1
|
Jiajun L, Biao Z, Guangshuai Z, Sihui S, Yansong L, Jinhui Z, Jiuliang W, Xiangyu G. Flooding promotes the coalescence of microbial community in estuarine habitats. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106735. [PMID: 39241542 DOI: 10.1016/j.marenvres.2024.106735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Microbial community coalescence describes the mixing of microbial communities and their integration with the surrounding environment, which is common in natural ecosystems and has potential impacts on ecological processes. However, few studies have focused on microbial community coalescence between different habitats in estuarine regions. In this study, we comprehensively investigated the environmental characteristics and bacterial community changes of different habitats (water body (Water), subtidal sediments (SS) and intertidal salt marsh sediments (SM)) in Luanhe estuary during flood and normal flow periods. The results showed that flood event significantly reduced the salinity of the estuarine habitats, changed the nutrient structure and intensified the eutrophication of estuarine water. By calculating the proportion of overlapping groups and applying the 'FEAST' algorithm, we revealed that flood event facilitated the migration of bacterial communities along alternative pathways across habitats, markedly enhanced the cross-habitat mobility of bacterial communities, which underscores the pivotal role of flood event in driving bacterial community coalescence. Flood-induced community coalescence not only increased the α-diversity of bacterial communities within habitats, but also increased the proportion of overlapped species between habitats, ultimately leading to homogenization between habitats. Canonical correlation analysis combined co-occurrence network analysis revealed that flood event attenuated the role of environmental filtration in microbial assembly, while increased the impact of dispersal processes and intensified interspecific competition among microorganisms, led to the change of keystone species and reduced the complexity and stability of bacterial communities. In conclusion, this study demonstrates the complex effects of flood events on estuarine microbial communities from the perspective of multi-habitat interactions in the estuary, and emphasizes the key role of river hydrodynamic conditions in facilitating the coalescence of estuarine microbial communities. We look forward to further attention and research on estuarine microbial coalescence, which will provide new insights into assessing the stability and resilience of estuarine ecosystems under flood challenges and the sustainable management of estuarine wetlands.
Collapse
Affiliation(s)
- Li Jiajun
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, Dalian, Liaoning, China; The Fifth Geology Company of Hebei Geology & Minerals Bureau, Tangshan, Hebei, China
| | - Zhang Biao
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, Dalian, Liaoning, China; The Fifth Geology Company of Hebei Geology & Minerals Bureau, Tangshan, Hebei, China; School of Ocean Science, China University of Geosciences, Beijing, China.
| | - Zhang Guangshuai
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, Dalian, Liaoning, China; National Marine Environmental Monitoring Center, Dalian, Liaoning, China
| | - Shao Sihui
- The Institute of Geo-environment Monitoring of Hebei Province, Shijiazhuang, Hebei, China
| | - Li Yansong
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, Dalian, Liaoning, China; The Fifth Geology Company of Hebei Geology & Minerals Bureau, Tangshan, Hebei, China
| | - Zhang Jinhui
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, Dalian, Liaoning, China; The Fifth Geology Company of Hebei Geology & Minerals Bureau, Tangshan, Hebei, China
| | - Wang Jiuliang
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, Dalian, Liaoning, China; The Fifth Geology Company of Hebei Geology & Minerals Bureau, Tangshan, Hebei, China
| | - Guan Xiangyu
- The Fifth Geology Company of Hebei Geology & Minerals Bureau, Tangshan, Hebei, China; School of Ocean Science, China University of Geosciences, Beijing, China
| |
Collapse
|
2
|
Jarić S, Karadžić B, Paunović M, Milačič R, Ščančar J, Kostić O, Zuliani T, Vidmar J, Miletić Z, Anđus S, Mitrović M, Pavlović P. Relationship between potentially toxic elements and macrophyte communities in the Sava river. Heliyon 2024; 10:e34994. [PMID: 39144995 PMCID: PMC11320461 DOI: 10.1016/j.heliyon.2024.e34994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024] Open
Abstract
Freshwater ecosystems are at significant risk of contamination by potentially toxic elements (PTEs) due to their high inherent toxicity, their persistence in the environment and their tendency to bioaccumulate in sediments and living organisms. We investigated aquatic macrophyte communities and the concentrations of As, Cu, Cd, Cr, Pb, Zn, Ni and Fe in water and sediment samples to identify a pollution pattern along the Sava River and to investigate the potential impact of these PTEs on the diversity and structure of macrophyte communities. The study, which covered 945 km of the Sava River, showed a downstream increase in sediment concentrations of the analyzed elements. Both species richness and alpha diversity of macrophyte communities also generally increase downstream. Ordinary and partial Mantel tests indicate that macrophyte communities are significantly correlated with sediment chemistry, but only weakly correlated with water chemistry. In the lowland regions (downstream), beta diversity decreases successively, which can be attributed to an increasing similarity of environmental conditions at downstream sites. Species richness is relatively low at sites with low concentrations of Cr, Cd, Fe, and Cu in the sediment. However, species richness increases to a certain extent with increasing element concentrations; as element concentrations increase further, species richness decreases, probably as a result of increased toxicity. Some species that are generally more tolerant to high concentrations of PTEs are: Ceratophyllum demersum, Iris pseudacorus, Najas marina, Butomus umbellatus, Vallisneria spiralis, Potamogeton gramineus and Bolboschoenus maritimus maritimus. Potamogeton perfoliatus and the moss species Cinclidotus fontinaloides and Fontinalis antipyretica have narrow ecological amplitudes in relation to the concentrations of PTEs in the sediment.
