1
|
Buso H, Triaille C, Flinn AM, Gennery AR. Update on hereditary C1q deficiency: pathophysiology, clinical presentation, genotype and management. Curr Opin Allergy Clin Immunol 2024; 24:427-433. [PMID: 39479952 DOI: 10.1097/aci.0000000000001034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
PURPOSE OF REVIEW C1q deficiency is a rare inborn error of immunity characterized by susceptibility to severe infections and profound immune dysregulation, with a systemic lupus erythematosus-like phenotype. The management of patients with C1q deficiency is challenged by the rarity of this condition and the wide clinical variability. This review aims to emphasize the importance of a thorough immunological and clinical characterization to help guide a personalized and comprehensive approach to patients. RECENT FINDINGS We focus on the concept of C1q deficiency as a bridge between the monogenic form of systemic lupus erythematosus and the Mendelian type I interferonopathies. Moreover, we explore the role of new treatment strategies such as Janus-associated kinase (JAK) inhibitors and allogeneic stem cell transplantation. SUMMARY In this narrative review, we provide a systematic overview of C1q deficiency, starting with the description of the pathophysiological background and the variable clinical phenotype, and then exploring the different prognoses, the consequent treatment strategies and future directions.
Collapse
Affiliation(s)
- Helena Buso
- Department of Medicine - DIMED, University of Padova, Padova, Italy
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Clément Triaille
- Pôle de pathologies rhumatismales systémiques et inflammatoires, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Division of Pediatric Immunology and Rheumatology, CHU Sainte-Justine, Department of Pediatrics, University of Montreal, Montreal, QC, Canada
| | - Aisling M Flinn
- Department of Paediatric Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Andrew R Gennery
- Paediatric Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
Buso H, Adam E, Arkwright PD, Bhattad S, Hamidieh AA, Behfar M, Belot A, Benezech S, Chan AY, Crow YJ, Dvorak CC, Flinn AM, Kapoor U, Lankester A, Kobayashi M, Matsumura R, Mottaghipisheh H, Okada S, Ouachee M, Parvaneh N, Ramprakash S, Satwani P, Sharafian S, Triaille C, Wynn RF, Movahedi N, Ziaee V, Williams E, Slatter M, Gennery AR. Hematopoietic Stem Cell Transplantation for C1q Deficiency: A Study on Behalf of the EBMT Inborn Errors Working Party. J Clin Immunol 2024; 45:35. [PMID: 39470951 PMCID: PMC11522153 DOI: 10.1007/s10875-024-01819-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/01/2024] [Indexed: 11/01/2024]
Abstract
C1q deficiency is a rare inborn error of immunity characterized by increased susceptibility to infections and autoimmune manifestations mimicking SLE, with an associated morbidity and mortality. Because C1q is synthesized by monocytes, to date, four patients treated with allogeneic HSCT have been reported, with a positive outcome in three. We conducted an international retrospective study to assess the outcome of HSCT in C1q deficiency. Eighteen patients, fourteen previously unreported, from eleven referral centres, were included. Two patients had two HSCTs, thus 20 HSCTs were performed in total, at a median age of 10 years (range 0.9-19). Indications for HSCT were autoimmune manifestations not controlled by ongoing treatment in seventeen, and early development of MALT lymphoma in one patient. Overall survival (OS) was 71% and event-free survival was 59% at two years (considering an event as acute GvHD ≥ grade III, disease recurrence and death). In eleven patients HSCT led to resolution of autoimmune features and discontinuation of immunosuppressive treatments (follow-up time range 3-84 months). Five patients died due to transplant-related complications. Patients with a severe autoimmune phenotype, defined as neurological and/or renal involvement, had the worst OS (40% vs 84%; p = 0.034). Reviewing data of 69 genetically confirmed C1q deficient patients, we found that anti-Ro antibodies are associated with neurologic involvement, and anti-RNP and anti-DNA antibodies with renal involvement. In conclusion, HSCT may be a valid curative option for C1q deficiency, but careful selection of patients, with an accurate assessment of risk and benefit, is mandatory.
