1
|
Li V, Binder MD, Purcell AW, Kilpatrick TJ. Antigen-specific immunotherapy via delivery of tolerogenic dendritic cells for multiple sclerosis. J Neuroimmunol 2024; 390:578347. [PMID: 38663308 DOI: 10.1016/j.jneuroim.2024.578347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/22/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system resulting from loss of immune tolerance. Many disease-modifying therapies for MS have broad immunosuppressive effects on peripheral immune cells, but this can increase risks of infection and attenuate vaccine-elicited immunity. A more targeted approach is to re-establish immune tolerance in an autoantigen-specific manner. This review discusses methods to achieve this, focusing on tolerogenic dendritic cells. Clinical trials in other autoimmune diseases also provide learnings with regards to clinical translation of this approach, including identification of autoantigen(s), selection of appropriate patients and administration route and frequency.
Collapse
Affiliation(s)
- Vivien Li
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia.
| | - Michele D Binder
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia
| | - Anthony W Purcell
- Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Australia
| | - Trevor J Kilpatrick
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Australia; Department of Neurology, The Royal Melbourne Hospital, Melbourne, Australia
| |
Collapse
|
2
|
Kayama H, Takeda K. Emerging roles of host and microbial bioactive lipids in inflammatory bowel diseases. Eur J Immunol 2023; 53:e2249866. [PMID: 37191284 DOI: 10.1002/eji.202249866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/11/2023] [Accepted: 05/15/2023] [Indexed: 05/17/2023]
Abstract
The intestinal tract harbors diverse microorganisms, host- and microbiota-derived metabolites, and potentially harmful dietary antigens. The epithelial barrier separates the mucosa, where diverse immune cells exist, from the lumen to avoid excessive immune reactions against microbes and dietary antigens. Inflammatory bowel disease (IBD), such as ulcerative colitis and Crohn's disease, is characterized by a chronic and relapsing disorder of the gastrointestinal tract. Although the precise etiology of IBD is still largely unknown, accumulating evidence suggests that IBD is multifactorial, involving host genetics and microbiota. Alterations in the metabolomic profiles and microbial community are features of IBD. Advances in mass spectrometry-based lipidomic technologies enable the identification of changes in the composition of intestinal lipid species in IBD. Because lipids have a wide range of functions, including signal transduction and cell membrane formation, the dysregulation of lipid metabolism drastically affects the physiology of the host and microorganisms. Therefore, a better understanding of the intimate interactions of intestinal lipids with host cells that are implicated in the pathogenesis of intestinal inflammation might aid in the identification of novel biomarkers and therapeutic targets for IBD. This review summarizes the current knowledge on the mechanisms by which host and microbial lipids control and maintain intestinal health and diseases.
Collapse
Affiliation(s)
- Hisako Kayama
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi Takeda
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- WPI, Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Center for Infection Disease Education and Research, Osaka University, Suita, Japan
| |
Collapse
|
3
|
Roy S, Batra L. Protein Phosphatase 2A: Role in T Cells and Diseases. J Immunol Res 2023; 2023:4522053. [PMID: 37234102 PMCID: PMC10208765 DOI: 10.1155/2023/4522053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023] Open
Abstract
Protein phosphatase 2A (PP2A) is a serine-threonine phosphatase that plays an important role in the regulation of cell proliferation and signal transduction. The catalytic activity of PP2A is integral in the maintenance of physiological functions which gets severely impaired in its absence. PP2A plays an essential role in the activation, differentiation, and functions of T cells. PP2A suppresses Th1 cell differentiation while promoting Th2 cell differentiation. PP2A fosters Th17 cell differentiation which contributes to the pathogenesis of systemic lupus erythematosus (SLE) by enhancing the transactivation of the Il17 gene. Genetic deletion of PP2A in Tregs disrupts Foxp3 expression due to hyperactivation of mTORC1 signaling which impairs the development and immunosuppressive functions of Tregs. PP2A is important in the induction of Th9 cells and promotes their antitumor functions. PP2A activation has shown to reduce neuroinflammation in a mouse model of experimental autoimmune encephalomyelitis (EAE) and is now used to treat multiple sclerosis (MS) clinically. In this review, we will discuss the structure and functions of PP2A in T cell differentiation and diseases and therapeutic applications of PP2A-mediated immunotherapy.
Collapse
Affiliation(s)
- Suyasha Roy
- Immuno-Biology Laboratory, Translational Health Science and Technology Institute, Faridabad, India
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lalit Batra
- Regional Biocontainment Laboratory, Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
| |
Collapse
|
4
|
Baker D, Forte E, Pryce G, Kang AS, James LK, Giovannoni G, Schmierer K. The impact of sphingosine-1-phosphate receptor modulators on COVID-19 and SARS-CoV-2 vaccination. Mult Scler Relat Disord 2023; 69:104425. [PMID: 36470168 PMCID: PMC9678390 DOI: 10.1016/j.msard.2022.104425] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Sphingosine-one phosphate receptor (S1PR) modulation inhibits S1PR1-mediated lymphocyte migration, lesion formation and positively-impacts on active multiple sclerosis (MS). These S1PR modulatory drugs have different: European Union use restrictions, pharmacokinetics, metabolic profiles and S1PR receptor affinities that may impact MS-management. Importantly, these confer useful properties in dealing with COVID-19, anti-viral drug responses and generating SARS-CoV-2 vaccine responses. OBJECTIVE To examine the biology and emerging data that potentially underpins immunity to the SARS-CoV-2 virus following natural infection and vaccination and determine how this impinges on the use of current sphingosine-one-phosphate modulators used in the treatment of MS. METHODS A literature review was performed, and data on infection, vaccination responses; S1PR distribution and functional activity was extracted from regulatory and academic information within the public domain. OBSERVATIONS Most COVID-19 related information relates to the use of fingolimod. This indicates that continuous S1PR1, S1PR3, S1PR4 and S1PR5 modulation is not associated with a worse prognosis following SARS-CoV-2 infection. Whilst fingolimod use is associated with blunted seroconversion and reduced peripheral T-cell vaccine responses, it appears that people on siponimod, ozanimod and ponesimod exhibit stronger vaccine-responses, which could be related notably to a limited impact on S1PR4 activity. Whilst it is thought that S1PR3 controls B cell function in addition to actions by S1PR1 and S1PR2, this may be species-related effect in rodents that is not yet substantiated in humans, as seen with bradycardia issues. Blunted antibody responses can be related to actions on B and T-cell subsets, germinal centre function and innate-immune biology. Although S1P1R-related functions are seeming central to control of MS and the generation of a fully functional vaccination response; the relative lack of influence on S1PR4-mediated actions on dendritic cells may increase the rate of vaccine-induced seroconversion with the newer generation of S1PR modulators and improve the risk-benefit balance IMPLICATIONS: Although fingolimod is a useful asset in controlling MS, recently-approved S1PR modulators may have beneficial biology related to pharmacokinetics, metabolism and more-restricted targeting that make it easier to generate infection-control and effective anti-viral responses to SARS-COV-2 and other pathogens. Further studies are warranted.
Collapse
Affiliation(s)
- David Baker
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom.
| | - Eugenia Forte
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gareth Pryce
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Angray S Kang
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Centre for Oral Immunobiology and Regenerative Medicine, Dental Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Louisa K James
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom
| | - Gavin Giovannoni
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Klaus Schmierer
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom; Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| |
Collapse
|
5
|
Liu C, Zhu J, Mi Y, Jin T. Impact of disease-modifying therapy on dendritic cells and exploring their immunotherapeutic potential in multiple sclerosis. J Neuroinflammation 2022; 19:298. [PMID: 36510261 PMCID: PMC9743681 DOI: 10.1186/s12974-022-02663-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs), which play a pivotal role in inducing either inflammatory or tolerogenic response based on their subtypes and environmental signals. Emerging evidence indicates that DCs are critical for initiation and progression of autoimmune diseases, including multiple sclerosis (MS). Current disease-modifying therapies (DMT) for MS can significantly affect DCs' functions. However, the study on the impact of DMT on DCs is rare, unlike T and B lymphocytes that are the most commonly discussed targets of these therapies. Induction of tolerogenic DCs (tolDCs) with powerful therapeutic potential has been well-established to combat autoimmune responses in laboratory models and early clinical trials. In contrast to in vitro tolDC induction, in vivo elicitation by specifically targeting multiple cell-surface receptors has shown greater promise with more advantages. Here, we summarize the role of DCs in governing immune tolerance and in the process of initiating and perpetuating MS as well as the effects of current DMT drugs on DCs. We then highlight the most promising cell-surface receptors expressed on DCs currently being explored as the viable pharmacological targets through antigen delivery to generate tolDCs in vivo.
Collapse
Affiliation(s)
- Caiyun Liu
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Jie Zhu
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China ,grid.24381.3c0000 0000 9241 5705Department of Neurobiology, Care Sciences & Society, Division of Neurogeriatrcs, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Yan Mi
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Tao Jin
- grid.430605.40000 0004 1758 4110Neuroscience Center, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
6
|
Zehra Okus F, Busra Azizoglu Z, Canatan H, Eken A. S1P analogues SEW2871, BAF312 and FTY720 affect human Th17 and Treg generation ex vivo. Int Immunopharmacol 2022; 107:108665. [DOI: 10.1016/j.intimp.2022.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/05/2022]
|
7
|
Vietri Rudan M, Watt FM. Mammalian Epidermis: A Compendium of Lipid Functionality. Front Physiol 2022; 12:804824. [PMID: 35095565 PMCID: PMC8791442 DOI: 10.3389/fphys.2021.804824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Mammalian epidermis is a striking example of the role of lipids in tissue biology. In this stratified epithelium, highly specialized structures are formed that leverage the hydrophobic properties of lipids to form an impermeable barrier and protect the humid internal environment of the body from the dry outside. This is achieved through tightly regulated lipid synthesis that generates the molecular species unique to the tissue. Beyond their fundamental structural role, lipids are involved in the active protection of the body from external insults. Lipid species present on the surface of the body possess antimicrobial activity and directly contribute to shaping the commensal microbiota. Lipids belonging to a variety of classes are also involved in the signaling events that modulate the immune responses to environmental stress as well as differentiation of the epidermal keratinocytes themselves. Recently, high-resolution methods are beginning to provide evidence for the involvement of newly identified specific lipid molecules in the regulation of epidermal homeostasis. In this review we give an overview of the wide range of biological functions of mammalian epidermal lipids.