Collapse
Affiliation(s)
- Snežana Jarić
- Department of Ecology, Institute for Biological Research ‘Siniša Stanković’ University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Branko Karadžić
- Department of Ecology, Institute for Biological Research ‘Siniša Stanković’ University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Momir Paunović
- Department of Hydroecology and Water Protection, Institute for Biological Research ‘Siniša Stanković’ University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Radmila Milačič
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Janez Ščančar
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Olga Kostić
- Department of Ecology, Institute for Biological Research ‘Siniša Stanković’ University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Tea Zuliani
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Janja Vidmar
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Zorana Miletić
- Department of Ecology, Institute for Biological Research ‘Siniša Stanković’ University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Stefan Anđus
- Department of Hydroecology and Water Protection, Institute for Biological Research ‘Siniša Stanković’ University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Miroslava Mitrović
- Department of Ecology, Institute for Biological Research ‘Siniša Stanković’ University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| | - Pavle Pavlović
- Department of Ecology, Institute for Biological Research ‘Siniša Stanković’ University of Belgrade, Bul. Despota Stefana 142, 11060 Belgrade, Serbia
| |
Collapse
|
3
|
Onyango J, Kitaka N, van Bruggen JJA, Irvine K, Simaika J. Agricultural intensification in Lake Naivasha Catchment in Kenya and associated nutrients and pesticides pollution. Sci Rep 2024; 14:18539. [PMID: 39122722 PMCID: PMC11315982 DOI: 10.1038/s41598-024-67460-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 07/11/2024] [Indexed: 08/12/2024] Open
Abstract
Investments in agricultural intensification in sub-Saharan Africa aim to fulfill food and economic demands. However, the increased use of fertilizers and pesticides poses ecological risks to water bodies in agricultural catchments. This study focused on assessing the impact of agricultural intensification on nutrient and pesticide pollution in the L. Naivasha catchment in Kenya. The research revealed significant changes in the catchment's agricultural landscape between 1989 and 2019, driven by intensified agricultural expansion. As a result, nutrient and pesticide emissions have worsened the lake's trophic status, shifting it towards hypereutrophic conditions. The study found a weak relationship between total nitrogen (TN) and sum dichlorodiphenyltrichloroethane (∑DDT), indicating that an increase in TN slightly predicted a reduction in ∑DDT. Analysis also showed potential phosphorus (P) limitation in the lake. Additionally, the observed ratio between dichlorodiphenyldichloroethane and dichlorodiphenyldichloroethylene (DDD:DDE) and (DDE + DDD):DDT ratios suggest recent use of banned DDT in the catchment. The study concludes that the transformation of L. Naivasha landscape shows unsustainable agricultural expansion with reduced forest cover, increased croplands, and increased pesticide contamination. This reflects a common issue in sub-Saharan Africa, that sustainable catchment management must address, specifically for combined pollutants, to support water quality and achieve the SDGs in agriculture.
Collapse
Affiliation(s)
- Joel Onyango
- IHE Department of Water Resources and Ecology, IHE Delft, Institute for Water Education, Westvest 7, P.O. Box3015, 2601DA, Delft, The Netherlands.
- Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700AA, Wageningen, The Netherlands.
- African Centre for Technology Studies (ACTS), P.O. Box 45917, 00100, Nairobi, Kenya.
| | | | - J J A van Bruggen
- IHE Department of Water Resources and Ecology, IHE Delft, Institute for Water Education, Westvest 7, P.O. Box3015, 2601DA, Delft, The Netherlands
| | - Kenneth Irvine
- IHE Department of Water Resources and Ecology, IHE Delft, Institute for Water Education, Westvest 7, P.O. Box3015, 2601DA, Delft, The Netherlands
- Aquatic Ecology and Water Quality Management, Wageningen University, P.O. Box 47, 6700AA, Wageningen, The Netherlands
| | - John Simaika
- IHE Department of Water Resources and Ecology, IHE Delft, Institute for Water Education, Westvest 7, P.O. Box3015, 2601DA, Delft, The Netherlands
- Stellenbosch University, Private Bag X1, Stellenbosch, South Africa
| |
Collapse
|
4
|
Zuo J, Xiao P, Heino J, Tan F, Soininen J, Chen H, Yang J. Eutrophication increases the similarity of cyanobacterial community features in lakes and reservoirs. WATER RESEARCH 2024; 250:120977. [PMID: 38128306 DOI: 10.1016/j.watres.2023.120977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/05/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Eutrophication of inland waters is a mostly anthropogenic phenomenon impacting aquatic biodiversity worldwide, and might change biotic community structure and ecosystem functions. However, little is known about the patterns of cyanobacterial community variations and changes both on alpha and beta diversity levels in response to eutrophication. Here, we investigated cyanobacterial communities sampled at 140 sites from 59 lakes and reservoirs along a strong eutrophication gradient in eastern China through using CPC-IGS and 16S rRNA gene amplicon sequencing. We found that taxonomic diversity increased, but phylogenetic diversity decreased significantly along the eutrophication gradient. Both niche width and niche overlap of cyanobacteria significantly decreased from low- to high-nutrient waterbodies. Cyanobacterial community distance-decay relationship became weaker from mesotrophic to hypereutrophic waterbodies, while ecological uniqueness (i.e., local contributions to beta diversity) tended to increase in high-nutrient waterbodies. Latitude and longitude were more important in shaping cyanobacterial community structure than other environmental variables. These findings suggest that eutrophication affects alpha and beta diversity of cyanobacterial communities, leading to increasingly similar community structures in lakes and reservoirs with a higher level of eutrophication. Our work highlights how cyanobacterial communities respond to anthropogenic eutrophication and calls for an urgent need to develop conservation and management strategies to control lake eutrophication and protect freshwater biodiversity.
