1
|
Glassmire AE, Hauri KC, Turner DB, Zehr LN, Sugimoto K, Howe GA, Wetzel WC. The frequency and chemical phenotype of neighboring plants determine the effects of intraspecific plant diversity. Ecology 2024; 105:e4392. [PMID: 39113178 DOI: 10.1002/ecy.4392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/15/2024] [Accepted: 05/24/2024] [Indexed: 09/04/2024]
Abstract
Associational effects, whereby plants influence the biotic interactions of their neighbors, are an important component of plant-insect interactions. Plant chemistry has been hypothesized to mediate these interactions. The role of chemistry in associational effects, however, has been unclear in part because the diversity of plant chemistry makes it difficult to tease apart the importance and roles of particular classes of compounds. We examined the chemical ecology of associational effects using backcross-bred plants of the Solanum pennellii introgression lines. We used eight genotypes from the introgression line system to establish 14 unique neighborhood treatments that maximized differences in acyl sugars, proteinase inhibitor, and terpene chemical diversity. We found that the chemical traits of the neighboring plant, rather than simply the number of introgression lines within a neighborhood, influenced insect abundance on focal plants. Furthermore, within-chemical class diversity had contrasting effects on herbivore and predator abundances, and depended on the frequency of neighboring plant chemotypes. Notably, we found insect mobility-flying versus crawling-played a key role in insect response to phytochemistry. We highlight that the frequency and chemical phenotype of plant neighbors underlie associational effects and suggest this may be an important mechanism in maintaining intraspecific phytochemical variation within plant populations.
Collapse
Affiliation(s)
- Andrea E Glassmire
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
| | - Kayleigh C Hauri
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Daniel B Turner
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
| | - Luke N Zehr
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
| | - Koichi Sugimoto
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
| | - Gregg A Howe
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
| | - William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, Michigan, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, USA
- Ecology, Evolution, & Behavior Program, Michigan State University, East Lansing, Michigan, USA
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
2
|
Abdala-Roberts L, Moreira X. Effects of phytochemical diversity on multitrophic interactions. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101228. [PMID: 38944275 DOI: 10.1016/j.cois.2024.101228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/01/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
The ecological effects of plant diversity have been well studied, but the extent to which they are driven by variation in specialized metabolites is not well understood. Here, we provide theoretical background on phytochemical diversity effects on herbivory and its expanded consequences for higher trophic levels. We then review empirical evidence for effects on predation and parasitism by focusing on a handful of studies that have undertaken manipulative approaches and link back their results to theory on mechanisms. We close by summarizing key aspects for future research, building on knowledge gained thus far.
Collapse
Affiliation(s)
- Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná, 97000 Mérida, Yucatán, Mexico.
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de Correos 28, 36080 Pontevedra, Galicia, Spain
| |
Collapse
|
3
|
Ojeda-Prieto L, Medina-van Berkum P, Unsicker SB, Heinen R, Weisser WW. Intraspecific chemical variation of Tanacetum vulgare affects plant growth and reproductive traits in field plant communities. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38593287 DOI: 10.1111/plb.13646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/31/2024] [Indexed: 04/11/2024]
Abstract
The study investigated the impact of intraspecific plant chemodiversity on plant growth and reproductive traits at both the plant and plot levels. It also aimed to understand how chemodiversity at stand level affects ecosystem functioning and plant-plant interactions. We describe a biodiversity experiment in which we manipulated intraspecific plant chemodiversity at the plot level using six different chemotypes of common tansy (Tanacetum vulgare L., Asteraceae). We tested the effects of chemotype identity and plot-level chemotype richness on plant growth and reproductive traits and plot-level headspace emissions. The study found that plant chemotypes differed in growth and reproductive traits and that traits were affected by the chemotype richness of the plots. Although morphological differences among chemotypes became less pronounced over time, reproductive phenology patterns persisted. Plot-level trait means were also affected by the presence or absence of certain chemotypes in a plot, and the direction of the effect depended on the specific chemotype. However, chemotype richness did not lead to overyielding effects. Lastly, chemotype blends released from plant communities were neither richer nor more diverse with increasing plot-level chemotype richness, but became more dissimilar as they became more dissimilar in their leaf terpenoid profiles. We found that intraspecific plant chemodiversity is crucial in plant-plant interactions. We also found that the effects of chemodiversity on plant growth and reproductive traits were complex and varied depending on the chemotype richness of the plots. This long-term field experiment will allow further investigation into plant-insect interactions and insect community assembly in response to intraspecific chemodiversity.