Collapse
Affiliation(s)
- Helena Buso
- Department of Medicine (DIMED), University of Padova, Padua, Italy
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, NE1 4LP, UK
| | - Etai Adam
- Sheba Medical Center, The Edmond and Lily Safra Children's Hospital, Ramat Gan, Israel
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Sagar Bhattad
- Division of Paediatric Immunology and Rheumatology, Department of Paediatrics, Aster CMI Hospital, Bengaluru, India
| | - Amir Ali Hamidieh
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Behfar
- Pediatric Cell and Gene Therapy Research Center, Gene, Cell & Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Alexandre Belot
- Department of Paediatric Rheumatology, Femme-Mère-Enfant Hospital, HCL, Lyon, France
| | - Sarah Benezech
- Institute of Hematology and Pediatric Oncology, 69008, Lyon, France
| | - Alice Y Chan
- Division of Pediatric Allergy, Immunology, and Blood and Marrow Transplant, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Yanick J Crow
- Laboratory of Neurogenetics and Neuroinflammation, Imagine Institute, INSERM UMR1163, Paris, France
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Christopher C Dvorak
- Division of Pediatric Allergy, Immunology, and Blood and Marrow Transplant, UCSF Benioff Children's Hospital, University of California San Francisco, San Francisco, CA, USA
| | - Aisling M Flinn
- Department of Pediatric Immunology, Children's Health Ireland at Crumlin, Dublin, Ireland
| | - Urvi Kapoor
- Division of of Pediatrics Haematology, Oncology and Stem Cell Transplant, Children's Hospital New York-Presbyterian, Columbia University, 161 Fort Washington, Irving 7, New York, NY, 10032, USA
| | - Arjan Lankester
- Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, The Netherlands
| | - Masao Kobayashi
- Department of Pediatrics, Hiroshima University Hospital, 1‑2‑3 Kasumi, Minami‑ku, Hiroshima, 734‑8551, Japan
| | - Risa Matsumura
- Department of Pediatrics, Hiroshima University Hospital, 1‑2‑3 Kasumi, Minami‑ku, Hiroshima, 734‑8551, Japan
| | - Hadi Mottaghipisheh
- Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Hospital, 1‑2‑3 Kasumi, Minami‑ku, Hiroshima, 734‑8551, Japan
| | - Marie Ouachee
- Institute of Hematology and Pediatric Oncology, 69008, Lyon, France
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Stalin Ramprakash
- Aster International Institute of Oncology, Aster CMI Hospital, Bangalore, India
| | - Prakash Satwani
- Division of of Pediatrics Haematology, Oncology and Stem Cell Transplant, Children's Hospital New York-Presbyterian, Columbia University, 161 Fort Washington, Irving 7, New York, NY, 10032, USA
| | - Samin Sharafian
- Department of Allergy and Clinical Immunology, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Clément Triaille
- Pôle de Pathologies Rhumatismales Systémiques Et Inflammatoires, Institut de Recherche Expérimentale Et Clinique, Université Catholique de Louvain, Brussels, Belgium
- Pediatric Immunology and Rheumatology Division, Department of Pediatrics, CHU Sainte-Justine, University of Montreal, Montreal, QC, Canada
| | - Robert F Wynn
- Department of Paediatric Haematology & Oncology, Royal Manchester Children's Hospital, Manchester, UK
| | - Nasim Movahedi
- Golestan Rheumatology Research Center (GRRC), Golestan University of Medical Sciences, Gorgan, Iran
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ziaee
- Pediatric Rheumatology Research Group, Rheumatology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran
| | - Eleri Williams
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, NE1 4LP, UK
| | - Mary Slatter
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, NE1 4LP, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK
| | - Andrew R Gennery
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital, Newcastle Upon Tyne, NE1 4LP, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.