Collapse
Affiliation(s)
- Jun Zuo
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Peng Xiao
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Zhejiang Provincial Key Lab for Water Environment and Marine Biological Resources Protection, Institute for Eco-Environmental Research of Sanyang Wetland, Wenzhou University, Wenzhou 325035, China
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 8000, Oulu FI-90014, Finland
| | - Fengjiao Tan
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Janne Soininen
- Department of Geosciences and Geography, University of Helsinki, P.O. Box 64, Helsinki FI-00014, Finland
| | - Huihuang Chen
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Yang
- Aquatic EcoHealth Group, Fujian Key Laboratory of Watershed Ecology, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
5
|
Li Y, Geng M, Yu J, Du Y, Xu M, Zhang W, Wang J, Su H, Wang R, Chen F. Eutrophication decrease compositional dissimilarity in freshwater plankton communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153434. [PMID: 35090915 DOI: 10.1016/j.scitotenv.2022.153434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/19/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Human activities, such as land use change and eutrophication, threaten freshwater biodiversity and ecosystem function. In this study, we examined both the α- and β-diversity of plankton communities, that is, bacteria/prokaryotic algae, eukaryotic algae, and zooplankton/metazoans, using both classical microscopy and high-throughput sequencing methods across 40 lakes of the Yangtze River Basin. The spatial variations in plankton communities were explained by environmental variables such as trophic status index (TSI) and environmental heterogeneity according to non-metric multidimensional scaling analyses, mantel tests, and structural equation model. Our results showed that the compositional dissimilarities of bacteria, cyanobacteria, eukaryotic algae, and metazoans all decreased with the increasing TSI values, and were significantly positively related to environmental dissimilarity. Both the species richness and compositional dissimilarity of zooplankton had positive effects on zooplankton/phytoplankton biomass ratio. Zooplankton diversity was not directly affected by TSI and environmental dissimilarity; however, it was indirectly affected by the biotic interactions with cyanobacteria or eukaryotic algae. In addition, there were significant positive relationships between bacteria/cyanobacteria and eukaryotic algae dissimilarities. Our results indicated that increased trophic status and decreased environmental dissimilarity as consequences of eutrophication may weaken the trophic cascading effects of planktonic food chain via reducing the top-down effects of zooplankton on phytoplankton.
Collapse
Affiliation(s)
- Yun Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mengdie Geng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Jinlei Yu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yingxun Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Min Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weizhen Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haojie Su
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Rong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Feizhou Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Jiao C, Zhao D, Zeng J, Wu QL. Eutrophication in subtropical lakes reinforces the dominance of balanced-variation component in temporal bacterioplankton community heterogeneity by lessening stochastic processes. FEMS Microbiol Ecol 2022; 98:6576326. [PMID: 35488869 DOI: 10.1093/femsec/fiac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/27/2022] [Accepted: 04/26/2022] [Indexed: 11/14/2022] Open
Abstract
Unveiling the rules of bacterioplankton community assembly in anthropogenically disturbed lakes is a crucial issue in aquatic ecology. However, it is unclear how the ecological processes underlying the seasonally driven bacterioplankton community structure respond to varying degrees of lake eutrophication. We therefore collected water samples from three subtropical freshwater lakes with various trophic states (i.e. oligo-mesotrophic, mesotrophic and eutrophic states) on a quarterly basis between 2017 and 2018. To innovatively increase our understanding of bacterioplankton community assembly along the trophic state gradient, the total bacterioplankton community dissimilarity was subdivided into balanced variation in abundances and abundance gradients. The results indicated that balanced-variation component rather than abundance-gradient component dominated the total temporal β-diversity of bacterioplankton communities across all trophic categories. Ecological stochasticity contributed more to the overall bacterioplankton community assembly in the oligo-mesotrophic and mesotrophic lakes than in the eutrophic lake. The reduced bacterioplankton network complexity at the eutrophic level was closely associated with the enhancement of environmental filtering, showing that bacterioplankton communities in eutrophic lakes are likely to be less stable and more vulnerable to water quality degradation. Together, this study offers essential clues for biodiversity conservation in subtropical lakes under future intensified eutrophication.