Collapse
Affiliation(s)
- L Ojeda-Prieto
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - P Medina-van Berkum
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - S B Unsicker
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
- Plant-Environment-Interactions Group, Botanical Institute, University of Kiel, Kiel, Germany
| | - R Heinen
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - W W Weisser
- Terrestrial Ecology Research Group, Department for Life Science Systems, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| |
Collapse
|
4
|
Karssemeijer PN, Croijmans L, Gajendiran K, Gols R, van Apeldoorn DF, van Loon JJA, Dicke M, Poelman EH. Diverse cropping systems lead to higher larval mortality of the cabbage root fly ( Delia radicum). JOURNAL OF PEST SCIENCE 2023:1-17. [PMID: 37360044 PMCID: PMC10161186 DOI: 10.1007/s10340-023-01629-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/19/2023] [Accepted: 04/23/2023] [Indexed: 06/28/2023]
Abstract
Root herbivores pose a major threat to agricultural crops. They are difficult to control and their damage often goes unnoticed until the larvae reach their most devastating late instar stages. Crop diversification can reduce pest pressure, generally without compromising yield. We studied how different diversified cropping systems affected the oviposition and abundance of the specialist cabbage root fly Delia radicum, the most important root herbivore in Brassica crops. The cropping systems included a monoculture, pixel cropping, and four variations of strip cropping with varying intra- and interspecific crop diversity, fertilization and spatial configuration. Furthermore, we assessed whether there was a link between D. radicum and other macroinvertebrates associated with the same plants. Cabbage root fly oviposition was higher in strip cropping designs compared to the monoculture and was highest in the most diversified strip cropping design. Despite the large number of eggs, there were no consistent differences in the number of larvae and pupae between the cropping systems, indicative of high mortality of D. radicum eggs and early instars especially in the strip cropping designs. D. radicum larval and pupal abundance positively correlated with soil-dwelling predators and detritivores and negatively correlated with other belowground herbivores. We found no correlations between the presence of aboveground insect herbivores and the number of D. radicum on the roots. Our findings indicate that root herbivore presence is determined by a complex interplay of many factors, spatial configuration of host plants, and other organisms residing near the roots. Supplementary Information The online version contains supplementary material available at 10.1007/s10340-023-01629-1.
Collapse
Affiliation(s)
- Peter N. Karssemeijer
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Luuk Croijmans
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Karthick Gajendiran
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Rieta Gols
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Dirk F. van Apeldoorn
- Farming Systems Ecology, Wageningen University & Research, P.O. Box 430, 6700 AK Wageningen, The Netherlands
- Field Crops, Wageningen University & Research, Edelhertweg 10, 8200 AK Lelystad, The Netherlands
| | - Joop J. A. van Loon
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology, Wageningen University & Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
5
|
Plant induced defenses that promote cannibalism reduce herbivory as effectively as highly pathogenic herbivore pathogens. Oecologia 2022; 199:397-405. [PMID: 35650412 DOI: 10.1007/s00442-022-05187-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
Plant induced defenses may benefit plants by increasing cannibalism among insect herbivores. However, the general efficacy of plant defenses that promote cannibalism remains unclear. Using a generalist Lepidopteran herbivore (Helicoverpa zea), we examined whether plant induced defenses in Solanum lycopersicum increased cannibalism among H. zea and whether defense-mediated cannibalism benefits both the plant and the cannibal. In a separate experiment, we also examined whether defense-mediated cannibalism has effects on H. zea herbivory that are comparable to the effects of pathogenic virus of H. zea (HzSNPV) and whether defense-mediated cannibalism modified pathogen efficacy. We found that both plant defenses and cannibalism decreased herbivory: H. zea consumed less plant material if plants were induced, if dead conspecifics were provided, or both. Cannibalism increased cannibal growth rate: cannibals effectively overcome the costs of plant defenses by eating conspecifics. Inoculating half of H. zea with virus strongly reduced caterpillar survival. Cannibalism occurred sooner among virus-inoculated groups of H. zea, and all caterpillars in virus-inoculated treatments died before the end of the 7-day experiment. Although the rise in mortality caused by HzSNPV occurred more rapidly than the rise in mortality due to defense-mediated cannibalism, overall H. zea mortality at the end of the experiment was equal among virus-inoculated and induced-defense groups. Defense-mediated cannibalism and viral inoculation equally reduced herbivory on S. lycopersicum. Our results provide evidence that defense-mediated increases in cannibalism can be as effective as other forms of classic herbivore population regulation, and that both viral pathogens and defense-induced cannibalism can have significant benefits for plants.
