1
|
McCampbell M, Spencer M, Hart K, Link G, Watson A, McCleery R. Mammalian lures monitored with time-lapse cameras increase detection of pythons and other snakes. PeerJ 2024; 12:e17577. [PMID: 38938602 PMCID: PMC11210459 DOI: 10.7717/peerj.17577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Background Enhancing detection of cryptic snakes is critical for the development of conservation and management strategies; yet, finding methods that provide adequate detection remains challenging. Issues with detecting snakes can be particularly problematic for some species, like the invasive Burmese python (Python bivittatus) in the Florida Everglades. Methods Using multiple survey methods, we predicted that our ability to detect pythons, larger snakes and all other snakes would be enhanced with the use of live mammalian lures (domesticated rabbits; Oryctolagus cuniculus). Specifically, we used visual surveys, python detection dogs, and time-lapse game cameras to determine if domesticated rabbits were an effective lure. Results Time-lapse game cameras detected almost 40 times more snakes (n = 375, treatment = 245, control = 130) than visual surveys (n = 10). We recorded 21 independent detections of pythons at treatment pens (with lures) and one detection at a control pen (without lures). In addition, we found larger snakes, and all other snakes were 165% and 74% more likely to be detected at treatment pens compared to control pens, respectively. Time-lapse cameras detected almost 40 times more snakes than visual surveys; we did not detect any pythons with python detection dogs. Conclusions Our study presents compelling evidence that the detection of snakes is improved by coupling live mammalian lures with time-lapse game cameras. Although the identification of smaller snake species was limited, this was due to pixel resolution, which could be improved by changing the camera focal length. For larger snakes with individually distinctive patterns, this method could potentially be used to identify unique individuals and thus allow researchers to estimate population dynamics.
Collapse
Affiliation(s)
- Marina McCampbell
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
| | - McKayla Spencer
- Florida Fish and Wildlife Conservation Commission, Gainesville, Florida, United States of America
| | - Kristen Hart
- Wetland and Aquatic Research Center, United States Geological Survey, Fort Lauderdale, Florida, United States of America
| | - Gabrielle Link
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
| | - Andrew Watson
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
| | - Robert McCleery
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
2
|
Nakai M, Masumoto T, Asaeda T, Rahman M. Improving the efficiency of adaptive management methods in multiple fishways using environmental DNA. PLoS One 2024; 19:e0301197. [PMID: 38557776 PMCID: PMC10984549 DOI: 10.1371/journal.pone.0301197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 03/12/2024] [Indexed: 04/04/2024] Open
Abstract
Dams and weirs impede the continuity of rivers and transit of migratory fish. To overcome this obstacle, fishways are installed worldwide; however, management after installation is important. The Miyanaka Intake Dam has three fish ladders with different flow velocities and discharges and has been under adaptive management since 2012. Fish catch surveys, conducted as an adaptive management strategy, place a heavy burden on fish. Furthermore, a large number of investigators must be mobilized during the 30-day investigation period. Thus, a monitoring method using environmental DNA that exerts no burden on fish and requires only a few surveyors (to obtain water samples) and an in-house analyst was devised; however, its implementation in a fishway away from the point of analysis and with limited flow space and its effective water sampling frequency have not been reported. Therefore, in 2019, we started a trial aiming to evaluate the methods and application conditions of environmental DNA surveys for the continuous and long-term monitoring of various fish fauna upstream and downstream of the Miyanaka Intake Dam. To evaluate the fish fauna, the results of an environmental DNA survey (metabarcoding method) for 2019 to 2022 were compared to those of a catch survey in the fishway from 2012 to 2022. The results confirmed the use of environmental DNA surveys in evaluating the contribution of fishways to biodiversity under certain conditions and introduced a novel method for sample collection.