Collapse
|
8
|
Transcriptomic Analysis of Peripheral Monocytes upon Fingolimod Treatment in Relapsing Remitting Multiple Sclerosis Patients. Mol Neurobiol 2021; 58:4816-4827. [PMID: 34181235 DOI: 10.1007/s12035-021-02465-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 06/20/2021] [Indexed: 12/14/2022]
Abstract
Fingolimod (FTY), a second-line oral drug approved for relapsing remitting Multiple Sclerosis (RRMS) acts in preventing lymphocyte migration outside lymph nodes; moreover, several lines of evidence suggest that it also inhibits myeloid cell activation. In this study, we investigated the transcriptional changes induced by FTY in monocytes in order to better elucidate its mechanism of action. CD14+ monocytes were collected from 24 RRMS patients sampled at baseline and after 6 months of treatment and RNA profiles were obtained through next-generation sequencing. We conducted pathway and sub-paths analysis, followed by centrality analysis of cell-specific interactomes on differentially expressed genes (DEGs). We investigated also the predictive role of baseline monocyte transcription profile in influencing the response to FTY therapy. We observed a marked down-regulation effect (60 down-regulated vs. 0 up-regulated genes). Most of the down-regulated DEGs resulted related with monocyte activation and migration like IL7R, CCR7 and the Wnt signaling mediators LEF1 and TCF7. The involvement of Wnt signaling was also confirmed by subpaths analyses. Furthermore, pathway and network analyses showed an involvement of processes related to immune function and cell migration. Baseline transcriptional profile of the HLA class II gene HLA-DQA1 and HLA-DPA1 were associated with evidence of disease activity after 2 years of treatment. Our data support the evidence that FTY induces major transcriptional changes in monocytes, mainly regarding genes involved in cell trafficking and immune cell activation. The baseline transcriptional levels of genes associated with antigen presenting function were associated with disease activity after 2 years of FTY treatment.
Collapse
|
9
|
Targeting S1PRs as a Therapeutic Strategy for Inflammatory Bone Loss Diseases-Beyond Regulating S1P Signaling. Int J Mol Sci 2021; 22:ijms22094411. [PMID: 33922596 PMCID: PMC8122917 DOI: 10.3390/ijms22094411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/02/2023] Open
Abstract
As G protein coupled receptors, sphingosine-1-phosphate receptors (S1PRs) have recently gained attention for their role in modulating inflammatory bone loss diseases. Notably, in murine studies inhibiting S1PR2 by its specific inhibitor, JTE013, alleviated osteoporosis induced by RANKL and attenuated periodontal alveolar bone loss induced by oral bacterial inflammation. Treatment with a multiple S1PRs modulator, FTY720, also suppressed ovariectomy-induced osteoporosis, collagen or adjuvant-induced arthritis, and apical periodontitis in mice. However, most previous studies and reviews have focused mainly on how S1PRs manipulate S1P signaling pathways, subsequently affecting various diseases. In this review, we summarize the underlying mechanisms associated with JTE013 and FTY720 in modulating inflammatory cytokine release, cell chemotaxis, and osteoclastogenesis, subsequently influencing inflammatory bone loss diseases. Studies from our group and from other labs indicate that S1PRs not only control S1P signaling, they also regulate signaling pathways induced by other stimuli, including bacteria, lipopolysaccharide (LPS), bile acid, receptor activator of nuclear factor κB ligand (RANKL), IL-6, and vitamin D. JTE013 and FTY720 alleviate inflammatory bone loss by decreasing the production of inflammatory cytokines and chemokines, reducing chemotaxis of inflammatory cells from blood circulation to bone and soft tissues, and suppressing RANKL-induced osteoclast formation.
Collapse
|
10
|
Naz F, Arish M. GPCRs as an emerging host-directed therapeutic target against mycobacterial infection: From notion to reality. Br J Pharmacol 2020; 179:4899-4909. [PMID: 33150959 DOI: 10.1111/bph.15315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/12/2020] [Accepted: 10/22/2020] [Indexed: 11/26/2022] Open
Abstract
Mycobacterium tuberculosis (M. tb) is one of the successful pathogens and claim millions of deaths across the globe. The emergence of drug resistance in M. tb has created new hurdles in the tuberculosis elimination programme worldwide. Hence, there is an unmet medical need for alternative therapy, which could be achieved by targeting the host's critical signalling pathways that are compromised during M. tb infection. In this review, we have summarized some of the findings involving the modulation of host GPCRs in the regulation of the mycobacterial infection. Understanding the role of these GPCRs not only unravels signalling pathways during infection but also provides clues for targeting critical signalling intermediates for the development of GPCR-based host-directive therapy.
Collapse
Affiliation(s)
- Farha Naz
- Centre for Interdisciplinary Research in Basic Science, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohd Arish
- JH-Institute of Molecular Medicine, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.,Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
11
|
Rousselle TV, Kuscu C, Kuscu C, Schlegel K, Huang L, Namwanje M, Eason JD, Makowski L, Maluf D, Mas V, Bajwa A. FTY720 Regulates Mitochondria Biogenesis in Dendritic Cells to Prevent Kidney Ischemic Reperfusion Injury. Front Immunol 2020; 11:1278. [PMID: 32670281 PMCID: PMC7328774 DOI: 10.3389/fimmu.2020.01278] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 05/20/2020] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are central in regulating immune responses of kidney ischemia-reperfusion injury (IRI), and strategies to alter DC function may provide new therapeutic opportunities. Sphingosine 1-phosphate (S1P) modulates immunity through binding to its receptors (S1P1-5), and protection from kidney IRI occurs in mice treated with S1PR agonist, FTY720 (FTY). We tested if ex vivo propagation of DCs with FTY could be used as cellular therapy to limit the off-target effects associated with systemic FTY administration in kidney IRI. DCs have the ability of regulate innate and adaptive responses and we posited that treatment of DC with FTY may underlie improvements in kidney IRI. Herein, it was observed that treatment of bone marrow derived dendritic cells (BMDCs) with FTY induced mitochondrial biogenesis, FTY-treated BMDCs (FTY-DCs) showed significantly higher oxygen consumption rate and ATP production compared to vehicle treated BMDCs (Veh-DCs). Adoptive transfer of FTY-DCs to mice 24 h before or 4 h after IRI significantly protected the kidneys from injury compared to mice treated with Veh-DCs. Additionally, allogeneic adoptive transfer of C57BL/6J FTY-DCs into BALB/c mice equally protected the kidneys from IRI. FTY-DCs propagated from S1pr1-deficient DCs derived from CD11cCreS1pr1fl/fl mice as well as blunting mitochondrial oxidation in wildtype (WT) FTY-DCs prior to transfer abrogated the protection observed by FTY-DCs. We queried if DC mitochondrial content alters kidney responses after IRI, a novel but little studied phenomenon shown to be integral to regulation of the immune response. Transfer of mitochondria rich FTY-DCs protects kidneys from IRI as transferred FTY-DCs donated their mitochondria to recipient splenocytes (i.e., macrophages) and prior splenectomy abrogated this protection. Adoptive transfer of FTY-DCs either prior to or after ischemic injury protects kidneys from IRI demonstrating a potent role for donor DC-mitochondria in FTY's efficacy. This is the first evidence, to our knowledge, that DCs have the potential to protect against kidney injury by donating mitochondria to splenic macrophages to alter their bioenergetics thus making them anti-inflammatory. In conclusion, the results support that ex vivo FTY720-induction of the regulatory DC phenotype could have therapeutic relevance that can be preventively infused to reduce acute kidney injury.
Collapse
Affiliation(s)
- Thomas V Rousselle
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Canan Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Cem Kuscu
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Kailo Schlegel
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - LiPing Huang
- Division of Nephrology and the Center for Immunity, Inflammation and Regenerative Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Maria Namwanje
- Department of Pediatrics and Genetics, University of Tennessee Health Science Center, Memphis, TN, United States
| | - James D Eason
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Liza Makowski
- Department of Medicine - Division of Hematology and Oncology, College of Medicine, Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Daniel Maluf
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Valeria Mas
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Amandeep Bajwa
- Transplant Research Institute, James D. Eason Transplant Institute, Department of Surgery, School of Medicine, University of Tennessee Health Sciences Center, Memphis, TN, United States
| |
Collapse
|
12
|
The potential application of
Cordyceps
in metabolic‐related disorders. Phytother Res 2019; 34:295-305. [PMID: 31667949 DOI: 10.1002/ptr.6536] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 09/15/2019] [Accepted: 10/09/2019] [Indexed: 01/26/2023]
|
13
|
Clark AR, Ohlmeyer M. Protein phosphatase 2A as a therapeutic target in inflammation and neurodegeneration. Pharmacol Ther 2019; 201:181-201. [PMID: 31158394 PMCID: PMC6700395 DOI: 10.1016/j.pharmthera.2019.05.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
Protein phosphatase 2A (PP2A) is a highly complex heterotrimeric enzyme that catalyzes the selective removal of phosphate groups from protein serine and threonine residues. Emerging evidence suggests that it functions as a tumor suppressor by constraining phosphorylation-dependent signalling pathways that regulate cellular transformation and metastasis. Therefore, PP2A-activating drugs (PADs) are being actively sought and investigated as potential novel anti-cancer treatments. Here we explore the concept that PP2A also constrains inflammatory responses through its inhibitory effects on various signalling pathways, suggesting that PADs may be effective in the treatment of inflammation-mediated pathologies.
Collapse
Affiliation(s)
- Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.
| | | |
Collapse
|
14
|
De Laere M, Berneman ZN, Cools N. To the Brain and Back: Migratory Paths of Dendritic Cells in Multiple Sclerosis. J Neuropathol Exp Neurol 2019; 77:178-192. [PMID: 29342287 PMCID: PMC5901086 DOI: 10.1093/jnen/nlx114] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Migration of dendritic cells (DC) to the central nervous system (CNS) is a critical event in the pathogenesis of multiple sclerosis (MS). While up until now, research has mainly focused on the transmigration of DC through the blood-brain barrier, experimental evidence points out that also the choroid plexus and meningeal vessels represent important gateways to the CNS, especially in early disease stages. On the other hand, DC can exit the CNS to maintain immunological tolerance to patterns expressed in the CNS, a process that is perturbed in MS. Targeting trafficking of immune cells, including DC, to the CNS has demonstrated to be a successful strategy to treat MS. However, this approach is known to compromise protective immune surveillance of the brain. Unravelling the migratory paths of regulatory and pathogenic DC within the CNS may ultimately lead to the design of new therapeutic strategies able to selectively interfere with the recruitment of pathogenic DC to the CNS, while leaving host protective mechanisms intact.
