found no strong evidence that leaf emergence date, earlier leaf senescence date, or total growing season length had any direct or lagged effects on radial growth. Radial growth was also not explained by interannual variation in precipitation, MODIS surface greenness (NDVI), or sea ice concentration. Our results demonstrate that at this site, for the widely distributed species S. arctica, temperature—but not growing season length—influences radial growth. These findings challenge the assumption that advancing phenology and longer growing seasons will increase the productivity of all plant species in Arctic tundra ecosystems.
Collapse
|
5
|
Collins CG, Elmendorf SC, Hollister RD, Henry GHR, Clark K, Bjorkman AD, Myers-Smith IH, Prevéy JS, Ashton IW, Assmann JJ, Alatalo JM, Carbognani M, Chisholm C, Cooper EJ, Forrester C, Jónsdóttir IS, Klanderud K, Kopp CW, Livensperger C, Mauritz M, May JL, Molau U, Oberbauer SF, Ogburn E, Panchen ZA, Petraglia A, Post E, Rixen C, Rodenhizer H, Schuur EAG, Semenchuk P, Smith JG, Steltzer H, Totland Ø, Walker MD, Welker JM, Suding KN. Experimental warming differentially affects vegetative and reproductive phenology of tundra plants. Nat Commun 2021; 12:3442. [PMID: 34117253 PMCID: PMC8196023 DOI: 10.1038/s41467-021-23841-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Rapid climate warming is altering Arctic and alpine tundra ecosystem structure and function, including shifts in plant phenology. While the advancement of green up and flowering are well-documented, it remains unclear whether all phenophases, particularly those later in the season, will shift in unison or respond divergently to warming. Here, we present the largest synthesis to our knowledge of experimental warming effects on tundra plant phenology from the International Tundra Experiment. We examine the effect of warming on a suite of season-wide plant phenophases. Results challenge the expectation that all phenophases will advance in unison to warming. Instead, we find that experimental warming caused: (1) larger phenological shifts in reproductive versus vegetative phenophases and (2) advanced reproductive phenophases and green up but delayed leaf senescence which translated to a lengthening of the growing season by approximately 3%. Patterns were consistent across sites, plant species and over time. The advancement of reproductive seasons and lengthening of growing seasons may have significant consequences for trophic interactions and ecosystem function across the tundra.
Collapse
Affiliation(s)
- Courtney G Collins
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA.
| | - Sarah C Elmendorf
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Robert D Hollister
- Department of Biology, Grand Valley State University, Allendale, MI, USA
| | - Greg H R Henry
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
| | - Karin Clark
- Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada
| | - Anne D Bjorkman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Isabel W Ashton
- National Park Service, Inventory & Monitoring Division, Rapid City, SD, USA
| | | | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha, Qatar
| | - Michele Carbognani
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chelsea Chisholm
- Department of Environmental Systems Science, ETH, Zurich, Switzerland
| | - Elisabeth J Cooper
- Department of Arctic and Marine Biology, The Arctic University of Norway UiT, Tromsø, Norway
| | - Chiara Forrester
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Ingibjörg Svala Jónsdóttir
- Department of Life- and Environmental Sciences, University of Iceland, Reykjavík, Iceland
- The University Centre in Svalbard (UNIS), Longyearbyen, Svalbard, Norway
| | - Kari Klanderud
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Christopher W Kopp
- Biodiversity Research Center, University of British Columbia, Vancouver, BC, Canada
| | | | - Marguerite Mauritz
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jeremy L May
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Ulf Molau
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Steven F Oberbauer
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Emily Ogburn
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Zoe A Panchen
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
| | - Alessandro Petraglia
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Eric Post
- Department of Wildlife, Fish, & Conservation Biology, University of California Davis, Davis, CA, USA
| | - Christian Rixen
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Davos, Switzerland
| | - Heidi Rodenhizer
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Edward A G Schuur
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, USA
| | - Philipp Semenchuk
- Department of Botany and Biodiversity Research, The University of Vienna, Vienna, Austria
| | - Jane G Smith
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| | - Heidi Steltzer
- Department of Environment and Sustainability, Fort Lewis College, Durango, CO, USA
| | - Ørjan Totland
- Department of Biological Sciences, The University of Bergen, Bergen, Norway
| | | | - Jeffrey M Welker
- Department of Biological Sciences, The University of Alaska Anchorage, Anchorage, AK, USA