Collapse
Affiliation(s)
- Masahiko Nakai
- Japan International Consultants for Transportation Co., Ltd, Tokyo, Japan
| | - Taku Masumoto
- Energy Planning Department, East Japan Railway Company, Tokyo, Japan
| | | | | |
Collapse
|
3
|
Maestresalas B, Piquet JC, López-Darias M. Spatial ecology to strengthen invasive snake management on islands. Sci Rep 2023; 13:6731. [PMID: 37185934 PMCID: PMC10130030 DOI: 10.1038/s41598-023-32483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Knowledge on the spatial ecology of invasive predators positively contributes to optimizing their management, especially when involving cryptic and secretive species, such as snakes. However, this information is lacking for most invasive snakes, particularly on islands, where they are known to cause severe ecological and socio-economic impacts. This research is focused on assessing the spatial ecology of the California kingsnake (Lampropeltis californiae) on Gran Canaria to strengthen management actions. We monitored 15 radio-tagged individuals once per day on 9-11 days per month from July 2020 to June 2021 to calculate the species' home range and describe annual activity patterns in the invaded range. To account for the species' diel activity during the emergence period, we additionally monitored snakes from January to May 2021 during three consecutive days per month in four different time intervals each day. We detected movement (consecutive detections at least 6 m apart) in 31.68% of the 1146 detections during the whole monitoring period. Movements most frequently detected were shorter than 100 m (82.24%), and among them the range 0-20 m was the most recurrent (27.03%). The mean distance of movement was 62.57 ± 62.62 m in 1-2 days. Average home range was 4.27 ± 5.35 ha-calculated with the Autocorrelated Kernel Density Estimator (AKDE) at 95%-and did not significantly vary with SVL nor sex. We detected an extremely low value of motion variance (0.76 ± 2.62 σ2m) compared to other studies, with a general inactivity period from November to February, January being the less active month of the year. Diel activity was higher during central and evening hours than during early morning and night. Our results should be useful to improve control programs for this invasive snake (e.g., trap placement and visual survey guidance) on Gran Canaria. Our research highlights the importance of gathering spatial information on invasive snakes to enhance control actions, which can contribute to the management of secretive invasive snakes worldwide.
Collapse
Affiliation(s)
- Borja Maestresalas
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain
| | - Julien C Piquet
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain
| | - Marta López-Darias
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
4
|
Zdunek P, Jarmoliński M. Microhabitat sharing for basking between squamate species in Poland. HERPETOZOA 2023. [DOI: 10.3897/herpetozoa.36.e94064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Aggregations (e.g. group basking) by snakes are usually limited to specific life cycle phases (e.g. mating) or are a consequence of drastic environmental changes (e.g. habitat destruction), high prey densities or highly limited resources within an environment (e.g. basking sites, wintering dens). Here, we report intra- and interspecific observations of four reptile species (primarily Natrix natrix and Vipera berus) sharing basking sites at the confluence of the rivers Dunajec and Poprad near the town of Stary Sącz in southern Poland. From a total of 84 records in the field between 2020–2022, there were 11 interactions from 24 July 2020 to 1 May 2022. Previous studies have indicated direct competition or interference in many species, which we did not observe. There is a noticeable lack of such observations of microhabitat sharing for basking between squamate species in scientific literature. Hence, the accumulation of such observations has the potential to reveal new insights into the behaviour and ecology of N. natrix and V. berus.
Collapse
|
5
|
Royal EJ, Winne CT, Willson JD. Trap Escape as a Driver of Capture Probability in Semiaquatic Snakes. HERPETOLOGICA 2023. [DOI: 10.1655/herpetologica-d-22-00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Ethan J. Royal
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Christopher T. Winne
- International High School, Austin Independent School District, Austin, TX 78702, USA
| | - John D. Willson
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
6
|
Allen MC, Kwait R, Vastano A, Kisurin A, Zoccolo I, Jaffe BD, Angle JC, Maslo B, Lockwood JL. Sampling environmental DNA from trees and soil to detect cryptic arboreal mammals. Sci Rep 2023; 13:180. [PMID: 36604526 PMCID: PMC9814459 DOI: 10.1038/s41598-023-27512-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Environmental DNA (eDNA) approaches to monitoring biodiversity in terrestrial environments have largely focused on sampling water bodies, potentially limiting the geographic and taxonomic scope of eDNA investigations. We assessed the performance of two strictly terrestrial eDNA sampling approaches to detect arboreal mammals, a guild with many threatened and poorly studied taxa worldwide, within two central New Jersey (USA) woodlands. We evaluated species detected with metabarcoding using two eDNA collection methods (tree bark vs. soil sampling), and compared the performance of two detection methods (qPCR vs. metabarcoding) within a single species. Our survey, which included 94 sampling events at 21 trees, detected 16 species of mammals, representing over 60% of the diversity expected in the area. More DNA was found for the 8 arboreal versus 8 non-arboreal species detected (mean: 2466 vs. 289 reads/sample). Soil samples revealed a generally similar composition, but a lower diversity, of mammal species. Detection rates for big brown bat were 3.4 × higher for qPCR over metabarcoding, illustrating the enhanced sensitivity of single-species approaches. Our results suggest that sampling eDNA from on and around trees could serve as a useful new monitoring tool for cryptic arboreal mammal communities globally.