Collapse
Affiliation(s)
- Congcong Jiao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China.,State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Dayong Zhao
- Joint International Research Laboratory of Global Change and Water Cycle, State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210098, China
| | - Jin Zeng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qinglong L Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.,Sino-Danish Centre for Education and Research, University of Chinese Academy of Sciences, Beijing, 100039, China
| |
Collapse
|
7
|
Niu L, Zou G, Guo Y, Li Y, Wang C, Hu Q, Zhang W, Wang L. Eutrophication dangers the ecological status of coastal wetlands: A quantitative assessment by composite microbial index of biotic integrity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151620. [PMID: 34780838 DOI: 10.1016/j.scitotenv.2021.151620] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The intertidal wetland ecosystem is vulnerable to environmental and anthropogenic stressors. Understanding how the ecological statuses of intertidal wetlands respond to influencing factors is crucial for the management and protection of intertidal wetland ecosystems. In this study, the community characteristics of bacteria, archaea and microeukaryote from Jiangsu coast areas (JCA), the longest muddy intertidal wetlands in the world, were detected to develop a composite microbial index of biotic integrity (CM-IBI) and to explore the influence mechanisms of stresses on the intertidal wetland ecological status. A total of 12 bacterial, archaea and microeukaryotic metrics were determined by range, responsiveness and redundancy tests for the development of ba-IBI, ar-IBI and eu-IBI. The CM-IBI was further developed via three sub-IBIs with weight coefficients 0.40, 0.33 and 0.27, respectively. The CM-IBI (R2 = 0.58) exhibited the highest goodness of fit with the CEI, followed by ba-IBI (R2 = 0.36), ar-IBI (R2 = 0.25) and eu-IBI (R2 = 0.21). Redundancy and random forest analyses revealed inorganic nitrogen (inorgN), total phosphorus (TP) and total organic carbon (TOC) to be key environmental variables influencing community compositions. A conditional reasoning tree model indicated the close associating between the ecological status and eutrophication conditions. The majority of sites with water inorgN<0.67 mg/L exhibited good statuses, while the poor ecological status was observed for inorgN>0.67 mg/L and TP > 0.11 mg/L. Microbial networks demonstrated the interactions of microbial taxonomic units among three kingdoms decreases with the ecological degradation, suggesting a reduced reliability and stability of microbial communities. Multi-level path analysis revealed fishery aquaculture and industrial development as the dominant anthropogenic activities effecting the eutrophication and ecological degradation of the JCA tidal wetlands. This study developed an efficient ecological assessment method of tidal wetlands based on microbial communities, and determined the influence of human activities and eutrophication on ecological status, providing guidance for management standards and coastal development.
Collapse
Affiliation(s)
- Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanhua Zou
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yuntong Guo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Chao Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Linqiong Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
8
|
Geng M, Zhang W, Hu T, Wang R, Cheng X, Wang J. Eutrophication causes microbial community homogenization via modulating generalist species. WATER RESEARCH 2022; 210:118003. [PMID: 34982976 DOI: 10.1016/j.watres.2021.118003] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/14/2021] [Accepted: 12/21/2021] [Indexed: 05/27/2023]
Abstract
Eutrophication substantially influences the community structure of aquatic organisms and has become a major threat to biodiversity. However, whether eutrophication is linked to homogenization of microbial communities and the possible underlying mechanisms are poorly understood. Here, we studied bacterial and fungal communities from water and sediments of 40 shallow lakes in the Yangtze-Huaihe River basin, a representative area characterized by intensifying eutrophication in China, and further examined the beta diversity patterns and underlying mechanisms under eutrophication conditions. Our results indicate that eutrophication generally caused biotic homogenization of bacterial and fungal communities in both habitats showing decreased community variations for the sites with a higher trophic state index (TSI). In the two habitats, community dissimilarities were positively correlated with TSI changes for both taxonomic groups, while the local contribution to beta diversity (LCBD) remarkably declined with increasing TSI for the fungal community. These phenomena were consistent with the pivotal importance of the TSI in statistically accounting for beta diversity of bacterial and fungal communities in both habitats. In addition, we found that physicochemical factors such as water temperature and pH were also important for bacterial and fungal communities in water, while heavy metal elements were important for the communities in sediments. Interestingly, generalist species, rather than specialist species, were revealed to more dominantly affect the variations in beta diversity along the trophic gradient, which were quantified by Bray-Curtis dissimilarity and LCBD. Collectively, our findings reveal the importance of generalist species in contributing to the change of beta diversity of microbial communities along trophic gradients, which have profound implications for a comprehensive understanding of the effects of eutrophication on microbial community.