- Department of Ecology and Genetics, The University of Oulu, Oulu, Finland
| | - Katharine N Suding
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
6
|
Klütsch CFC, Aspholm PE, Polikarpova N, Veisblium O, Bjørn T, Wikan A, Gonzalez V, Hagen SB. Studying phenological phenomena in subarctic biomes with international school pupils as citizen scientists. Ecol Evol 2021; 11:3501-3515. [PMID: 33898006 PMCID: PMC8057335 DOI: 10.1002/ece3.7122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/02/2020] [Accepted: 11/26/2020] [Indexed: 11/27/2022] Open
Abstract
Citizen science can facilitate in-depth learning for pupils and students, contribute to scientific research, and permit civic participation. Here, we describe the development of the transnational school-based citizen science project Phenology of the North Calotte. Its primary goal is to introduce pupils (age 12-15; grades 7-10) in northern Norway, Russia, and Finland to the local and global challenges of climate change resulting in life cycle changes at different trophic and ecosystem levels in their backyards. Partnerships between regional scientists and staff from NIBIO Svanhovd, State nature reserves, national parks, and teachers and pupils from regional schools aim to engage pupils in project-based learning. The project uses standardized protocols, translated into the different languages of participating schools. The phenological observations are centered around documenting clearly defined life cycle phases (e.g., first appearance of species, flowering, ripening, leaf yellowing, snow fall, and melt). The observations are collected either on paper and are subsequently submitted manually to an open-source online database or submitted directly via a newly developed mobile app. In the long term, the database is anticipated to contribute to research studying changes in phenology at different trophic levels. In principle, guided school-based citizen science projects have the potential to contribute to increased environmental awareness and education and thereby to transformative learning at the societal level while contributing to scientific progress of understudied biomes, like the northern taiga and (sub)arctic tundra. However, differences in school systems and funding insecurity for some schools have been major prohibiting factors for long-term retention of pupils/schools in the program. Project-based and multidisciplinary learning, although pedagogically desired, has been partially difficult to implement in participating schools, pointing to the need of structural changes in national school curricula and funding schemes as well as continuous offers for training and networking for teachers.
Collapse
Affiliation(s)
- Cornelya F. C. Klütsch
- Norwegian Institute of Bioeconomy ResearchNIBIO – Division of Environment and Natural ResourcesÅsNorway
| | - Paul Eric Aspholm
- Norwegian Institute of Bioeconomy ResearchNIBIO – Division of Forest and Forest ResourcesÅsNorway
| | | | | | - Tor‐Arne Bjørn
- Norwegian Institute of Bioeconomy ResearchNIBIO – Division of Forest and Forest ResourcesÅsNorway
| | - Anne Wikan
- Norwegian Institute of Bioeconomy ResearchNIBIO – Division of Environment and Natural ResourcesÅsNorway
| | - Victoria Gonzalez
- Norwegian Institute of Bioeconomy ResearchNIBIO – Division of Environment and Natural ResourcesÅsNorway
| | - Snorre B. Hagen
- Norwegian Institute of Bioeconomy ResearchNIBIO – Division of Environment and Natural ResourcesÅsNorway
| |
Collapse
|
7
|
Finger-Higgens R, DeSiervo M, Ayres MP, Virginia RA. Increasing shrub damage by invertebrate herbivores in the warming and drying tundra of West Greenland. Oecologia 2021; 195:995-1005. [PMID: 33786709 DOI: 10.1007/s00442-021-04899-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/23/2021] [Indexed: 11/28/2022]
Abstract
Rapid warming is predicted to increase insect herbivory across the tundra biome, yet how this will impact the community and ecosystem dynamics remains poorly understood. Increasing background invertebrate herbivory could impede Arctic greening, by serving as a top-down control on tundra vegetation. Many tundra ecosystems are also susceptible to severe insect herbivory outbreaks which can have lasting effects on vegetation communities. To explore how tundra-insect herbivore systems respond to warming, we measured shrub traits and foliar herbivory damage at 16 sites along a landscape gradient in western Greenland. Here we show that shrub foliar insect herbivory damage on two dominant deciduous shrubs, Salix glauca and Betula nana, was positively correlated with increasing temperatures throughout the first half of the 2017 growing season. We found that the majority of insect herbivory damage occurred in July, which was outside the period of rapid leaf expansion that occurred throughout most of June. Defoliators caused the most foliar damage in both shrub species. Additionally, insect herbivores removed a larger proportion of B. nana leaf biomass in warmer sites, which is due to a combination of increased foliar herbivory with a coinciding decline in foliar biomass. These results suggest that the effects of rising temperatures on both insect herbivores and host species are important to consider when predicting the trajectory of Arctic tundra shrub expansion.