Collapse
Affiliation(s)
- Michael C. Allen
- grid.430387.b0000 0004 1936 8796Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| | - Robert Kwait
- grid.430387.b0000 0004 1936 8796Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| | - Anthony Vastano
- grid.430387.b0000 0004 1936 8796Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| | - Alex Kisurin
- grid.430387.b0000 0004 1936 8796Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| | - Isabelle Zoccolo
- grid.430387.b0000 0004 1936 8796Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| | | | - Jordan C. Angle
- grid.421234.20000 0004 1112 1641ExxonMobil Upstream Research Company, Spring, TX USA
| | - Brooke Maslo
- grid.430387.b0000 0004 1936 8796Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| | - Julie L. Lockwood
- grid.430387.b0000 0004 1936 8796Ecology, Evolution and Natural Resources, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 USA
| |
Collapse
|
7
|
Boback SM, Nafus MG, Yackel Adams AA, Reed RN. Invasive brown treesnakes (Boiga irregularis) move short distances and have small activity areas in a high prey environment. Sci Rep 2022; 12:12705. [PMID: 35882893 PMCID: PMC9325984 DOI: 10.1038/s41598-022-16660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 07/13/2022] [Indexed: 11/09/2022] Open
Abstract
Animal movements reflect temporal and spatial availability of resources as well as when, where, and how individuals access such resources. To test these relationships for a predatory reptile, we quantified the effects of prey abundance on the spatial ecology of invasive brown treesnakes (Boiga irregularis) on Guam. Five months after toxicant-mediated suppression of a brown treesnake population, we simultaneously used visual encounter surveys to generate relative rodent abundance and radiotelemetry of snakes to document movements of surviving snakes. After snake suppression, encounter rates for small mammals increased 22-fold and brown treesnakes had smaller mean daily movement distances (24 ± 13 m/day, [Formula: see text] ± SD) and activity areas (5.47 ± 5 ha) than all previous observations. Additionally, snakes frequenting forest edges, where our small mammal encounters were the highest, had smaller mean daily movement distances and three-dimensional activity volumes compared to those within the forest interior. Collectively, these results suggest that reduced movements by snakes were in part a response to increased prey availability. The impact of prey availability on snake movement may be a management consideration when attempting to control cryptic invasive species using tools that rely on movement of the target species to be effective.
Collapse
Affiliation(s)
- Scott M Boback
- Department of Biology, Dickinson College, Carlisle, PA, USA.