Collapse
Affiliation(s)
- Maxime De Laere
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp
| | - Zwi N Berneman
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital (UZA), Edegem, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (VAXINFECTIO), Faculty of Medicine and Health Sciences, University of Antwerp
| |
Collapse
|
15
|
Derakhshani S, Kurz A, Japtok L, Schumacher F, Pilgram L, Steinke M, Kleuser B, Sauer M, Schneider-Schaulies S, Avota E. Measles Virus Infection Fosters Dendritic Cell Motility in a 3D Environment to Enhance Transmission to Target Cells in the Respiratory Epithelium. Front Immunol 2019; 10:1294. [PMID: 31231395 PMCID: PMC6560165 DOI: 10.3389/fimmu.2019.01294] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/21/2019] [Indexed: 12/16/2022] Open
Abstract
Transmission of measles virus (MV) from dendritic to airway epithelial cells is considered as crucial to viral spread late in infection. Therefore, pathways and effectors governing this process are promising targets for intervention. To identify these, we established a 3D respiratory tract model where MV transmission by infected dendritic cells (DCs) relied on the presence of nectin-4 on H358 lung epithelial cells. Access to recipient cells is an important prerequisite for transmission, and we therefore analyzed migration of MV-exposed DC cultures within the model. Surprisingly, enhanced motility toward the epithelial layer was observed for MV-infected DCs as compared to their uninfected siblings. This occurred independently of factors released from H358 cells indicating that MV infection triggered cytoskeletal remodeling associated with DC polarization enforced velocity. Accordingly, the latter was also observed for MV-infected DCs in collagen matrices and was particularly sensitive to ROCK inhibition indicating infected DCs preferentially employed the amoeboid migration mode. This was also implicated by loss of podosomes and reduced filopodial activity both of which were retained in MV-exposed uninfected DCs. Evidently, sphingosine kinase (SphK) and sphingosine-1-phosphate (S1P) as produced in response to virus-infection in DCs contributed to enhanced velocity because this was abrogated upon inhibition of sphingosine kinase activity. These findings indicate that MV infection promotes a push-and-squeeze fast amoeboid migration mode via the SphK/S1P system characterized by loss of filopodia and podosome dissolution. Consequently, this enables rapid trafficking of virus toward epithelial cells during viral exit.
Collapse
Affiliation(s)
| | - Andreas Kurz
- Department for Biotechnology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | - Lukasz Japtok
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Fabian Schumacher
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Lisa Pilgram
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| | - Maria Steinke
- Fraunhofer Institute for Silicate Research ISC, Chair of Tissue Engineering and Regenerative Medicine, University Hospital Wuerzburg, University of Wuerzburg, Wuerzburg, Germany
| | - Burkhard Kleuser
- Department of Toxicology, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Markus Sauer
- Department for Biotechnology and Biophysics, University of Wuerzburg, Wuerzburg, Germany
| | | | - Elita Avota
- Institute for Virology and Immunobiology, University of Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
16
|
Melnikov MV, Paschenkov MV, Boyko AN. [Dendritic cells in multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 117:22-30. [PMID: 28617358 DOI: 10.17116/jnevro20171172222-30] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Main functions, structure and stages of development of dendritic cells (DCs) are reviewed. A role of DCs in the development of immune tolerance and autoimmune diseases as well as involvement of DCs in the immunopathogenesis of multiple sclerosis (MS and their therapeutic potential in the treatment of MS are discussed.
Collapse
Affiliation(s)
- M V Melnikov
- Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - A N Boyko
- Pirogov Russian National Research Medical University, Moscow, Russia; Moscow City Center of Multiple Sclerosis, Moscow, Russia
| |
Collapse
|
17
|
Xiong M, Li L, Liu Y, Zhou F, Shi N, Huang H, Wang J, Zhu J. The sphingosine 1-phosphate receptor agonist FTY720 interfered the distribution of dendritic cell and induced the maternal-fetal immune tolerance. J Cell Biochem 2019; 120:1869-1877. [PMID: 30216517 DOI: 10.1002/jcb.27501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/20/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the effect of FTY720, an agonist of the sphingosine 1-phosphate (S1P) receptor, on the embryo loss rate in mice of spontaneous abortion model and the underlying mechanism. METHODS The effect of intraperitoneal injection of FTY720 on the embryo loss rate in mice of spontaneous abortion model was observed. The expression of S1PR on the dendritic cell (DC) surface was detected by reverse transcription polymerase chain reaction. The quantity and maturation of DCs in peripheral blood and local tissues of pregnant mice, and the expression of CCL19 as well as its receptor C-C chemokine receptor 7 (CCR7) were detected by flow cytometry and immunohistochemistry. Chemotaxis assay was performed to verify the effect of FTY720 on the chemotaxis of DCs. RESULTS (1) FTY720 had no significant effect on the embryo loss rate in normal pregnant rats. In contrast, adoptive transferring of FTY720 significantly reduced the embryo loss rate of the spontaneous abortion mouse model (P < 0.05). (2) S1PR was extensively expressed on DC surface. The S1P receptor agonist FTY720 reduced the expressions of DC surface chemokines and its receptor (P < 0.05), resulting in a significant reduction in the number of DCs that were chemoattracted to maternal-fetal interface flow cytometry (P < 0.05). (3) FTY720 had no significant effect on the differentiation and apoptosis rate of DCs (P > 0.05). CONCLUSION We hypothesized that FTY720 may reduce the number of DCs that were chemoattracted to the maternal-fetal interface by downregulating the expression of CCR7, which ultimately induces maternal-fetal immune tolerance.
Collapse
Affiliation(s)
- Miao Xiong
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Li Li
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yang Liu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Fangfang Zhou
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Nana Shi
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongling Huang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jun Wang
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jieping Zhu
- Department of Obstetrics and Gynecology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
18
|
Napier J, Rose L, Adeoye O, Hooker E, Walsh KB. Modulating acute neuroinflammation in intracerebral hemorrhage: the potential promise of currently approved medications for multiple sclerosis. Immunopharmacol Immunotoxicol 2019; 41:7-15. [PMID: 30702002 DOI: 10.1080/08923973.2019.1566361] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The secondary inflammatory injury following intracerebral hemorrhage (ICH) results in increased morbidity and mortality. White blood cells have been implicated as critical mediators of this inflammatory injury. Currently, no medications have been clinically proven to ameliorate or beneficially modulate inflammation, or to improve outcomes by any mechanism, following ICH. However, other neuroinflammatory conditions, such as multiple sclerosis, have approved pharmacologic therapies that modulate the inflammatory response and minimize the damage caused by inflammatory cells. Thus, there is substantial interest in existing therapies for neuroinflammation and their potential applicability to other acute neurological diseases such as ICH. In this review, we examined the mechanism of action of twelve currently approved medications for multiple sclerosis: alemtuzumab, daclizumab, dimethyl fumarate, fingolimod, glatiramer acetate, interferon beta-1a, interferon beta-1b, mitoxantrone, natalizumab, ocrelizumab, rituximab, teriflunomide. We analyzed the existing literature pertaining to the effects of these medications on various leukocytes and also with emphasis on mechanisms of action during the acute period following initiation of therapy. As a result, we provide a valuable summary of the current body of knowledge regarding these therapies and evidence that supports or refutes their likely promise for treating neuroinflammation following ICH.
Collapse
Affiliation(s)
- Jarred Napier
- a College of Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Lucas Rose
- a College of Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Opeolu Adeoye
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA.,c Gardner Neuroscience Institute , University of Cincinnati , Cincinnati , OH , USA
| | - Edmond Hooker
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA
| | - Kyle B Walsh
- b Department of Emergency Medicine , University of Cincinnati , Cincinnati , OH , USA.,c Gardner Neuroscience Institute , University of Cincinnati , Cincinnati , OH , USA
| |
Collapse
|
19
|
Dominguez-Villar M, Raddassi K, Danielsen AC, Guarnaccia J, Hafler DA. Fingolimod modulates T cell phenotype and regulatory T cell plasticity in vivo. J Autoimmun 2018; 96:40-49. [PMID: 30122421 DOI: 10.1016/j.jaut.2018.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/13/2022]
Abstract
Fingolimod is an approved therapeutic option for patients with relapsing-remitting multiple sclerosis that primarily functions by sequestering T cells in lymph nodes inhibiting their egress to the central nervous system. However, recent data suggests that Fingolimod may also directly affect the immune cell function. Here we examined the in vivo effects of Fingolimod in modulating the phenotype and function of T cell and Foxp3 regulatory T cell populations in patients with multiple sclerosis under Fingolimod treatment. Besides decreasing the cell numbers in peripheral blood and sera levels of pro-inflammatory cytokines, Fingolimod inhibited the expression of Th1 and Th17 cytokines on CD4+ T cells and increased the expression of exhaustion markers. Furthermore, treatment increased the frequency of regulatory T cells in blood and inhibited the Th1-like phenotype that is characteristic of patients with multiple sclerosis, augmenting the expression of markers associated with increased suppressive function. Overall, our data suggest that Fingolimod performs other important immunomodulatory functions besides altering T cell migratory capacities, with consequences for other autoimmune pathologies characterized by excessive Th1/Th17 responses and Th1-like regulatory T cell effector phenotypes.
Collapse
Affiliation(s)
| | - Khadir Raddassi
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | | | - Joseph Guarnaccia
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - David A Hafler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
20
|
Smith P, O'Sullivan C, Gergely P. Sphingosine 1-Phosphate Signaling and Its Pharmacological Modulation in Allogeneic Hematopoietic Stem Cell Transplantation. Int J Mol Sci 2017; 18:ijms18102027. [PMID: 28934113 PMCID: PMC5666709 DOI: 10.3390/ijms18102027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/10/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022] Open
Abstract
Allogeneic haemopoietic stem cell transplantation (HSCT) is increasingly used to treat haematological malignant diseases via the graft-versus-leukaemia (GvL) or graft-versus-tumour effects. Although improvements in infectious disease prophylaxis, immunosuppressive treatments, supportive care, and molecular based tissue typing have contributed to enhanced outcomes, acute graft-versus-host disease and other transplant related complications still contribute to high mortality and significantly limit the more widespread use of HSCT. Sphingosine 1-phosphate (S1P) is a zwitterionic lysophospholipid that has been implicated as a crucial signaling regulator in many physiological and pathophysiological processes including multiple cell types such as macrophages, dendritic cells, T cells, T regulatory cells and endothelial cells. Recent data suggested important roles for S1P signaling in engraftment, graft-versus-host disease (GvHD), GvL and other processes that occur during and after HSCT. Based on such data, pharmacological intervention via S1P modulation may have the potential to improve patient outcome by regulating GvHD and enhancing engraftment while permitting effective GvL.