Collapse
Affiliation(s)
- Rebecca Finger-Higgens
- Ecology, Evolution, Ecosystems and Society Graduate Program, Dartmouth College, Hanover, NH, USA.
| | | | - Matthew P Ayres
- Ecology, Evolution, Ecosystems and Society Graduate Program, Dartmouth College, Hanover, NH, USA.,Department of Biological Science, Dartmouth College, Hanover, NH, USA
| | - Ross A Virginia
- Ecology, Evolution, Ecosystems and Society Graduate Program, Dartmouth College, Hanover, NH, USA.,Environmental Studies Program, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
9
|
A Multi-Sensor Unoccupied Aerial System Improves Characterization of Vegetation Composition and Canopy Properties in the Arctic Tundra. REMOTE SENSING 2020. [DOI: 10.3390/rs12162638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in vegetation distribution, structure, and function can modify the canopy properties of terrestrial ecosystems, with potential consequences for regional and global climate feedbacks. In the Arctic, climate is warming twice as fast as compared to the global average (known as ‘Arctic amplification’), likely having stronger impacts on arctic tundra vegetation. In order to quantify these changes and assess their impacts on ecosystem structure and function, methods are needed to accurately characterize the canopy properties of tundra vegetation types. However, commonly used ground-based measurements are limited in spatial and temporal coverage, and differentiating low-lying tundra plant species is challenging with coarse-resolution satellite remote sensing. The collection and processing of multi-sensor data from unoccupied aerial systems (UASs) has the potential to fill the gap between ground-based and satellite observations. To address the critical need for such data in the Arctic, we developed a cost-effective multi-sensor UAS (the ‘Osprey’) using off-the-shelf instrumentation. The Osprey simultaneously produces high-resolution optical, thermal, and structural images, as well as collecting point-based hyperspectral measurements, over vegetation canopies. In this paper, we describe the setup and deployment of the Osprey system in the Arctic to a tundra study site located in the Seward Peninsula, Alaska. We present a case study demonstrating the processing and application of Osprey data products for characterizing the key biophysical properties of tundra vegetation canopies. In this study, plant functional types (PFTs) representative of arctic tundra ecosystems were mapped with an overall accuracy of 87.4%. The Osprey image products identified significant differences in canopy-scale greenness, canopy height, and surface temperature among PFTs, with deciduous low to tall shrubs having the lowest canopy temperatures while non-vascular lichens had the warmest. The analysis of our hyperspectral data showed that variation in the fractional cover of deciduous low to tall shrubs was effectively characterized by Osprey reflectance measurements across the range of visible to near-infrared wavelengths. Therefore, the development and deployment of the Osprey UAS, as a state-of-the-art methodology, has the potential to be widely used for characterizing tundra vegetation composition and canopy properties to improve our understanding of ecosystem dynamics in the Arctic, and to address scale issues between ground-based and airborne/satellite observations.
Collapse
|