Collapse
|
6
|
Wang L, Cui H, Chang X, Zhu M, Zhao Z. Increased nitrogen fertilization inhibits the biocontrol activity promoted by the intercropping partner plant. INSECT SCIENCE 2021; 28:1179-1190. [PMID: 32567801 DOI: 10.1111/1744-7917.12843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
The examination of the compatibility between agricultural practices and biocontrol activities is crucial for establishing an efficient, eco-friendly, and sustainable pest management program. In this study, we examined the population dynamics of two specialist aphids, the English grain aphid (Sitobion avenae) on potted wheat and the pea aphid (Acyrthosiphon pisum) on potted alfalfa, as well as the biocontrol activity of a generalist predator, the harlequin ladybird beetle (Harmonia axyridis). We investigated their responses to the presence of the intercropping partner plant species (alfalfa and wheat, respectively) through plant volatiles or visual cues at three nitrogen fertilizer levels in a greenhouse. In the absence of the predator, the English grain aphid population growth rate increased significantly with increasing nitrogen levels, whereas the pea aphid population increased significantly more slowly in response to high nitrogen levels. The English grain aphid and pea aphid population dynamics were unaffected by the presence of the intercropping partner. However, the presence of the intercropping partner enhanced the control of both aphid populations by the harlequin ladybird beetle. Increasing nitrogen fertilizer levels decreased the predation rates, which were otherwise increased by the intercropping partner. The beneficial effects of the intercropping partner were eventually non-existent at the highest nitrogen level tested. These results imply that the interaction between the presence of intercropping partner and the nitrogen fertilizer application affects the biocontrol activity of the natural enemies of insect pests. Thus, the compatibility between agricultural intensification and biocontrol strategies in integrated pest management programs need to be investigated.
Collapse
Affiliation(s)
- Leyun Wang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Hongying Cui
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xinyue Chang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mengmeng Zhu
- Institute of Plant Protection, Ningxia Academy of Agricultural and Forestry Sciences, Yinchuan, China
| | - Zihua Zhao
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
7
|
Potts AS, Hunter MD. Unraveling the roles of genotype and environment in the expression of plant defense phenotypes. Ecol Evol 2021; 11:8542-8561. [PMID: 34257915 PMCID: PMC8258211 DOI: 10.1002/ece3.7639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 04/06/2021] [Indexed: 11/09/2022] Open
Abstract
Phenotypic variability results from interactions between genotype and environment and is a major driver of ecological and evolutionary interactions. Measuring the relative contributions of genetic variation, the environment, and their interaction to phenotypic variation remains a fundamental goal of evolutionary ecology.In this study, we assess the question: How do genetic variation and local environmental conditions interact to influence phenotype within a single population? We explored this question using seed from a single population of common milkweed, Asclepias syriaca, in northern Michigan. We first measured resistance and resistance traits of 14 maternal lines in two common garden experiments (field and greenhouse) to detect genetic variation within the population. We carried out a reciprocal transplant experiment with three of these maternal lines to assess effects of local environment on phenotype. Finally, we compared the phenotypic traits measured in our experiments with the phenotypic traits of the naturally growing maternal genets to be able to compare relative effect of genetic and environmental variation on naturally occurring phenotypic variation. We measured defoliation levels, arthropod abundances, foliar cardenolide concentrations, foliar latex exudation, foliar carbon and nitrogen concentrations, and plant growth.We found a striking lack of correlation in trait expression of the maternal lines between the common gardens, or between the common gardens and the naturally growing maternal genets, suggesting that environment plays a larger role in phenotypic trait variation of this population. We found evidence of significant genotype-by-environment interactions for all traits except foliar concentrations of nitrogen and cardenolide. Milkweed resistance to chewing herbivores was associated more strongly with the growing environment. We observed no variation in foliar cardenolide concentrations among maternal lines but did observe variation among maternal lines in foliar latex exudation.Overall, our data reveal powerful genotype-by-environment interactions on the expression of most resistance traits in milkweed.