Collapse
Affiliation(s)
- Philip Smith
- Novartis Institutes for BioMedical Research, WSJ-386, CH-4002 Basel, Switzerland.
| | - Catherine O'Sullivan
- Novartis Institutes for BioMedical Research, WSJ-386, CH-4002 Basel, Switzerland.
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, Dublin 2, Ireland.
| | - Peter Gergely
- Novartis Institutes for BioMedical Research, WSJ-386, CH-4002 Basel, Switzerland.
| |
Collapse
|
21
|
Thomas K, Proschmann U, Ziemssen T. Fingolimod hydrochloride for the treatment of relapsing remitting multiple sclerosis. Expert Opin Pharmacother 2017; 18:1649-1660. [PMID: 28844164 DOI: 10.1080/14656566.2017.1373093] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Fingolimod was the first oral and the first in class disease modifying treatment in multiple sclerosis that acts as sphingosine-1-phospathe receptor agonist. Since approval in 2010 there is a growing experience with fingolimod use in clinical practice, but also next-generation sphingosin-1-receptor agonists in ongoing clinical trials. Growing evidence demonstrates additional effects beyond impact on lymphocyte circulation, highlighting further promising targets in multiple sclerosis therapy. Areas covered: Here we present a systematic review using PubMed database searching and expert opinion on fingolimod use in clinical practice. Long-term data of initial clinical trials and post-marketing evaluations including long-term efficacy, safety, tolerability and management especially within growing disease modifying treatment options and pre-treatment constellation in multiple sclerosis patients are critically discussed. Furthermore novel findings in mechanism of actions and prospective on additional use in progressive forms in multiple sclerosis are presented. Expert opinion: There is an extensive long-term experience on fingolimod use in clinical practice demonstrating the favorable benefit-risk of this drug. Using a defined risk management approach experienced MS clinicians should apply fingolimod after critical choice of patients and review of clinical aspects. Further studies are essential to discuss additional benefit in progressive forms in multiple sclerosis.
Collapse
Affiliation(s)
- Katja Thomas
- a Center of Clinical Neuroscience , University Hospital, Dresden , Dresden , Germany
| | - Undine Proschmann
- a Center of Clinical Neuroscience , University Hospital, Dresden , Dresden , Germany
| | - Tjalf Ziemssen
- a Center of Clinical Neuroscience , University Hospital, Dresden , Dresden , Germany
| |
Collapse
|
22
|
Ziemssen T, Tumani H, Sehr T, Thomas K, Paul F, Richter N, Samara E, Spiegelstein O, Sorani E, Bar-Ilan O, Mimrod D, Hayardeny L. Safety and in vivo immune assessment of escalating doses of oral laquinimod in patients with RRMS. J Neuroinflammation 2017; 14:172. [PMID: 28859672 PMCID: PMC5577769 DOI: 10.1186/s12974-017-0945-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Background Laquinimod is an oral immunomodulator in clinical development to treat relapsing-remitting multiple sclerosis (RRMS). Laquinimod is in clinical development for the treatment of multiple sclerosis and Huntington Disease (HD). The objective of this study is to assess the safety, tolerability, pharmacokinetics (PK) and cytoimmunologic effects following escalating doses of laquinimod in patients with RRMS. Methods One hundred twelve patients were randomly assigned to laquinimod/placebo in a series of separate dose-escalating cohorts starting from a daily oral dose of 0.9 mg/1.2 mg escalating to 2.7 mg, in 0.3 mg increments. Results Twenty-eight patients received placebo and 84 received laquinimod ranging from 0.9 to 2.7 mg. No deaths occurred. One serious adverse event (SAE) of perichondritis was reported, which was unrelated to laquinimod (0.9 mg). There was no increased incidence of adverse events (AEs) with escalating doses. Laquinimod-treated patients showed more abnormal laboratory levels in liver enzymes, P-amylase, C-reactive protein (CRP), and fibrinogen, but most shifts were clinically non-significant. The exposure of laquinimod was dose proportional and linear in the tested dose range. An immunological substudy showed significant dose-dependent decreases in 6-sulpho LacNAc + dendritic cell (slanDC) frequency following laquinimod compared to placebo. Conclusion Laquinimod doses up to 2.7 mg were safely administered to patients with RRMS. An in vivo effect of laquinimod on the innate immune system was demonstrated. Trial registration EudraCT Number: 2009-011234-99. Registered 23 June 2009. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0945-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tjalf Ziemssen
- Department of Neurology, MS Center Dresden, Center of Clinical Neuroscience, University Clinic Carl Gustav Carus Dresden, Dresden, Germany.
| | - Hayrettin Tumani
- Multiple Sclerosis Unit, Department of Neurology, University of Ulm, Ulm, Germany. .,Fachklinik für Neurologie Dietenbronn, Schwendi, Germany.
| | - Tony Sehr
- Department of Neurology, MS Center Dresden, Center of Clinical Neuroscience, University Clinic Carl Gustav Carus Dresden, Dresden, Germany
| | - Katja Thomas
- Department of Neurology, MS Center Dresden, Center of Clinical Neuroscience, University Clinic Carl Gustav Carus Dresden, Dresden, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center and Clinical and Experimental Multiple Sclerosis Research Center, Department of Neurology, Charité University Medicine, Berlin, Germany.,Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité University Medicine Berlin, Berlin, Germany
| | - Nils Richter
- Neurologische Gemeinschaftspraxis, Düsseldorf, Germany
| | | | | | - Ella Sorani
- Teva Pharmaceutical Industries, Netanya, Israel
| | | | | | - Liat Hayardeny
- Teva Pharmaceutical Industries, Netanya, Israel.,Galmed Pharmaceuticals, Tel Aviv, Israel
| |
Collapse
|
23
|
Thomas K, Sehr T, Proschmann U, Rodriguez-Leal FA, Haase R, Ziemssen T. Fingolimod additionally acts as immunomodulator focused on the innate immune system beyond its prominent effects on lymphocyte recirculation. J Neuroinflammation 2017; 14:41. [PMID: 28231856 PMCID: PMC5322645 DOI: 10.1186/s12974-017-0817-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/16/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Growing evidence emphasizes the relevance of sphingolipids for metabolism and immunity of antigen-presenting cells (APC). APCs are key players in balancing tolerogenic and encephalitogenic responses in immunology. In contrast to the well-known prominent effects of sphingosine-1-phosphate (S1P) on lymphocyte trafficking, modulatory effects on APCs have not been fully characterized. METHODS Frequencies and activation profiles of dendritic cell (DC) subtypes, monocytes, and T cell subsets in 35 multiple sclerosis (MS) patients were evaluated prior and after undergoing fingolimod treatment for up to 24 months. Impact of fingolimod and S1P on maturation and activation profile, pro-inflammatory cytokine release, and phagocytotic capacity was assessed in vitro and ex vivo. Modulation of DC-dependent programming of naïve CD4+ T cells, as well as CD4+ and CD8+ T cell proliferation, was also investigated in vitro and ex vivo. RESULTS Fingolimod increased peripheral slanDC count-CD1+ DC, and monocyte frequencies remained stable. While CD4+ T cell count decreased, ratio of Treg/Th17 significantly increased in fingolimod-treated patients over time. CD83, CD150, and HLADR were all inhibited, but CD86 was upregulated in DCs after incubation in the presence of fingolimod. Fingolimod but not S1P was associated with reduced release of pro-inflammatory cytokines from DCs and monocytes in vitro and ex vivo. Fingolimod also inhibited phagocytic capacity of slanDCs and monocytes. After fingolimod, slanDCs demonstrated reduced potential to induce interferon-gamma-expressing Th1 or IL-17-expressing Th17 cells and DC-dependent T cell proliferation in vitro and in fingolimod-treated patients. CONCLUSIONS We present the first evidence that S1P-directed therapies can act additionally as immunomodulators that decrease the pro-inflammatory capabilities of APCs, which is a crucial element in DC-dependent T cell activation and programming.
Collapse
Affiliation(s)
- Katja Thomas
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Tony Sehr
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Undine Proschmann
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Francisco Alejandro Rodriguez-Leal
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Rocco Haase
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, Carl Gustav Carus University Hospital, University of Technology Dresden, Fetscherstr. 74, 01307, Dresden, Germany.
| |
Collapse
|
24
|
FTY720 Attenuates Angiotensin II-Induced Podocyte Damage via Inhibiting Inflammatory Cytokines. Mediators Inflamm 2017; 2017:3701385. [PMID: 28270699 PMCID: PMC5320072 DOI: 10.1155/2017/3701385] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 12/08/2016] [Accepted: 12/26/2016] [Indexed: 12/29/2022] Open
Abstract
FTY720, a new chemical substance derived from the ascomycete Isaria sinclairii, is used for treating multiple sclerosis, renal cancer, and asthma. Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid metabolite and exists in red blood cells. FTY720 is a synthetic S1P analog which can block S1P evoking physiological effects. Recently studies show that S1P was participating in activated inflammation cells induced renal injury. The objective of this study was to assess the protective effect of FTY720 on kidney damage and the potential mechanism of FTY720 which alleviate podocyte injury in chronic kidney disease. In this study, we selected 40 patients with IgA nephropathy and examined their clinical characteristics. Ang II-infusion rat renal injury model was established to evaluate the glomeruli and tubulointerstitial lesion. The result showed that the concentration of S1P in serum and urine was positively correlated with IgA nephropathy patients' renal injury. FTY720 could reduce renal histological lesions induced by Ang II-infusion in rats. Moreover, FTY720 decreased S1P synthesis in Ang II-infusion rats via downregulation of inflammatory cytokines including TNF-α and IL-6. In addition, FTY720 alleviated exogenous S1P-induced podocyte damage. In conclusion, FTY720 is able to attenuate S1P-induced podocyte damage via reducing inflammatory cytokines.