Collapse
Affiliation(s)
- Mengdie Geng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Nanjing 210008, China
| | - Weizhen Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Nanjing 210008, China; Center for the Pan-third Pole Environment, Lanzhou University, Lanzhou 730000, China
| | - Ting Hu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Nanjing 210008, China
| | - Rong Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaoying Cheng
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Lopera‐Congote L, Salgado J, Isabel Vélez M, Link A, González‐Arango C. River connectivity and climate behind the long-term evolution of tropical American floodplain lakes. Ecol Evol 2021; 11:12970-12988. [PMID: 34646446 PMCID: PMC8495813 DOI: 10.1002/ece3.7674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 11/08/2022] Open
Abstract
This study presents the long-term evolution of two floodplains lakes (San Juana and Barbacoas) of the Magdalena River in Colombia with varying degree of connectivity to the River and with different responses to climate events (i.e., extreme floods and droughts). Historical limnological changes were identified through a multiproxy-based reconstruction including diatoms, sedimentation, and sediment geochemistry, while historical climatic changes were derived from the application of the Standardised Precipitation-Evapotranspiration Index. The main gradients in climatic and limnological change were assessed via multivariate analysis and generalized additive models. The reconstruction of the more isolated San Juana Lake spanned the last c. 500 years. Between c. 1,620 and 1,750 CE, riverine-flooded conditions prevailed as indicated by high detrital input, reductive conditions, and dominance of planktonic diatoms. Since the early 1800s, the riverine meander became disconnected, conveying into a marsh-like environment rich in aerophil diatoms and organic matter. The current lake was then formed around the mid-1960s with a diverse lake diatom flora including benthic and planktonic diatoms, and more oxygenated waters under a gradual increase in sedimentation and nutrients. The reconstruction for Barbacoas Lake, a waterbody directly connected to the Magdalena River, spanned the last 60 years and showed alternating riverine-wetland-lake conditions in response to varying ENSO conditions. Wet periods were dominated by planktonic and benthic diatoms, while aerophil diatom species prevailed during dry periods; during the two intense ENSO periods of 1987 and 1992, the lake almost desiccated and sedimentation rates spiked. A gradual increase in sedimentation rates post-2000 suggests that other factors rather than climate are also influencing sediment deposition in the lake. We propose that hydrological connectivity to the Magdalena River is a main factor controlling lake long-term responses to human pressures, where highly connected lakes respond more acutely to ENSO events while isolated lakes are more sensitive to local land-use changes.
Collapse
Affiliation(s)
- Laura Lopera‐Congote
- Laboratorio de Palinología y Paleoecología TropicalUniversidad de los AndesBogotáColombia
| | - Jorge Salgado
- Laboratorio de Palinología y Paleoecología TropicalUniversidad de los AndesBogotáColombia
- Facultad de IngenieríaUniversidad Católica de ColombiaBogotáColombia
- School of GeographyNottingham UniversityNottinghamUK
| | | | - Andrés Link
- Laboratorio de Ecología de Bosques Tropicales y PrimatologíaDepartamento de Ciencias BiológicasUniversidad de Los AndesBogotáColombia
| | | |
Collapse
|
10
|
Fu H, Yuan G, Özkan K, Johansson LS, Søndergaard M, Lauridsen TL, Jeppesen E. Seasonal and long-term trends in the spatial heterogeneity of lake phytoplankton communities over two decades of restoration and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141106. [PMID: 32814284 DOI: 10.1016/j.scitotenv.2020.141106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/24/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
World-wide, reducing the external nutrient loading to lakes has been the primary priority of lake management in the restoration of eutrophic lakes over the past decades, and as expected this has resulted in an increase in the local environmental heterogeneity, and thus biotic heterogeneity, within lakes. However, little is known about how the regional spatial heterogeneity of lake biotic communities changes with restoration across a landscape. Using a long-term monitoring dataset from 20 Danish lakes, we elucidated the seasonal and long-term trends in the spatial heterogeneity of climate, local abiotic variables and phytoplankton communities over two decades of restoration and climate change at landscape level. We found significant seasonality in the spatial heterogeneity of most climatic and local drivers as well as in the total beta diversity (Sørensen coefficient) and its turnover components (Simpson coefficient) of phytoplankton communities among the lakes. The seasonality tended to be less marked in deep than in shallow lakes. We found significant spatial homogenisation of most local drivers (except for alkalinity) and phytoplankton communities after two decades of restoration and that turnover dominated the temporal responses of the total beta diversity of phytoplankton communities. Path analyses showed that the homogenisation of phytoplankton communities was mainly due to a decrease in spatial heterogeneity of total phosphorus and Schmidt stability in shallow lakes and to a decrease in spatial total phosphorus and total nitrogen heterogeneity in deep lakes. However, albeit weakly, the spatial heterogeneity of the phytoplankton communities was affected indirectly by climatic warming in both shallow and deep lakes and directly by wind speed in shallow lakes. We conclude that restoration of eutrophic lakes may lead to an increase in the local heterogeneity of phytoplankton communities at lake scale and an increase in homogeneity at landscape scale.