Collapse
Affiliation(s)
- Abigail S. Potts
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| | - Mark D. Hunter
- Department of Ecology & Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
8
|
Paul RL, Pearse IS, Ode PJ. Fine‐scale plant defence variability increases top‐down control of an herbivore. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ryan L. Paul
- Graduate Degree Program in Ecology and Department of Agricultural Biology Colorado State University Fort Collins CO USA
| | - Ian S. Pearse
- U.S. Geological SurveyFort Collins Science Center Fort Collins CO USA
| | - Paul J. Ode
- Graduate Degree Program in Ecology and Department of Agricultural Biology Colorado State University Fort Collins CO USA
| |
Collapse
|
9
|
Hauri KC, Glassmire AE, Wetzel WC. Chemical diversity rather than cultivar diversity predicts natural enemy control of herbivore pests. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02289. [PMID: 33423331 DOI: 10.1002/eap.2289] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Cultivar mixtures have been studied for decades as a means for pest suppression. The literature, however, shows a large variability in outcomes, suggesting that we are unable to create mixtures that consistently suppress insect pests and attract natural enemies. A key gap in our understanding of how cultivar mixtures influence pest control is that few studies have examined the plant traits or mechanisms by which cultivar diversity affects pests and their interactions with natural enemies. The diversity of plant chemistry in a cultivar mixture is one trait dimension that is likely influential for insect ecology because chemical traits alter how predators and herbivores forage and interact. To understand how plant chemical diversity influences herbivores and their interactions with predators, we fully crossed predator presence or absence with monocultures, bicultures, and tricultures of three chemotypes of tomato that differed in odor diversity (terpenes) or surface chemistry (acyl sugars) in a caged field experiment. We found that the direct effects of plant chemotype diversity on herbivore performance were strongest in bicultures and depended on herbivore sex, and these effects typically acted through growth rather than survival. The effects of chemotype diversity on top-down pest suppression by natural enemies differed between classes of chemical diversity. Odor diversity (terpenes) interfered with the ability of predators to hunt effectively, whereas diversity in surface chemistry (acyl sugars) did not. Our results suggest that phytochemical diversity can contribute to pest suppression in agroecosystems, but that implementing it will require engineering cultivar mixtures using trait-based approaches that account for the biology of the pests and natural enemies in the system.