Collapse
|
25
|
Espaillat MP, Kew RR, Obeid LM. Sphingolipids in neutrophil function and inflammatory responses: Mechanisms and implications for intestinal immunity and inflammation in ulcerative colitis. Adv Biol Regul 2016; 63:140-155. [PMID: 27866974 DOI: 10.1016/j.jbior.2016.11.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 02/06/2023]
Abstract
Bioactive sphingolipids are regulators of immune cell function and play critical roles in inflammatory conditions including ulcerative colitis. As one of the major forms of inflammatory bowel disease, ulcerative colitis pathophysiology is characterized by an aberrant intestinal inflammatory response that persists causing chronic inflammation and tissue injury. Innate immune cells play an integral role in normal intestinal homeostasis but their dysregulation is thought to contribute to the pathogenesis of ulcerative colitis. In particular, neutrophils are key effector cells and are first line defenders against invading pathogens. While the activity of neutrophils in the intestinal mucosa is required for homeostasis, regulatory mechanisms are equally important to prevent unnecessary activation. In ulcerative colitis, unregulated neutrophil inflammatory mechanisms promote tissue injury and loss of homeostasis. Aberrant neutrophil function represents an early checkpoint in the detrimental cycle of chronic intestinal inflammation; thus, dissecting the mechanisms by which these cells are regulated both before and during disease is essential for understanding the pathogenesis of ulcerative colitis. We present an analysis of the role of sphingolipids in the regulation of neutrophil function and the implication of this relationship in ulcerative colitis.
Collapse
Affiliation(s)
- Mel Pilar Espaillat
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA; Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | - Richard R Kew
- Department of Pathology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Lina M Obeid
- Department of Medicine, Stony Brook University, Stony Brook, NY 11794, USA; Northport Veterans Affairs Medical Center, Northport, NY 11768, USA.
| |
Collapse
|
26
|
Abstract
Discussions of multiple sclerosis (MS) pathophysiology tend to focus on T cells and B cells of the adaptive immune response. The innate immune system is less commonly considered in this context, although dendritic cells, monocytes, macrophages and microglia - collectively referred to as myeloid cells - have prominent roles in MS pathogenesis. These populations of myeloid cells function as antigen-presenting cells and effector cells in neuroinflammation. Furthermore, a vicious cycle of interactions between T cells and myeloid cells exacerbates pathology. Several disease-modifying therapies are now available to treat MS, and insights into their mechanisms of action have largely focused on the adaptive immune system, but these therapies also have important effects on myeloid cells. In this Review, we discuss the evidence for the roles of myeloid cells in MS and the experimental autoimmune encephalomyelitis model of MS, and consider how interactions between myeloid cells and T cells and/or B cells promote MS pathology. Finally, we discuss the direct and indirect effects of existing MS medications on myeloid cells.
Collapse
Affiliation(s)
- Manoj K Mishra
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences, University of Calgary, 3330 Hospital Drive, Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
27
|
Luessi F, Zipp F, Witsch E. Dendritic cells as therapeutic targets in neuroinflammation. Cell Mol Life Sci 2016; 73:2425-50. [PMID: 26970979 PMCID: PMC11108452 DOI: 10.1007/s00018-016-2170-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 02/02/2016] [Accepted: 02/25/2016] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is the most common chronic inflammatory demyelinating disorder of the central nervous system characterized by infiltration of immune cells and progressive damage to myelin sheaths and neurons. There is still no cure for the disease, but drug regimens can reduce the frequency of relapses and slightly delay progression. Myeloid cells or antigen-presenting cells (APCs) such as dendritic cells (DC), macrophages, and resident microglia, are key players in both mediating immune responses and inducing immune tolerance. Mounting evidence indicates a contribution of these myeloid cells to the pathogenesis of multiple sclerosis and to the effects of treatment, the understanding of which might provide strategies for more potent novel therapeutic interventions. Here, we review recent insights into the role of APCs, with specific focus on DCs in the modulation of neuroinflammation in MS.
Collapse
Affiliation(s)
- Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University of Mainz,Rhine Main Neuroscience Network (rmn2), Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University of Mainz,Rhine Main Neuroscience Network (rmn2), Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Esther Witsch
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg-University of Mainz,Rhine Main Neuroscience Network (rmn2), Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
28
|
Sphingosine-1-Phosphate (S1P) and S1P Signaling Pathway: Therapeutic Targets in Autoimmunity and Inflammation. Drugs 2016; 76:1067-79. [DOI: 10.1007/s40265-016-0603-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Yu H. Sphingosine-1-Phosphate Receptor 2 Regulates Proinflammatory Cytokine Production and Osteoclastogenesis. PLoS One 2016; 11:e0156303. [PMID: 27224249 PMCID: PMC4880337 DOI: 10.1371/journal.pone.0156303] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/12/2016] [Indexed: 02/06/2023] Open
Abstract
Sphingosine-1-phosphate receptor 2 (S1PR2) couples with the Gi, Gq, and G12/13 group of proteins, which modulate an array of cellular signaling pathways and affect immune responses to multiple stimuli. In this study, we demonstrated that knockdown of S1PR2 by a specific S1PR2 shRNA lentiviral vector significantly inhibited IL-1β, IL-6, and TNF-α protein levels induced by oral pathogen Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) in murine bone marrow-derived monocytes and macrophages (BMMs) compared with controls. In addition, knockdown of S1PR2 by the S1PR2 shRNA lentiviral vector suppressed p-PI3K, p-ERK, p-JNK, p-p38, and p-NF-κBp65 protein expressions induced by A. actinomycetemcomitans. Furthermore, bone marrow cells treated with the S1PR2 shRNA lentiviral vector inhibited osteoclastogenesis induced by RANKL compared with controls. The S1PR2 shRNA suppressed the mRNA levels of six osteoclastogenic factors including nuclear factor of activated T-cells cytoplasmic calcineurin-dependent 1 (NFATc1), cathepsin K (Ctsk), acid phosphatase 5 (Acp5), osteoclast-associated receptor (Oscar), dendritic cells specific transmembrane protein (Dcstamp), and osteoclast stimulatory transmembrane protein (Ocstamp) in bone marrow cells. We conclude that S1PR2 plays an essential role in modulating proinflammatory cytokine production and osteoclastogenesis. Blocking S1PR2 signaling might be a novel therapeutic strategy to treat inflammatory bone loss diseases.
Collapse
Affiliation(s)
- Hong Yu
- Department of Oral Health Sciences, Center for Oral Health Research, Medical University of South Carolina, Charleston, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
Blumenfeld S, Staun-Ram E, Miller A. Fingolimod therapy modulates circulating B cell composition, increases B regulatory subsets and production of IL-10 and TGFβ in patients with Multiple Sclerosis. J Autoimmun 2016; 70:40-51. [PMID: 27055778 DOI: 10.1016/j.jaut.2016.03.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 01/26/2023]
Abstract
Fingolimod, an oral therapeutic agent approved for patients with relapsing-remitting Multiple Sclerosis (MS), has been shown to prevent lymphocyte egress from secondary lymphoid tissues; however the specific drug effect on B cells in fingolimod-treated patients remains to be fully elucidated. We present here a comprehensive analysis on the proportions of B cell subsets in the periphery, and the levels of activation, functional surface markers and cytokine profile of B cells in MS patients, following initiation of fingolimod therapy, using flow cytometry and cytokine bead array. Fingolimod therapy increased the ratio of naïve to memory cells, elevated the percentage of plasma cells and highly increased the proportion of transitional B cells as well as additional regulatory subsets, including: IL10(+), CD25(+) and CD5(+) B cells. The percentage of activated CD69(+) cells was highly elevated in the remaining circulating B cells, which produced increased levels of IL10, TGFβ, IL6, IL4, LTα, TNFα and IFNγ cytokines, with an overall increased ratio of TGFβ to pro-inflammatory cytokines. Furthermore, fingolimod therapy reduced ICAM-1(+) cells, suggesting a possible reduction in antigen-presenting capacity. Phosphorylated-fingolimod was shown in vitro to reduce S1PR1 RNA and protein, to slightly increase viability and to activate anti-apoptotic Bcl2 in transformed B cells of patients with MS. In conclusion, fingolimod therapy modulates significantly the composition of circulating B cells, promoting regulatory subsets and an anti-inflammatory cytokine repertoire.
Collapse
Affiliation(s)
- Shiri Blumenfeld
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Elsebeth Staun-Ram
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ariel Miller
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel; Neuroimmunology Unit & Multiple Sclerosis Center, Carmel Medical Center, Haifa, Israel.
| |
Collapse
|
31
|
Miller DC, Whittington KB, Brand DD, Hasty KA, Rosloniec EF. The CII-specific autoimmune T-cell response develops in the presence of FTY720 but is regulated by enhanced Treg cells that inhibit the development of autoimmune arthritis. Arthritis Res Ther 2016; 18:8. [PMID: 26757712 PMCID: PMC4718028 DOI: 10.1186/s13075-015-0909-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 12/29/2015] [Indexed: 12/24/2022] Open
Abstract
Background Fingolimod (FTY720) is an immunomodulating drug that inhibits sphingosine-1-phosphate binding and blocks T-cell egress from lymph nodes. We analyzed the effect of FTY720 on the autoimmune T- and B-cell response in autoimmune arthritis and studied the mechanisms by which it alters the function of T cells. Methods Human leukocyte antigen (HLA)-DR1 humanized mice were immunized with type II collagen (CII) and treated with FTY720 three times per week for 3 weeks. Arthritis was evaluated and autoimmune T- and B-cell responses were measured using proliferation assays, enzyme-linked immunosorbent assays, HLA-DR tetramers, and flow cytometry. The functional capacity of regulatory T (Treg) cells from FTY720-treated mice was measured using an in vitro suppression assay, and the role of Treg cells in inhibiting arthritis in FTY720-treated mice was evaluated using mice treated with anti-CD25 to deplete Treg cells. Results Treatment with FTY720 delayed the onset of arthritis and significantly reduced disease incidence. FTY720 did not prevent the generation of a CII-specific autoimmune T-cell response in vivo. However, as the treatment continued, these T cells became unresponsive to restimulation with antigen in vitro, and this anergic state was reversed by addition of interleukin 2. Measurements of CD4+CD25+Foxp3+ cells in the lymph nodes revealed that the ratio of Treg to helper T (Th) cells increased twofold in the FTY720-treated mice, and in vitro assays indicated that the regulatory function of these cells was enhanced. That FTY720 stimulation of Treg cells played a major role in arthritis inhibition was demonstrated by a loss of disease inhibition and restitution of the T-cell proliferative function after in vivo depletion of the Treg cells. Conclusions While FTY720 affects the recirculation of lymphocytes, its ability to inhibit the development of autoimmune arthritis involves several mechanisms, including the enhancement of Treg cell function by increasing the Treg/Th ratio and increased regulatory function on a per-cell basis. FTY720 did not inhibit the development of the autoimmune T-cell response, but disease inhibition appeared to be mediated by Treg cell–mediated suppression of the CII-specific T cells. These data suggest that specific targeting of Treg cells with FTY720 may be a novel therapy for autoimmunity. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0909-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- David C Miller
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | | | - David D Brand
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Department of Molecular Sciences, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA.