| | - Melia G Nafus
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, CO, USA
| | - Amy A Yackel Adams
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, CO, USA
| | - Robert N Reed
- Fort Collins Science Center, U.S. Geological Survey, Fort Collins, CO, USA.,Pacific Island Ecosystems Research Center, U.S. Geological Survey, Hawaii National Park, HI, USA
| |
Collapse
|
8
|
Kelley AG, Welch SM, Holloway J, Dillman JW, Atkinson A, Waldron JL. Effectiveness of long‐distance translocation of eastern diamondback rattlesnakes. WILDLIFE SOC B 2022. [DOI: 10.1002/wsb.1291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Shane M. Welch
- Marshall University 1 John Marshall Drive Huntington WV 25703 USA
| | - John Holloway
- Natural Resources and Environmental Affairs Office Marine Corps Recruit Depot Parris Island SC 29905 USA
| | - James W. Dillman
- South Carolina Department of Natural Resources 1000 Assembly Street Columbia SC 29201 USA
| | - April Atkinson
- South Carolina Department of Natural Resources 1282 Webb Avenue Garnett SC 29922 USA
| | - Jayme L. Waldron
- Marshall University 1 John Marshall Drive Huntington WV 25703 USA
| |
Collapse
|
9
|
Hatch JM, Haas HL, Sasso CR, Patel SH, Smolowitz RJ. Estimating the complex patterns of survey availability for loggerhead turtles. J Wildl Manage 2022. [DOI: 10.1002/jwmg.22208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Joshua M. Hatch
- NOAA National Marine Fisheries Service, NEFSC Woods Hole 02543 MA USA
| | - Heather L. Haas
- NOAA National Marine Fisheries Service, NEFSC Woods Hole 02543 MA USA
| | | | - Samir H. Patel
- Coonamessett Farm Foundation, 277 Hatchville Road East Falmouth 02536 MA USA
| | - Ronald J. Smolowitz
- Coonamessett Farm Foundation, 277 Hatchville Road East Falmouth 02536 MA USA
| |
Collapse
|
10
|
Utilizing environmental DNA for wide-range distributions of reproductive area of an invasive terrestrial toad in Ishikari river basin in Japan. Biol Invasions 2021. [DOI: 10.1007/s10530-021-02709-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractUnderstanding the distribution of invasive species and their reproductive area is crucial for their managements after invasion. While catch and observation surveys are still embraced, environmental DNA (eDNA) has been increasingly utilized as an efficient tool for identifying these species in the wild. In this study, we developed a Bufo-specific eDNA assay for detecting an invasive, toxic, and terrestrial toad species Bufo japonicus formosus in Hokkaido, Japan, and applied it to their reproductive area at watershed scale. The eDNA assay was field-validated in ponds where B. japonicus were observed, as well as in rivers downstream of the reproductive ponds. Thus, the assay provided us an opportunity to screen watersheds that include their reproductive area by collecting downstream water samples. Applying it to the Ishikari river basin, the largest river basin in Hokkaido (c.a., 14,330 km2), we detected toad eDNA at 32 out of 73 sampling sites. They are composed of eleven sites with species observation records nearby (all the sites with observation records within a 500 m radius) and 21 sites without such records. And those eDNA detections were from twelve out of 31 river systems in the entire river basin. A Bayesian, multiscale occupancy model supported high eDNA detectability among those sites. These results suggest that the eDNA assay can efficiently estimate the presence of reproductive area of the terrestrial toad even from a distant downstream of the watershed, and that it provides a powerful means of detecting new reproductive area and monitoring further spread of invasive species.
Collapse
|
11
|
Space use and activity of Boiga cyanea – A major songbird nest predator in a seasonal tropical forest in Thailand. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Malhotra A, Wüster W, Owens JB, Hodges CW, Jesudasan A, Ch G, Kartik A, Christopher P, Louies J, Naik H, Santra V, Kuttalam SR, Attre S, Sasa M, Bravo-Vega C, Murray KA. Promoting co-existence between humans and venomous snakes through increasing the herpetological knowledge base. Toxicon X 2021; 12:100081. [PMID: 34522881 PMCID: PMC8426276 DOI: 10.1016/j.toxcx.2021.100081] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/23/2022] Open
Abstract
Snakebite incidence at least partly depends on the biology of the snakes involved. However, studies of snake biology have been largely neglected in favour of anthropic factors, with the exception of taxonomy, which has been recognised for some decades to affect the design of antivenoms. Despite this, within-species venom variation and the unpredictability of the correlation with antivenom cross-reactivity has continued to be problematic. Meanwhile, other aspects of snake biology, including behaviour, spatial ecology and activity patterns, distribution, and population demography, which can contribute to snakebite mitigation and prevention, remain underfunded and understudied. Here, we review the literature relevant to these aspects of snakebite and illustrate how demographic, spatial, and behavioural studies can improve our understanding of why snakebites occur and provide evidence for prevention strategies. We identify the large gaps that remain to be filled and urge that, in the future, data and relevant metadata be shared openly via public data repositories so that studies can be properly replicated and data used in future meta-analyses.