Collapse
Affiliation(s)
- Kayleigh C Hauri
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Andrea E Glassmire
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
| | - William C Wetzel
- Department of Entomology, Michigan State University, East Lansing, Michigan, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, 48824, USA
- Kellogg Biological Station, Michigan State University, Hickory Corners, Michigan, 49060, USA
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, 48824, USA
- AgBioResearch, Michigan State University, East Lansing, Michigan, 48824, USA
| |
Collapse
|
10
|
Snyder LD, Gómez MI, Mudrak EL, Power AG. Landscape-dependent effects of varietal mixtures on insect pest control and implications for farmer profits. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2021; 31:e02246. [PMID: 33124091 PMCID: PMC7988554 DOI: 10.1002/eap.2246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 05/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Intraspecific plant diversity can significantly impact insect herbivore populations in natural systems. Yet, its role as an insect pest control strategy in agriculture has received less attention, and little is known about which crop traits are important to herbivores in different landscape contexts. Moreover, empirical economic analyses on the cost-effectiveness of varietal mixtures are lacking. We used varietal mixtures of Brassica oleracea crops on working farms to examine how two metrics of intraspecific crop diversity, varietal richness and number of plant colors (color richness), affect crop damage and the incidence and abundance of two insect pest species: Pieris rapae and Phyllotreta spp. We evaluated the context-dependency of varietal mixtures by sampling early- and late-season plantings of B. oleracea crops in farms across a gradient of landscape composition. We developed crop budgets and used a net present value analysis to assess the impact of varietal mixtures on input and labor costs, crop revenues, and profit. We found context-dependent effects of varietal mixtures on both pests. In early-season plantings, color richness did not affect Phyllotreta spp. populations. However, increasing varietal richness reduced Phyllotreta spp. incidence in simple landscapes dominated by cropland, but this trend was reversed in complex landscapes dominated by natural habitats. In late-season plantings, color richness reduced the incidence and abundance of P. rapae larvae, but only in complex landscapes where their populations were highest. Varietal richness had the same effect on P. rapae larvae as color richness. Unexpectedly, we consistently found lower pest pressure and reduced crop damage in simple landscapes. Although varietal mixtures did not affect crop damage, increasing color richness corresponded with increased profits, due to increased revenue and a marginal reduction in labor and input costs. We demonstrate varietal mixtures can significantly impact pest populations, and this effect can be mediated by intraspecific variation in crop color. However, the strength and direction of these effects vary by season, landscape composition, and pest species. The association between varietal color richness and profitability indicates farmers could design mixtures to enhance economic returns. We recommend additional research on the benefits of intraspecific trait variation for farmers.
Collapse
Affiliation(s)
- Lauren D. Snyder
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew York14853USA
| | - Miguel I. Gómez
- Charles H. Dyson School of Applied Economics and ManagementCornell UniversityIthacaNew York14853USA
| | - Erika L. Mudrak
- Cornell Statistical Consulting UnitCornell UniversityIthacaNew York14853USA
| | - Alison G. Power
- Department of Ecology and Evolutionary BiologyCornell UniversityIthacaNew York14853USA
| |
Collapse
|
11
|
Yan J, Zhang Y, Crawford KM, Chen X, Yu S, Wu J. Plant genotypic diversity effects on soil nematodes vary with trophic level. THE NEW PHYTOLOGIST 2021; 229:575-584. [PMID: 32813893 DOI: 10.1111/nph.16829] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
At local spatial scales, loss of genetic diversity within species can lead to species loss. Few studies, however, have examined plant genotypic diversity effects across trophic levels. We investigated genotypic diversity effects of Phragmites australis on belowground biomass and soil nematode communities. Our results revealed that belowground plant biomass and nematode abundance responses to plant genotypic diversity were uncoupled. Decreasing plant genotypic diversity decreased the abundance of lower, but not higher trophic level nematodes. Low plant genotypic diversity also decreased the structural footprint and functional indices of nematodes, indicating lowered metabolic functioning of higher trophic level nematodes and decreased soil food web stability. Our study suggests that plant genotypic diversity effects differ across trophic levels, taxonomic groups and ecosystem functions and that decreasing plant genotypic diversity could destabilise belowground food webs. This highlights the importance of conserving intraspecific plant diversity.
Collapse
Affiliation(s)
- Jun Yan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Youzheng Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Kerri M Crawford
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | - Xiaoyong Chen
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Shuo Yu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai, 536000, China
| | - Jihua Wu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of Yangtze River Estuary, Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
12
|
Noto AE, Hughes AR. Intraspecific diversity at two trophic levels influences plant–herbivore interactions. Ecosphere 2020. [DOI: 10.1002/ecs2.3121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Akana E. Noto
- Northeastern University Marine Science Center 430 Nahant Road Nahant Massachusetts 01908 USA
| | - A. Randall Hughes
- Northeastern University Marine Science Center 430 Nahant Road Nahant Massachusetts 01908 USA
| |
Collapse
|
13
|
Tamura M, Ohgushi T, Ida TY. Intraspecific neighbourhood effect: Population‐level consequence of aggregation of highly defended plants. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Momoka Tamura
- Faculty of Science Nara Women's University Nara Japan
- Hamamatsu Konan High School Hamamatsu Japan
| | | | | |
Collapse
|