Collapse
Affiliation(s)
- Hui Fu
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China.
| | - Guixiang Yuan
- Ecology Department, College of Resources & Environments, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Korhan Özkan
- Institute of Marine Sciences, Middle East Technical University, Mersin, Turkey
| | | | - Martin Søndergaard
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Torben L Lauridsen
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, China; Limnology Laboratory, Department of Biological Sciences, Centre for Ecosystem Research and Implementation, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
11
|
Benito X, Vilmi A, Luethje M, Carrevedo ML, Lindholm M, Fritz SC. Spatial and Temporal Ecological Uniqueness of Andean Diatom Communities Are Correlated With Climate, Geodiversity and Long-Term Limnological Change. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
12
|
Huttunen KL, Muotka T, Karjalainen SM, Laamanen T, Aroviita J. Excess of nitrogen reduces temporal variability of stream diatom assemblages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136630. [PMID: 31958730 DOI: 10.1016/j.scitotenv.2020.136630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Nutrient enrichment degrades water quality and threatens aquatic biota. However, our knowledge on (dis)similarities in temporal patterns of biota among sites of varying level of nutrient stress is limited. We addressed this gap by assessing temporal (among seasons) variation in algal biomass, species diversity and composition of diatom assemblages in three streams that differ in nutrient stress, but are otherwise similar and share the same regional species pool. We monitored three riffle sections in each stream bi-weekly from May to October in 2014. Temporal variation in water chemistry and other environmental variables was mainly synchronous among riffles within streams and often also among streams, indicating shared environmental forcing through time. We found significant differences in diatom assemblage composition among streams and, albeit less so, also among riffles within streams. Diatom assemblages in the two nutrient-enriched streams were more similar to each other than to those in the nutrient-poor stream. Taxa richness did not differ consistently among the streams, and did not vary synchronously at any spatial scale. Temporal variation in diatom assemblage composition decreased with increasing DIN:TotP ratio, likely via a negative effect on sensitive taxa while maintaining favorable conditions for certain tolerant taxa, irrespective of season. This relationship weakened but remained significant even after controlling for stochastic effects, suggesting deterministic mechanisms between nutrient levels and diatom assemblage stability. After controlling for stochastic effects temporal variability was best explained by DIN suggesting that excess of nitrogen reduces temporal variability(intra-annual beta diversity) of diatom assemblages. The high temporal variation, and especially the lack of temporal synchrony at the within streams scale, suggests that single sampling at a single site may be insufficient to reliably assess and monitor a complete stream water body. Our results also showed that measures including species identity outperform traditional diversity metrics in detecting nutrient stress in streams.
Collapse
Affiliation(s)
- Kaisa-Leena Huttunen
- Department of Ecology and Genetics, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland.
| | - Timo Muotka
- Department of Ecology and Genetics, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland; Finnish Environment Institute, Freshwater Centre, P.O. Box 413, FI-90014 Oulu, Finland
| | | | - Tiina Laamanen
- Finnish Environment Institute, Freshwater Centre, P.O. Box 413, FI-90014 Oulu, Finland
| | - Jukka Aroviita
- Finnish Environment Institute, Freshwater Centre, P.O. Box 413, FI-90014 Oulu, Finland
| |
Collapse
|
13
|
Macintosh KA, Cromie H, Forasacco E, Gallagher K, Kelly FL, McElarney Y, O'Kane E, Paul A, Rippey B, Rosell R, Vaughan L, Ward C, Griffiths D. Assessing lake ecological status across a trophic gradient through environmental and biological variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:831-840. [PMID: 31302548 DOI: 10.1016/j.scitotenv.2019.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The Water Framework Directive was widely welcomed because it sought to integrate chemical and biological elements of aquatic ecosystems to achieve 'good ecological status', reflecting at most slight anthropogenic impact. However, implementation has been criticised because of the failure to adequately integrate these elements and assess status of the whole ecosystem. In this study, a suite of environmental and biotic variables was measured to assess their relative importance as predictors of lake status for 50 lakes in the north of the island of Ireland. Total Phosphorus (TP) had a strong effect on taxon biomasses and ecological quality ratios (EQR) for most taxa, as expected, but other environmental variables, such as pH, water colour and spatial location, were also important. Most variance in mean EQR, the average of the taxon values, was predicted by five environmental variables (chlorophyll a, TP, population density, water colour and elevation) and whether (alien) cyprinid fish were present. Oligotrophic lakes with cyprinid fish had lower mean EQRs than cyprinid-free lakes, indicating the importance of recording species introductions when assessing lake status. Strong evidence for bottom-up effects was also detected, and cyprinids probably influenced trophic structure by increasing nutrient release from the sediment rather than by top-down effects. Phytoplankton biomass, fish biomasses, and the percentage of predatory fish, increased with TP. Our results further emphasize the need to adopt a more integrated approach when assessing lake status.