Collapse
Affiliation(s)
- Anita Malhotra
- Molecular Ecology and Evolution @ Bangor, School of Natural Sciences, Bangor University, 3rd floor ECW, Deiniol Road, Bangor, LL57 2UW, UK
| | - Wolfgang Wüster
- Molecular Ecology and Evolution @ Bangor, School of Natural Sciences, Bangor University, 3rd floor ECW, Deiniol Road, Bangor, LL57 2UW, UK
| | - John Benjamin Owens
- Molecular Ecology and Evolution @ Bangor, School of Natural Sciences, Bangor University, 3rd floor ECW, Deiniol Road, Bangor, LL57 2UW, UK
- Captive & Field Herpetology Ltd, Wales, 13 Hirfron, Holyhead, Llaingoch, Anglesey, LL65 1YU, UK
| | - Cameron Wesley Hodges
- School of Biology, Institute of Science, Suranaree University of Technology, Muang Nakhon Ratchasima, Thailand
| | - Allwin Jesudasan
- Madras Crocodile Bank Trust, Centre for Herpetology, Post bag No.4, Vadanamelli Village, East Coast Road, Mamallapuram, 603 104, Tamil Nadu, India
| | - Gnaneswar Ch
- Madras Crocodile Bank Trust, Centre for Herpetology, Post bag No.4, Vadanamelli Village, East Coast Road, Mamallapuram, 603 104, Tamil Nadu, India
| | - Ajay Kartik
- Madras Crocodile Bank Trust, Centre for Herpetology, Post bag No.4, Vadanamelli Village, East Coast Road, Mamallapuram, 603 104, Tamil Nadu, India
| | - Peter Christopher
- Madras Crocodile Bank Trust, Centre for Herpetology, Post bag No.4, Vadanamelli Village, East Coast Road, Mamallapuram, 603 104, Tamil Nadu, India
| | | | - Hiral Naik
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg. P. O. Wits, 2050, Gauteng, South Africa
- Save the Snakes, R527, Blyderus, Hoedspruit, 1380, South Africa
| | - Vishal Santra
- Captive & Field Herpetology Ltd, Wales, 13 Hirfron, Holyhead, Llaingoch, Anglesey, LL65 1YU, UK
- Society for Nature Conservation, Research and Community Engagement (CONCERN), Nalikul, Hooghly, West Bengal 712407, India
| | - Sourish Rajagopalan Kuttalam
- Society for Nature Conservation, Research and Community Engagement (CONCERN), Nalikul, Hooghly, West Bengal 712407, India
| | - Shaleen Attre
- Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, Marlowe Building, University of Kent, Canterbury, Kent, CT2 7NR, UK
| | - Mahmood Sasa
- Instituto Clodomiro Picado, Universidad de Costa Rica, San José, Costa Rica
- Escuela de Biología, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Bravo-Vega
- Research Group in Mathematical and Computational Biology (BIOMAC), Department of Biomedical Engineering, University of the Andes, Bogotá, Colombia
| | - Kris A. Murray
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, UK
- MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Gambia
| |
Collapse
|
13
|
Goetz SM, Hileman ET, Nafus MG, Yackel Adams AA, Bryant AR, Reed RN, Siers SR. Brown Treesnake Mortality After Aerial Application of Toxic Baits. J Wildl Manage 2021. [DOI: 10.1002/jwmg.22108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Scott M. Goetz
- U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center 233 Pangelinan Way Barrigada GU 96913 USA
| | - Eric T. Hileman
- U.S. Geological Survey, Fort Collins Science Center 2150 Centre Avenue, Building C Fort Collins CO 80526 USA
| | - Melia G. Nafus
- U.S. Geological Survey, Fort Collins Science Center 2150 Centre Avenue, Building C Fort Collins CO 80526 USA
| | - Amy A. Yackel Adams
- U.S. Geological Survey, Fort Collins Science Center 2150 Centre Avenue, Building C Fort Collins CO 80526 USA
| | - Amanda R. Bryant
- Cherokee Nation Technologies, U.S. Geological Survey Brown Treesnake Project Yigo GU 96929 USA
| | - Robert N. Reed
- U.S. Geological Survey, Fort Collins Science Center 2150 Centre Avenue, Building C Fort Collins CO 80526 USA
| | - Shane R. Siers
- U.S. Department of Agriculture, Wildlife Services, National Wildlife Research Center 233 Pangelinan Way Barrigada GU 96913 USA
| |
Collapse
|
14
|