| | - Karen A Hasty
- Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA. .,Department of Orthopaedic Surgery, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Edward F Rosloniec
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Memphis VA Medical Center, 1030 Jefferson Avenue, Memphis, TN, 38104, USA. .,Department of Pathology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
32
|
Sphingosine 1-phospate differentially modulates maturation and function of human Langerhans-like cells. J Dermatol Sci 2016; 82:9-17. [PMID: 26803226 DOI: 10.1016/j.jdermsci.2016.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/19/2015] [Accepted: 01/06/2016] [Indexed: 11/20/2022]
Abstract
BACKGROUND As mediators between innate and adaptive immune responses, Langerhans cells (LCs) are in the focus of recent investigations to determine their role in allergic inflammatory diseases like allergic contact dermatitis and atopic dermatitis. Sphingosine 1-phosphate (S1P) is a crucial lipid mediator in the skin and potentially interferes with LC homeostasis but also functional properties, such as cytokine release, migration and antigen-uptake which are considered to be key events in the initiation and maintenance of pathological disorders. OBJECTIVE Here, we used human Langerhans-like cells to study the influence of S1P-mediated signalling on LC maturation, cytokine release, migration and endocytosis. METHODS Immature Langerhans-like cells were generated from the human acute myeloid leukaemia cell line MUTZ-3 (MUTZ-LCs) and human primary monocytes (MoLCs). S1P receptor expression was determined by quantitative RT-PCR and western blotting. Expression of maturation markers were investigated by flow cytometry. The influence of S1P signalling on cytokine release was quantified by ELISA. Migration assays and FITC-dextran uptake in the presence of S1P, specific S1 P receptor agonists and antagonists as well as fingolimod (FTY720) were analysed through fluorescence microscopy and flow cytometry. RESULTS S1P receptor protein expression was confirmed for S1P1, S1P2 and S1P4 in MUTZ-LCs and S1P1 and S1P2 in MoLCs. In mature cells S1P receptors were downregulated. S1P did not induce maturation in MUTZ-LCs, whereas in MoLCs CD83 and CD86 were slightly upregulated. IL-8 release of MUTZ-LCs matured in the presence of S1P was not altered, however, reduced IL-6 and IL-12p70 levels were observed in mature MoLCs. Interestingly, immature MUTZ-LCs revealed a significantly increased S1P-dependent migratory capacity, whereas CCL20 induced migration was significantly decreased in the presence of S1P. Furthermore, migratory capacity towards CCL21 in mature MUTZ-LCs but not MoLCs was significantly lower when cells were stimulated with S1P. S1P, FTY720 and specific S1P receptor agonists did not modulate the endocytotic capacity of immature MUTZ-LCs and MoLCs. These findings were further supported by testing specific antagonists of S1P1-4 in the absence or presence of S1P. CONCLUSION Our data demonstrate that S1P regulates key events of human LC maturation including cytokine release and migration. These findings are of particular importance when considering the potential use of S1P in inflammatory skin disorders.
Collapse
|
33
|
Yester JW, Bryan L, Waters MR, Mierzenski B, Biswas DD, Gupta AS, Bhardwaj R, Surace MJ, Eltit JM, Milstien S, Spiegel S, Kordula T. Sphingosine-1-phosphate inhibits IL-1-induced expression of C-C motif ligand 5 via c-Fos-dependent suppression of IFN-β amplification loop. FASEB J 2015; 29:4853-65. [PMID: 26246404 DOI: 10.1096/fj.15-275180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 07/27/2015] [Indexed: 12/15/2022]
Abstract
The neuroinflammation associated with multiple sclerosis involves activation of astrocytes that secrete and respond to inflammatory mediators such as IL-1. IL-1 stimulates expression of many chemokines, including C-C motif ligand (CCL) 5, that recruit immune cells, but it also stimulates sphingosine kinase-1, an enzyme that generates sphingosine-1-phosphate (S1P), a bioactive lipid mediator essential for inflammation. We found that whereas S1P promotes IL-1-induced expression of IL-6, it inhibits IL-1-induced CCL5 expression in astrocytes. This inhibition is mediated by the S1P receptor (S1PR)-2 via an inhibitory G-dependent mechanism. Consistent with this surprising finding, infiltration of macrophages into sites of inflammation increased significantly in S1PR2(-/-) animals. However, activation of NF-κB, IFN regulatory factor-1, and MAPKs, all of which regulate CCL5 expression in response to IL-1, was not diminished by the S1P in astrocytes. Instead, S1PR2 stimulated inositol 1,4,5-trisphosphate-dependent Ca(++) release and Elk-1 phosphorylation and enhanced c-Fos expression. In our study, IL-1 induced the IFNβ production that supports CCL5 expression. An intriguing finding was that S1P induced c-Fos-inhibited CCL5 directly and also indirectly through inhibition of the IFN-β amplification loop. We propose that in addition to S1PR1, which promotes inflammation, S1PR2 mediates opposing inhibitory functions that limit CCL5 expression and diminish the recruitment of immune cells.
Collapse
Affiliation(s)
- Jessie W Yester
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Lauren Bryan
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Michael R Waters
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Bartosz Mierzenski
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Debolina D Biswas
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Angela S Gupta
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Reetika Bhardwaj
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Michael J Surace
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Jose M Eltit
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sheldon Milstien
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Sarah Spiegel
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Tomasz Kordula
- *Department of Biochemistry and Molecular Biology, Department of Physiology and Biophysics, and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
34
|
Yu H, Herbert BA, Valerio M, Yarborough L, Hsu LC, Argraves KM. FTY720 inhibited proinflammatory cytokine release and osteoclastogenesis induced by Aggregatibacter actinomycetemcomitans. Lipids Health Dis 2015; 14:66. [PMID: 26138336 PMCID: PMC4492085 DOI: 10.1186/s12944-015-0057-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/12/2015] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Periodontitis is a bacteria-driven inflammatory bone loss disease. Previous studies showed that the oral pathogen Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans) stimulated the generation of sphingosine 1 phosphate (S1P). In addition, S1P signaling regulated the migration of osteoclast precursors and affected osteoclastogenesis. Furthermore, treatment with FTY720 (also called fingolimod, a modulator of multiple S1P receptors) alleviated osteoporosis and suppressed arthritis in animals. This study determined the effect of FTY720 on proinflammatory cytokine production and osteoclastogenesis in murine bone marrow cells with or without A. actinomycetemcomitans stimulation. METHODS Murine bone marrow-derived monocytes and macrophages (BMMs) were treated with vehicle ethanol or FTY720, and were either unstimulated or stimulated for 0.5 to 6 h with A. actinomycetemcomitans. The protein levels of interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α in the media of BMMs were quantified by enzyme-linked immunosorbent assay (ELISA). Protein expressions, including phosphorylated phosphoinositide 3-kinase (p-PI3K), p-Akt, p-extracellular signal-regulated kinase (p-ERK), PI3K, Akt, and ERK were evaluated by Western blot. In addition, murine bone marrow-derived pre-osteoclasts were treated with macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-B ligand (RANKL) for three days. Then the cells were treated with either vehicle or FTY720 and were either unstimulated or stimulated with A. actinomycetemcomitans for 4 to 24 h. Control cells were treated with M-CSF alone with or without bacterial stimulation. Osteoclasts were stained by tartrate-resistant acid phosphatase (TRAP) staining. The mRNA levels of osteoclastogenic factors, including nuclear factor of activated T-cells cytoplasmic calcineurin-dependent 1 (Nfatc1), cathepsin K (Ctsk), acid phosphatase 5 (Acp5), osteoclast-associated receptor (Oscar), and RANKL were quantified by quantitative real-time polymerase chain reaction (PCR). RESULTS FTY720 dose-dependently inhibited IL-1β, IL-6, and TNF-α protein levels induced by A. actinomycetemcomitans in BMMs compared with controls. Additionally, FTY720 attenuated p-PI3K, p-Akt, and p-ERK expressions induced by A. actinomycetemcomitans. Furthermore, FTY720 suppressed osteoclastogenesis in bone marrow-derived pre-osteoclasts with or without bacterial stimulation and reduced the mRNA levels of Nfatc1, Ctsk, Acp5, and Oscar, but not RANKL in bone marrow-derived pre-osteoclasts. CONCLUSION FTY720 inhibited proinflammatory cytokine production and suppressed osteoclastogenesis, supporting FTY720 as a potential therapy for inflammatory bone loss diseases.
Collapse
Affiliation(s)
- Hong Yu
- Department of Oral Health Sciences and the Center for Oral Health Research, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| | - Bethany A Herbert
- Department of Oral Health Sciences and the Center for Oral Health Research, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| | - Michael Valerio
- Department of Oral Health Sciences and the Center for Oral Health Research, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| | | | | | - Kelley M Argraves
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC, 29425, USA.
| |
Collapse
|
35
|
Ireland SJ, Monson NL, Davis LS. Seeking balance: Potentiation and inhibition of multiple sclerosis autoimmune responses by IL-6 and IL-10. Cytokine 2015; 73:236-44. [PMID: 25794663 PMCID: PMC4437890 DOI: 10.1016/j.cyto.2015.01.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 01/12/2015] [Accepted: 01/22/2015] [Indexed: 01/07/2023]
Abstract
The cytokines IL-6 and IL-10 are produced by cells of the adaptive and innate arms of the immune system and they appear to play key roles in genetically diverse autoimmune diseases such as relapsing remitting multiple sclerosis (MS), rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). Whereas previous intense investigations focused on the generation of autoantibodies and their contribution to immune-mediated pathogenesis in these diseases; more recent attention has focused on the roles of cytokines such as IL-6 and IL-10. In response to pathogens, antigen presenting cells (APC), including B cells, produce IL-6 and IL-10 in order to up-or down-regulate immune cell activation and effector responses. Evidence of elevated levels of the proinflammatory cytokine IL-6 has been routinely observed during inflammatory responses and in a number of autoimmune diseases. Our recent studies suggest that MS peripheral blood B cells secrete higher quantities of IL-6 and less IL-10 than B cells from healthy controls. Persistent production of IL-6, in turn, contributes to T cell expansion and the functional hyperactivity of APC such as MS B cells. Altered B cell activity can have a profound impact on resultant T cell effector functions. Enhanced signaling through the IL-6 receptor can effectively inhibit cytolytic activity, induce T cell resistance to IL-10-mediated immunosuppression and increase skewing of autoreactive T cells to a pathogenic Th17 phenotype. Our recent findings and studies by others support a role for the indirect attenuation of B cell responses by Glatiramer acetate (GA) therapy. Our studies suggest that GA therapy temporarily permits homeostatic regulatory mechanisms to be reinstated. Future studies of mechanisms underlying dysregulated B cell cytokine production could lead to the identification of novel targets for improved immunoregulatory therapies for autoimmune diseases.