Collapse
Affiliation(s)
- Katrina A Macintosh
- School of Geography and Environmental Sciences, Ulster University, UK; School of Biological Sciences and the Institute for Global Food Security, The Queen's University of Belfast, UK.
| | | | - Elena Forasacco
- School of Geography and Environmental Sciences, Ulster University, UK; Graduate School, Imperial College London, UK
| | | | | | | | | | - Andrew Paul
- Agri-Food and Biosciences Institute, Belfast, UK; Department of Finance, Northern Ireland Civil Service, Belfast, UK
| | - Brian Rippey
- School of Geography and Environmental Sciences, Ulster University, UK
| | | | - Louise Vaughan
- Agri-Food and Biosciences Institute, Belfast, UK; Galway Mayo Institute of Technology, Galway, Ireland
| | - Colleen Ward
- Agri-Food and Biosciences Institute, Belfast, UK
| | - David Griffiths
- School of Geography and Environmental Sciences, Ulster University, UK
| |
Collapse
|
14
|
Ruggeri P, Pasternak E, Okamura B. To remain or leave: Dispersal variation and its genetic consequences in benthic freshwater invertebrates. Ecol Evol 2019; 9:12069-12088. [PMID: 31832145 PMCID: PMC6854113 DOI: 10.1002/ece3.5656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/25/2019] [Accepted: 08/26/2019] [Indexed: 01/10/2023] Open
Abstract
Variation in dispersal capacity may influence population genetic variation and relatedness of freshwater animals thus demonstrating how life-history traits influence patterns and processes that in turn influence biodiversity. The majority of studies have focused on the consequences of dispersal variation in taxa inhabiting riverine systems whose dendritic nature and upstream/downstream gradients facilitate characterizing populations along networks. We undertook extensive, large-scale investigations of the impacts of hydrological connectivity on population genetic variation in two freshwater bryozoan species whose dispersive propagules (statoblasts) are either attached to surfaces (Fredericella sultana) or are released as buoyant stages (Cristatella mucedo) and that live primarily in either lotic (F. sultana) or lentic environments (C. mucedo). Describing population genetic structure in multiple sites characterized by varying degrees of hydrological connectivity within each of three (or four) UK regions enabled us to test the following hypotheses: (1) genetic diversity and gene flow will be more influenced by hydrological connectivity in populations of C. mucedo (because F. sultana dispersal stages are retained); (2) populations of F. sultana will be characterized by greater genetic divergence than those of C. mucedo (reflecting their relative dispersal capacities); and (3) genetic variation will be greatest in F. sultana (reflecting a propensity for genetic divergence as a result of its low dispersal potential). We found that hydrological connectivity enhanced genetic diversity and gene flow among C. mucedo populations but not in F. sultana while higher overall measures of clonal diversity and greater genetic divergence characterized populations of F. sultana. We suggest that genetic divergence over time within F. sultana populations reflects a general constraint of releasing propagules that might eventually be swept to sea when taxa inhabit running waters. In contrast, taxa that primarily inhabit lakes and ponds may colonize across hydrologically connected regions, establishing genetically related populations. Our study contributes more nuanced views about drivers of population genetic structures in passively dispersing freshwater invertebrates as outlined by the Monopolization Hypothesis (Acta Oecologica, 23, 2002, 121) by highlighting how a range of demographic and evolutionary processes reflect life-history attributes of benthic colonial invertebrates (bryozoans) and cyclically parthenogenetic zooplankton. In addition, growing evidence that genetic divergence may commonly characterize populations of diverse groups of riverine taxa suggests that organisms inhabiting lotic systems may be particularly challenged by environmental change. Such change may predispose riverine populations to extinction as a result of genetic divergence combined with limited dispersal and gene flow. OPEN RESEARCH BADGES This article has earned an Open Data Badge for making publicly available the digitally-shareable data necessary to reproduce the reported results. The data is available at https://doi.org/10.5061/dryad.1tm8705.
Collapse
Affiliation(s)
- Paolo Ruggeri
- Department of Life SciencesNatural History MuseumLondonUK
- Laboratory of Integrative Biology of Marine ModelsStation Biologique de RoscoffCNRS‐Sorbonne UniversityRoscoffFrance
| | - Ellen Pasternak
- Department of Life SciencesNatural History MuseumLondonUK
- Zoology DepartmentOxford UniversityOxfordUK
| | - Beth Okamura
- Department of Life SciencesNatural History MuseumLondonUK
| |
Collapse
|
15
|
Fu H, Yuan G, Jeppesen E, Ge D, Li W, Zou D, Huang Z, Wu A, Liu Q. Local and regional drivers of turnover and nestedness components of species and functional beta diversity in lake macrophyte communities in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:206-217. [PMID: 31207511 DOI: 10.1016/j.scitotenv.2019.06.092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
Beta diversity describes the variation in species composition between sites and is often influenced by both local and regional processes. Partitioning beta diversity into turnover (species replacement between sites) and nestedness (richness difference between sites) components may enhance our understanding of the mechanisms behind the local and regional drivers determining species composition across spatial scales. We sampled macrophyte communities in 24 lakes in two regions (Yangtze River basin and Yunnan-Guizhou plateau) of China covering broad climate and nutrient gradients. Based on both species and functional approaches, we calculated multiple-site beta diversity using the Sørensen dissimilarity index and partitioned it into turnover and nestedness coefficients crossed with two nested spatial scales: among depths within transects (transect scale) and among transects within lakes (lake scale). The overall species beta diversity and functional beta diversity (i.e. Sørensen coefficient) were significantly lower and thus more homogeneous at lake scale. Across spatial scales, species beta diversity was mainly explained by turnover patterns (56-61%) and functional beta diversity primarily by nestedness patterns (58-65%). Both local and regional drivers contributed to structuring species and functional beta diversity patterns, largely through changes in species turnover and functional nestedness, respectively. Overall, we observed a significant increase in species beta diversity and its turnover component while a decreasing trend in functional beta diversity and its nestedness component at high altitude. Our results further emphasized that the species beta diversity and its turnover component decreased at high total phosphorus concentration (TP) across the two spatial scales, while the functional beta diversity and its nestedness component decreased at high TP at the transect scale. We conclude that understanding of the relative role of local and regional drivers in determining macrophyte diversity patterns may help managers to select the most appropriate conservation strategies for preservation of biodiversity varying with the scale in focus.