Crane M, Silva I, Marshall BM, Strine CT. Lots of movement, little progress: a review of reptile home range literature. PeerJ 2021; 9:e11742. [PMID: 34322323 PMCID: PMC8300531 DOI: 10.7717/peerj.11742] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Reptiles are the most species-rich terrestrial vertebrate group with a broad diversity of life history traits. Biotelemetry is an essential methodology for studying reptiles as it compensates for several limitations when studying their natural history. We evaluated trends in terrestrial reptile spatial ecology studies focusing upon quantifying home ranges for the past twenty years. We assessed 290 English-language reptile home range studies published from 2000-2019 via a structured literature review investigating publications' study location, taxonomic group, methodology, reporting, and analytical techniques. Substantial biases remain in both location and taxonomic groups in the literature, with nearly half of all studies (45%) originating from the USA. Snakes were most often studied, and crocodiles were least often studied, while testudines tended to have the greatest within study sample sizes. More than half of all studies lacked critical methodological details, limiting the number of studies for inclusion in future meta-analyses (55% of studies lacked information on individual tracking durations, and 51% lacked sufficient information on the number of times researchers recorded positions). Studies continue to rely on outdated methods to quantify space-use (including Minimum Convex Polygons and Kernel Density Estimators), often failing to report subtleties regarding decisions that have substantial impact on home range area estimates. Moving forward researchers can select a suite of appropriate analytical techniques tailored to their research question (dynamic Brownian Bridge Movement Models for within sample interpolation, and autocorrelated Kernel Density Estimators for beyond sample extrapolation). Only 1.4% of all evaluated studies linked to available and usable telemetry data, further hindering scientific consensus. We ultimately implore herpetologists to adopt transparent reporting practices and make liberal use of open data platforms to maximize progress in the field of reptile spatial ecology.
Collapse
Affiliation(s)
- Matthew Crane
- Conservation Ecology Program, King Mongkut’s Institute of Technology Thonburi, Bangkok, Bangkhuntien / Bangkok, Thailand
| | - Inês Silva
- (CASUS), Center for Advanced Systems Understanding, Görlitz, Germany
- (HZDR), Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Benjamin M. Marshall
- School of Biology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Colin T. Strine
- School of Biology, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| |
Collapse
|
15
|
Shelton MB, Goldingay RL. Comparative survey techniques for a cryptic Australian snake (Hoplocephalus bitorquatus). AUST J ZOOL 2020. [DOI: 10.1071/zo20062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ecologists endeavour to develop survey techniques that are cost-effective for the species they target and robust enough for statistical analysis. Using time as a measure of effort, we compared visual encounter surveys with artificial cover objects (strapped to trees), targeting an arboreal elapid, the pale-headed snake (Hoplocephalus bitorquatus) and its potential prey (geckos). Within a red gum forest vegetation community with relatively high snake density, capture rates were 0.6 ± 0.1 (s.e.) snakes/person-hour using visual encounter surveys, compared with only 0.1 ± 0.1 snakes/person-hour using cover objects. The probability of detection of pale-headed snakes was estimated from occupancy modelling at 0.70 ± 0.06 in visual encounter surveys and 0.19 ± 0.09 in cover object surveys. Gecko capture rates (among all vegetation communities) were significantly greater (P < 0.001) using cover objects. The probability of detection of geckos was estimated from occupancy modelling at 0.77 ± 0.05 in visual encounter surveys and 0.97 ± 0.02 in cover object surveys. Geckos favoured (P < 0.001) cover objects facing south during all seasons except winter. Artificial cover objects may provide some value in detecting pale-headed snakes in vegetation communities where habitat resources are limited; however, where resources are plentiful, visual encounter surveys are likely to remain the most cost-effective survey option.
Collapse
|