1
|
Enquist BJ, Erwin D, Savage V, Marquet PA. Scaling approaches and macroecology provide a foundation for assessing ecological resilience in the Anthropocene. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230010. [PMID: 38583479 PMCID: PMC10999275 DOI: 10.1098/rstb.2023.0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/26/2024] [Indexed: 04/09/2024] Open
Abstract
In the Anthropocene, intensifying ecological disturbances pose significant challenges to our predictive capabilities for ecosystem responses. Macroecology-which focuses on emergent statistical patterns in ecological systems-unveils consistent regularities in the organization of biodiversity and ecosystems. These regularities appear in terms of abundance, body size, geographical range, species interaction networks, or the flux of matter and energy. This paper argues for moving beyond qualitative resilience metaphors, such as the 'ball and cup', towards a more quantitative macroecological framework. We suggest a conceptual and theoretical basis for ecological resilience that integrates macroecology with a stochastic diffusion approximation constrained by principles of biological symmetry. This approach provides an alternative novel framework for studying ecological resilience in the Anthropocene. We demonstrate how our framework can effectively quantify the impacts of major disturbances and their extensive ecological ramifications. We further show how biological scaling insights can help quantify the consequences of major disturbances, emphasizing their cascading ecological impacts. The nature of these impacts prompts a re-evaluation of our understanding of resilience. Emphasis on regularities of ecological assemblages can help illuminate resilience dynamics and offer a novel basis to predict and manage the impacts of disturbance in the Anthropocene more efficiently. This article is part of the theme issue 'Ecological novelty and planetary stewardship: biodiversity dynamics in a transforming biosphere'.
Collapse
Affiliation(s)
- Brian J. Enquist
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Department of Ecology and Evolutionary Biology, University of Arizona, Arizona, AZ 85721, USA
| | - Doug Erwin
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Department of Paleobiology, MRC-121, National Museum of Natural History, Washington, DC 20013-7012, USA
| | - Van Savage
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Department of Ecology and Evolutionary Biology and Department of Computational Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pablo A. Marquet
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
- Instituto de Sistemas Complejos de Valparaíso (ISCV), CP 2340000 Valparaíso, Chile
- Departamento de Ecología, Facultad de Ciemcias Biológicas, Pontificia Universidad Católica de Chile, CP 8331150, Santiago, Chile
- Centro de Modelamiento Matemático (CMM), Universidad de Chile, International Research Laboratory, 2807, CNRS, CP 8370456 Santiago, Chile
| |
Collapse
|
2
|
Atapattu KP, Perera H, Kathriarachchi H, Gunawardena A. Abundance and spatial distribution analyses of Stemonoporus moonii Thwaites (Dipterocarpaceae) - a critically endangered species endemic to Sri Lanka. JOURNAL OF THREATENED TAXA 2022. [DOI: 10.11609/jott.6970.14.1.20426-20432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Hora Wel Stemonoporus moonii Thwaites, a plant species endemic to Sri Lanka, is the central focus of this study. Because of its strictly narrow distribution area of fewer than 100 km2 and declining habitat, coupled with a high risk of extinction, it is placed under the ‘Critically Endangered’ category in International Union for the Conservation of Nature Red List category. A field survey was conducted during February–March 2020 in Walawwe-Watta Wathurana freshwater swamp forest to assess the population status of this species. Global positioning system (GPS) coordinates of individuals were documented. The root collar diameter of plants was measured to differentiate adults. Population size analysis was performed using GeoCAT online software, and a distribution map was prepared using Quantum GIS (QGIS 3). A total of 600 plants were recorded, with 50% each adult (root collar diameter more than 2.0 cm) and young individuals (root collar diameter equal to or less than 2.0 cm). The extent of occurrence (EOO) and area of occupancy (AOO) of S. moonii were calculated as 0.06 km2 and 4.000 km2, respectively. Two subpopulations of S. moonii can be seen within the Walawwe-Watta Wathurana Environmental Protection Area. The findings of the present study support the current IUCN Red List status of S. moonii as Critically Endangered. Even though the existing populations of this species located within a protected area and not presently exposed to major threats, the location is easily accessible and can potentially be affected by anthropogenic pressures and habitat loss. Therefore, this species and the habitat warrant suitable in situ conservation measures.
Collapse
|
3
|
The modified maximum likelihood estimators for the parameters of the regression model under bivariate median ranked set sampling. Comput Stat 2021. [DOI: 10.1007/s00180-021-01152-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Brown NEM, Bernhardt JR, Harley CDG. Energetic context determines species and community responses to ocean acidification. Ecology 2020; 101:e03073. [DOI: 10.1002/ecy.3073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 03/02/2020] [Accepted: 03/16/2020] [Indexed: 11/10/2022]
Affiliation(s)
- Norah E. M. Brown
- Department of Zoology University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
| | - Joey R. Bernhardt
- Department of Zoology University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
| | - Christopher D. G. Harley
- Department of Zoology University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
- Institute for the Oceans and Fisheries University of British Columbia Vancouver V6T 1Z4 British Columbia Canada
| |
Collapse
|