Collapse
Affiliation(s)
- Sara J Ireland
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, United States.
| | - Nancy L Monson
- Department of Neurology and Neurotherapeutics, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, United States.
| | - Laurie S Davis
- Rheumatic Diseases Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390-8884, United States.
| |
Collapse
|
36
|
Luessi F, Kraus S, Trinschek B, Lerch S, Ploen R, Paterka M, Roberg T, Poisa-Beiro L, Klotz L, Wiendl H, Bopp T, Jonuleit H, Jolivel V, Zipp F, Witsch E. FTY720 (fingolimod) treatment tips the balance towards less immunogenic antigen-presenting cells in patients with multiple sclerosis. Mult Scler 2015; 21:1811-22. [PMID: 25732840 DOI: 10.1177/1352458515574895] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/26/2015] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We aimed to clarify whether fingolimod has direct effects on antigen-presenting cells in multiple sclerosis patients. METHODS Frequency and phenotype of directly ex vivo dendritic cells and monocytes were analyzed in 43 individuals, including fingolimod-treated and untreated multiple sclerosis patients as well as healthy subjects. These cells were further stimulated with lipopolysaccharide to determine functional effects of fingolimod treatment. RESULTS Absolute numbers of CD1c+ dendritic cells and monocytes were not significantly reduced in fingolimod-treated patients indicating that fingolimod did not block the migration of antigen-presenting cells to peripheral blood. CD86 was upregulated on CD1c+ dendritic cells and thus their activation was not impaired under fingolimod treatment. Quantitative analyses of gene transcription in cells and protein content in supernatants from ex vivo CD1c+ dendritic cells and monocytes, however, showed lower secretion of TNFα, IL1-β and IL-6 upon lipopolysaccharide-stimulation. These results could be matched with CD4+MOG-specific transgenic T cells exhibiting reduced levels of TNFα and IFN-γ but not IL-4 upon stimulation with murine dendritic cells loaded with MOG, when treated with fingolimod. CONCLUSIONS Our data indicate that fingolimod - apart from trapping lymphocytes in lymph nodes - exerts its disease-modulating activity by rebalancing the immune tolerance networks by modulation of antigen-presenting cells.
Collapse
Affiliation(s)
- Felix Luessi
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany
| | - Stefan Kraus
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany
| | - Bettina Trinschek
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany
| | - Steffen Lerch
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany
| | - Robert Ploen
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany
| | - Magdalena Paterka
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany
| | - Torsten Roberg
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany
| | - Laura Poisa-Beiro
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany
| | - Luisa Klotz
- Department of Neurology, University of Münster, Germany
| | - Heinz Wiendl
- Department of Neurology, University of Münster, Germany
| | - Tobias Bopp
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany
| | - Helmut Jonuleit
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany
| | - Valérie Jolivel
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany
| | - Esther Witsch
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University of Mainz, Germany
| |
Collapse
|
37
|
Role of the immunogenic and tolerogenic subsets of dendritic cells in multiple sclerosis. Mediators Inflamm 2015; 2015:513295. [PMID: 25705093 PMCID: PMC4325219 DOI: 10.1155/2015/513295] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 01/01/2015] [Accepted: 01/01/2015] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an immune-mediated disorder in the central nervous system (CNS) characterized by inflammation and demyelination as well as axonal and neuronal degeneration. So far effective therapies to reverse the disease are still lacking; most therapeutic drugs can only ameliorate the symptoms or reduce the frequency of relapse. Dendritic cells (DCs) are professional antigen presenting cells (APCs) that are key players in both mediating immune responses and inducing immune tolerance. Increasing evidence indicates that DCs contribute to the pathogenesis of MS and might provide an avenue for therapeutic intervention. Here, we summarize the immunogenic and tolerogenic roles of DCs in MS and review medicinal drugs that may affect functions of DCs and have been applied in clinic for MS treatment. We also describe potential therapeutic molecules that can target DCs by inducing anti-inflammatory cytokines and inhibiting proinflammatory cytokines in MS.
Collapse
|
38
|
Rüger K, Ottenlinger F, Schröder M, Živković A, Stark H, Pfeilschifter JM, Radeke HH. Modulation of IL-33/ST2-TIR and TLR Signalling Pathway by Fingolimod and Analogues in Immune Cells. Scand J Immunol 2014; 80:398-407. [DOI: 10.1111/sji.12238] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/27/2014] [Indexed: 01/20/2023]
Affiliation(s)
- K. Rüger
- pharmazentrum frankfurt/ZAFES; Clinic of the J.W. Goethe University; Frankfurt am Main Germany
| | - F. Ottenlinger
- pharmazentrum frankfurt/ZAFES; Clinic of the J.W. Goethe University; Frankfurt am Main Germany
| | - M. Schröder
- pharmazentrum frankfurt/ZAFES; Clinic of the J.W. Goethe University; Frankfurt am Main Germany
- BioMed X Innovation Center; Heildelberg Germany
| | - A. Živković
- Institute of Pharmaceutical Chemistry; Goethe University Frankfurt; Biozentrum; Frankfurt am Main Germany
| | - H. Stark
- Institute of Pharmaceutical Chemistry; Goethe University Frankfurt; Biozentrum; Frankfurt am Main Germany
- Institute of Pharmaceutical and Medical Chemistry; Heinrich Heine University Düsseldorf; Düsseldorf Germany
| | - J. M. Pfeilschifter
- pharmazentrum frankfurt/ZAFES; Clinic of the J.W. Goethe University; Frankfurt am Main Germany
| | - H. H. Radeke
- pharmazentrum frankfurt/ZAFES; Clinic of the J.W. Goethe University; Frankfurt am Main Germany
| |
Collapse
|
39
|
Al-Jarallah A, Chen X, González L, Trigatti BL. High density lipoprotein stimulated migration of macrophages depends on the scavenger receptor class B, type I, PDZK1 and Akt1 and is blocked by sphingosine 1 phosphate receptor antagonists. PLoS One 2014; 9:e106487. [PMID: 25188469 PMCID: PMC4154704 DOI: 10.1371/journal.pone.0106487] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/04/2014] [Indexed: 01/12/2023] Open
Abstract
HDL carries biologically active lipids such as sphingosine-1-phosphate (S1P) and stimulates a variety of cell signaling pathways in diverse cell types, which may contribute to its ability to protect against atherosclerosis. HDL and sphingosine-1-phosphate receptor agonists, FTY720 and SEW2871 triggered macrophage migration. HDL-, but not FTY720-stimulated migration was inhibited by an antibody against the HDL receptor, SR-BI, and an inhibitor of SR-BI mediated lipid transfer. HDL and FTY720-stimulated migration was also inhibited in macrophages lacking either SR-BI or PDZK1, an adaptor protein that binds to SR-BI's C-terminal cytoplasmic tail. Migration in response to HDL and S1P receptor agonists was inhibited by treatment of macrophages with sphingosine-1-phosphate receptor type 1 (S1PR1) antagonists and by pertussis toxin. S1PR1 activates signaling pathways including PI3K-Akt, PKC, p38 MAPK, ERK1/2 and Rho kinases. Using selective inhibitors or macrophages from gene targeted mice, we demonstrated the involvement of each of these pathways in HDL-dependent macrophage migration. These data suggest that HDL stimulates the migration of macrophages in a manner that requires the activities of the HDL receptor SR-BI as well as S1PR1 activity.
Collapse
Affiliation(s)
- Aishah Al-Jarallah
- Department of Biochemistry and Biomedical Sciences, and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Xing Chen
- Department of Biochemistry and Biomedical Sciences, and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Leticia González
- Department of Biochemistry and Biomedical Sciences, and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Bernardo L. Trigatti
- Department of Biochemistry and Biomedical Sciences, and the Thrombosis and Atherosclerosis Research Institute, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
40
|
Fingolimod attenuates splenocyte-induced demyelination in cerebellar slice cultures. PLoS One 2014; 9:e99444. [PMID: 24911000 PMCID: PMC4049809 DOI: 10.1371/journal.pone.0099444] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 05/15/2014] [Indexed: 12/02/2022] Open
Abstract
The family of sphingosine-1-phosphate receptors (S1PRs) is G-protein-coupled, comprised of subtypes S1PR1-S1PR5 and activated by the endogenous ligand S1P. The phosphorylated version of Fingolimod (pFTY720), an oral therapy for multiple sclerosis (MS), induces S1PR1 internalisation in T cells, subsequent insensitivity to S1P gradients and sequestering of these cells within lymphoid organs, thus limiting immune response. S1PRs are also expressed in neuronal and glial cells where pFTY720 is suggested to directly protect against lysolecithin-induced deficits in myelination state in organotypic cerebellar slices. Of note, the effect of pFTY720 on immune cells already migrated into the CNS, prior to treatment, has not been well established. We have previously found that organotypic slice cultures do contain immune cells, which, in principle, could also be regulated by pFTY720 to maintain levels of myelin. Here, a mouse organotypic cerebellar slice and splenocyte co-culture model was thus used to investigate the effects of pFTY720 on splenocyte-induced demyelination. Spleen cells isolated from myelin oligodendrocyte glycoprotein immunised mice (MOG-splenocytes) or from 2D2 transgenic mice (2D2-splenocytes) both induced demyelination when co-cultured with mouse organotypic cerebellar slices, to a similar extent as lysolecithin. As expected, in vivo treatment of MOG-immunised mice with FTY720 inhibited demyelination induced by MOG-splenocytes. Importantly, in vitro treatment of MOG- and 2D2-splenocytes with pFTY720 also attenuated demyelination caused by these cells. In addition, while in vitro treatment of 2D2-splenocytes with pFTY720 did not alter cell phenotype, pFTY720 inhibited the release of the pro-inflammatory cytokines such as interferon gamma (IFNγ) and interleukin 6 (IL6) from these cells. This work suggests that treatment of splenocytes by pFTY720 attenuates demyelination and reduces pro-inflammatory cytokine release, which likely contributes to enhanced myelination state induced by pFTY720 in organotypic cerebellar slices.