Collapse
Affiliation(s)
- Hui Fu
- Ecology Department, College of Bioscience & Biotechnology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China; Jiangxi Institute of Water Sciences, Beijing East Road 1038, Nanchang 330029, PR China.
| | - Guixiang Yuan
- Ecology Department, College of Bioscience & Biotechnology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China; Jiangxi Institute of Water Sciences, Beijing East Road 1038, Nanchang 330029, PR China
| | - Erik Jeppesen
- Department of Bioscience, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark; Sino-Danish Centre for Education and Research (SDC), University of Chinese Academy of Sciences, Beijing, PR China
| | - Dabing Ge
- Ecology Department, College of Bioscience & Biotechnology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Wei Li
- Research Institute of Ecology & Environmental Sciences, Nanchang Institute of Technology, Nanchang 330099, PR China
| | - Dongsheng Zou
- Ecology Department, College of Bioscience & Biotechnology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Zhenrong Huang
- Key Laboratory of Agro-ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Graduate University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hunan 410125, PR China
| | - Aiping Wu
- Ecology Department, College of Bioscience & Biotechnology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| | - Qiaolin Liu
- Ecology Department, College of Bioscience & Biotechnology, Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
16
|
Salgado J, Sayer CD, Brooks SJ, Davidson TA, Baker AG, Willby N, Patmore IR, Goldsmith B, Bennion H, Okamura B. Connectivity and zebra mussel invasion offer short‐term buffering of eutrophication impacts on floodplain lake landscape biodiversity. DIVERS DISTRIB 2019. [DOI: 10.1111/ddi.12938] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Jorge Salgado
- Department of Life Sciences Natural History Museum London UK
- Environmental Change Research Centre, Department of Geography University College London London UK
- Grupo de Palinología y Paleoecología Tropical, Departamento de Ciencias Biológicas Universidad de los Andes Bogotá Colombia
| | - Carl D. Sayer
- Environmental Change Research Centre, Department of Geography University College London London UK
| | | | - Thomas A. Davidson
- Lake Group and Arctic Research Centre, Department of Bioscience Aarhus University Aarhus Denmark
| | - Ambroise G. Baker
- Environmental Change Research Centre, Department of Geography University College London London UK
| | - Nigel Willby
- Biological and Environmental Sciences University of Stirling Stirling UK
| | - Ian R. Patmore
- Environmental Change Research Centre, Department of Geography University College London London UK
| | - Ben Goldsmith
- Environmental Change Research Centre, Department of Geography University College London London UK
| | - Helen Bennion
- Environmental Change Research Centre, Department of Geography University College London London UK
| | - Beth Okamura
- Department of Life Sciences Natural History Museum London UK
| |
Collapse
|
17
|
Salgado J, Vélez MI, Caceres-Torres LC, Villegas-Ibagon JA, Bernal-Gonzalez LC, Lopera-Congote L, Martinez-Medina NM, González-Arango C. Long-Term Habitat Degradation Drives Neotropical Macrophyte Species Loss While Assisting the Spread of Invasive Plant Species. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Spatiotemporal Dynamics of Submerged Aquatic Vegetation in a Deep Lake from Sentinel-2 Data. WATER 2019. [DOI: 10.3390/w11030563] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We mapped the extent of submerged aquatic vegetation (SAV) of Lake Iseo (Northern Italy, over the 2015–2017 period based on satellite data (Sentinel 2 A-B) and in-situ measurements; the objective was to investigate its spatiotemporal variability. We focused on the southern sector of the lake, the location of the shallowest littorals and the most developed macrophyte communities, mainly dominated by Vallisneria spiralis and Najas marina. The method made use of both in-situ measurements and satellite data (22 Sentinel 2 A-B images) that were atmospherically corrected with 6SV code and processed with the BOMBER (Bio-Optical Model-Based tool for Estimating water quality and bottom properties from Remote sensing images). This modeling system was used to estimate the different substrate coverage (bare sediment, dense stands of macrophytes with high albedo, and sparse stand of macrophytes with low albedo). The presented results substantiate the existence of striking inter- and intra-annual variations in the spatial-cover patterns of SAV. Intense uprooting phenomena were also detected, mainly affecting V. spiralis, a species generally considered a highly plastic pioneer taxon. In this context, remote sensing emerges as a very reliable tool for mapping SAV with satisfactory accuracy by offering new perspectives for expanding our comprehension of lacustrine macrophyte dynamics and overcoming some limitations associated with traditional field surveys.
Collapse
|