Collapse
|
41
|
Sphingosine-1-phosphate differently regulates the cytokine production of IL-12, IL-23 and IL-27 in activated murine bone marrow derived dendritic cells. Mol Immunol 2014; 59:10-8. [DOI: 10.1016/j.molimm.2013.11.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 11/19/2013] [Accepted: 11/23/2013] [Indexed: 01/05/2023]
|
42
|
Liu G, Bi Y, Wang R, Yang H, Zhang Y, Wang X, Liu H, Lu Y, Zhang Z, Chen W, Chu Y, Yang R. Targeting S1P1 receptor protects against murine immunological hepatic injury through myeloid-derived suppressor cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:3068-79. [PMID: 24567529 DOI: 10.4049/jimmunol.1301193] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Although FTY720 may alter migration and homing of lymphocytes via sphingosine-1-phosphate (S1P) receptors, our recent studies indicated that FTY720 directly controls the differentiation of Th1 cells to regulatory T cells (Tregs) by targeting S1P1. However, the pharmacological function of FTY720 in immunological hepatic injury remains unknown. In this study, the role and regulatory signaling pathway of S1P receptor were investigated using a pharmacological approach in immune-mediated hepatic injury (IMH). In the context of IMH, FTY720 significantly ameliorated mortality and hepatic pathology. In FTY720-treated mice, recruited CD11b(+)Gr1(+) myeloid-derived suppressor cells (MDSCs) mediate protection against IMH and are functional suppressive immune modulators that result in fewer IFN-γ-producing Th1 cells and more Foxp3(+) Tregs. In agreement, FTY720-treated MDSCs promote the reciprocal differentiation between Th1 cells and Tregs in vitro and in vivo. Mechanistically, FTY720 treatment induced inducible NO synthase expression and NO production in MDSCs. Pharmacologic inhibition of inducible NO synthase completely eliminates MDSC suppressive function and eradicates their inducible effects on T cell differentiation. Finally, the mTOR inhibitor, rapamycin, photocopies the effects of FTY720 on MDSCs, implicating mTOR as a downstream effector of S1P1 signaling. This study identifies MDSCs as an essential component that provides protection against IMH following FTY720 or rapamycin treatment, validating the S1P1-mTOR signaling axis as a potential therapeutic target in hepatic injury.
Collapse
Affiliation(s)
- Guangwei Liu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Affiliation(s)
- Jack Antel
- Neuroimmunology Program; Montreal Neurological Institute; Montreal Quebec Canada
| |
Collapse
|
44
|
Cladribine exerts an immunomodulatory effect on human and murine dendritic cells. Int Immunopharmacol 2014; 18:347-57. [DOI: 10.1016/j.intimp.2013.11.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 11/05/2013] [Accepted: 11/22/2013] [Indexed: 11/22/2022]
|
45
|
Abstract
There are currently nine approved disease modifying therapies for relapsing forms of multiple sclerosis, with six distinct mechanisms of action. All have side effects, and none are cures. When a patient cannot tolerate therapy, or there is unacceptable breakthrough disease activity, the most common approach is to change drug. No universal guidelines exist for switching therapy. This overview will propose switch principles and suggestions.
Collapse
Affiliation(s)
- Patricia K Coyle
- Department of Neurology, Stony Brook University Medical Center, HSC T12-020, Stony Brook, NY 11794-8121, USA.
| |
Collapse
|
46
|
Jolivel V, Luessi F, Masri J, Kraus SH, Hubo M, Poisa-Beiro L, Klebow S, Paterka M, Yogev N, Tumani H, Furlan R, Siffrin V, Jonuleit H, Zipp F, Waisman A. Modulation of dendritic cell properties by laquinimod as a mechanism for modulating multiple sclerosis. Brain 2013; 136:1048-66. [DOI: 10.1093/brain/awt023] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
47
|
Abstract
Sphingosine-1-phosphate (S1P) regulates important functions in cardiac and vascular homeostasis. It has been implied to play causal roles in the pathogenesis of many cardiovascular disorders such as coronary artery disease, atherosclerosis, myocardial infarction, and heart failure. The majority of S1P in plasma is associated with high-density lipoproteins (HDL), and their S1P content has been shown to be responsible, at least in part, for several of the beneficial effects of HDL on cardiovascular risk. The attractiveness of S1P-based drugs for potential cardiovascular applications is increasing in the wake of the clinical approval of FTY720, but answers to important questions on the effects of S1P in cardiovascular biology and medicine must still be found. This chapter focuses on the current understanding of the role of S1P and its receptors in cardiovascular physiology, pathology, and disease.
Collapse
Affiliation(s)
- Bodo Levkau
- University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
48
|
Kendall AC, Nicolaou A. Bioactive lipid mediators in skin inflammation and immunity. Prog Lipid Res 2012; 52:141-64. [PMID: 23124022 DOI: 10.1016/j.plipres.2012.10.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/15/2012] [Accepted: 10/17/2012] [Indexed: 12/20/2022]
Abstract
The skin is the primary barrier from the outside environment, protecting the host from injury, infectious pathogens, water loss and solar ultraviolet radiation. In this role, it is supported by a highly organized system comprising elements of innate and adaptive immunity, responsive to inflammatory stimuli. The cutaneous immune system is regulated by mediators such as cytokines and bioactive lipids that can initiate rapid immune responses with controlled inflammation, followed by efficient resolution. However, when immune responses are inadequate or mounted against non-infectious agents, these mediators contribute to skin pathologies involving unresolved or chronic inflammation. Skin is characterized by active lipid metabolism and fatty acids play crucial roles both in terms of structural integrity and functionality, in particular when transformed to bioactive mediators. Eicosanoids, endocannabinoids and sphingolipids are such key bioactive lipids, intimately involved in skin biology, inflammation and immunity. We discuss their origins, role and influence over various cells of the epidermis, dermis and cutaneous immune system and examine their function in examples of inflammatory skin conditions. We focus on psoriasis, atopic and contact dermatitis, acne vulgaris, wound healing and photodermatology that demonstrate dysregulation of bioactive lipid metabolism and examine ways of using this insight to inform novel therapeutics.
Collapse
Affiliation(s)
- Alexandra C Kendall
- School of Pharmacy and Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Road, Bradford BD7 1DP, UK
| | | |
Collapse
|
49
|
Zeng X, Wang T, Zhu C, Xing X, Ye Y, Lai X, Song B, Zeng Y. Topographical and biological evidence revealed FTY720-mediated anergy-polarization of mouse bone marrow-derived dendritic cells in vitro. PLoS One 2012; 7:e34830. [PMID: 22693544 PMCID: PMC3365054 DOI: 10.1371/journal.pone.0034830] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2011] [Accepted: 03/06/2012] [Indexed: 12/21/2022] Open
Abstract
Abnormal inflammations are central therapeutic targets in numerous infectious and autoimmune diseases. Dendritic cells (DCs) are involved in these inflammations, serving as both antigen presenters and proinflammatory cytokine providers. As an immuno-suppressor applied to the therapies of multiple sclerosis and allograft transplantation, fingolimod (FTY720) was shown to affect DC migration and its crosstalk with T cells. We posit FTY720 can induce an anergy-polarized phenotype switch on DCs in vitro, especially upon endotoxic activation. A lipopolysaccharide (LPS)-induced mouse bone marrow-derived dendritic cell (BMDC) activation model was employed to test FTY720-induced phenotypic changes on immature and mature DCs. Specifically, methods for morphology, nanostructure, cytokine production, phagocytosis, endocytosis and specific antigen presentation studies were used. FTY720 induced significant alterations of surface markers, as well as decline of shape indices, cell volume, surface roughness in LPS-activated mature BMDCs. These phenotypic, morphological and topographical changes were accompanied by FTY720-mediated down-regulation of proinflammatory cytokines, including IL-6, TNF-α, IL-12 and MCP-1. Together with suppressed nitric oxide (NO) production and CCR7 transcription in FTY720-treated BMDCs with or without LPS activation, an inhibitory mechanism of NO and cytokine reciprocal activation was suggested. This implication was supported by the impaired phagocytotic, endocytotic and specific antigen presentation abilities observed in the FTY720-treated BMDCs. In conclusion, we demonstrated FTY720 can induce anergy-polarization in both immature and LPS-activated mature BMDCs. A possible mechanism is FTY720-mediated reciprocal suppression on the intrinsic activation pathway and cytokine production with endpoint exhibitions on phagocytosis, endocytosis, antigen presentation as well as cellular morphology and topography.
Collapse
Affiliation(s)
- Xiangfeng Zeng
- Institute for Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Tong Wang
- Institute for Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
- Institute of Life and Health Engineering, Jinan University, Guangzhou, China
| | - Cairong Zhu
- Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
| | - Xiaobo Xing
- Department of Chemistry, Jinan University, Guangzhou, China
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, South China Normal University, Guangzhou, China
| | - Yanxia Ye
- Institute for Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Xinqiang Lai
- Institute for Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Bing Song
- Institute for Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
| | - Yaoying Zeng
- Institute for Tissue Transplantation and Immunology, Jinan University, Guangzhou, China
- * E-mail:
| |
Collapse
|
50
|
Seo YJ, Pritzl CJ, Vijayan M, Blake CR, McClain ME, Hahm B. Sphingosine analogue AAL-R increases TLR7-mediated dendritic cell responses via p38 and type I IFN signaling pathways. THE JOURNAL OF IMMUNOLOGY 2012; 188:4759-68. [PMID: 22490865 DOI: 10.4049/jimmunol.1102754] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Sphingosine analogues display immunosuppressive activities and thus have therapeutic potential in the treatment of autoimmune diseases. In this study, we investigated the effects of the sphingosine analogue AAL-R (FTY720 derivative) on dendritic cell (DC) response upon TLR stimulation. Unlike its known immunosuppressive activity, AAL-R increased TLR7-mediated DC responses by elevating the levels of MHC class I and costimulatory molecules and type I IFN expression and by enhancing the capacity of DCs to induce CD8(+) T cell proliferation. Importantly, the stimulatory activity of AAL-R was dependent on type I IFN signaling, as type I IFN receptor-deficient DCs failed to respond to AAL-R. Also, AAL-R activated p38 MAPK to increase type I IFN synthesis and TLR7-mediated DC maturation. These findings enhance our understanding of sphingosine regulation of the host immune system, in particular upon pathogenic infections.
Collapse
Affiliation(s)
- Young-Jin Seo
- Department of Surgery, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | | | | | | | | | |
Collapse
|