| |
Collapse
|
3
|
Coss SL, Zhou D, Chua GT, Aziz RA, Hoffman RP, Wu YL, Ardoin SP, Atkinson JP, Yu CY. The complement system and human autoimmune diseases. J Autoimmun 2023; 137:102979. [PMID: 36535812 PMCID: PMC10276174 DOI: 10.1016/j.jaut.2022.102979] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Genetic deficiencies of early components of the classical complement activation pathway (especially C1q, r, s, and C4) are the strongest monogenic causal factors for the prototypic autoimmune disease systemic lupus erythematosus (SLE), but their prevalence is extremely rare. In contrast, isotype genetic deficiency of C4A and acquired deficiency of C1q by autoantibodies are frequent among patients with SLE. Here we review the genetic basis of complement deficiencies in autoimmune disease, discuss the complex genetic diversity seen in complement C4 and its association with autoimmune disease, provide guidance as to when clinicians should suspect and test for complement deficiencies, and outline the current understanding of the mechanisms relating complement deficiencies to autoimmunity. We focus primarily on SLE, as the role of complement in SLE is well-established, but will also discuss other informative diseases such as inflammatory arthritis and myositis.
Collapse
Affiliation(s)
- Samantha L Coss
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| | - Danlei Zhou
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Gilbert T Chua
- Department of Pediatrics and Adolescent Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Rabheh Abdul Aziz
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Allergy, Immunology and Rheumatology, University of Buffalo, NY, USA
| | - Robert P Hoffman
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Yee Ling Wu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Stacy P Ardoin
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - John P Atkinson
- Department of Medicine, Division of Rheumatology, Washington University School of Medicine, St Louis, MO, USA
| | - Chack-Yung Yu
- Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
4
|
Li J, Sun K, Dai W, Leng H, Li A, Feng J. Extensive Adaptive Variation in Gene Expression within and between Closely Related Horseshoe Bats (Chiroptera, Rhinolophus) Revealed by Three Organs. Animals (Basel) 2022; 12:ani12233432. [PMID: 36496954 PMCID: PMC9741297 DOI: 10.3390/ani12233432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
In the process of species differentiation and adaption, the relative influence of natural selection on gene expression variation often remains unclear (especially its impact on phenotypic divergence). In this study, we used differentially expressed genes from brain, cochlea, and liver samples collected from two species of bats to determine the gene expression variation forced by natural selection when comparing at the interspecific (Rhinolophus siamensis and R. episcopus episcopus) and the intraspecific (R. e. episcopus and R. episcopus spp.) levels. In both cases, gene expression variation was extensively adaptive (>66.0%) and mainly governed by directional selection, followed by stabilizing selection, and finally balancing selection. The expression variation related to acoustic signals (resting frequency, RF) and body size (forearm length, FA) was also widely governed by natural selection (>69.1%). Different functional patterns of RF- or FA-related adaptive expression variation were found between the two comparisons, which manifested as abundant immune-related regulations between subspecies (indicating a relationship between immune response and phenotypic adaption). Our study verifies the extensive adaptive expression variation between both species and subspecies and provides insight into the effects of natural selection on species differentiation and adaptation as well as phenotypic divergence at the expression level.
Collapse
Affiliation(s)
- Jun Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
- Correspondence: (K.S.); (J.F.)
| | - Wentao Dai
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Haixia Leng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Aoqiang Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun 130024, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
- College of Life Science, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (K.S.); (J.F.)
| |
Collapse
|
5
|
Schulz K, Trendelenburg M. C1q as a target molecule to treat human disease: What do mouse studies teach us? Front Immunol 2022; 13:958273. [PMID: 35990646 PMCID: PMC9385197 DOI: 10.3389/fimmu.2022.958273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/24/2022] [Indexed: 11/17/2022] Open
Abstract
The complement system is a field of growing interest for pharmacological intervention. Complement protein C1q, the pattern recognition molecule at the start of the classical pathway of the complement cascade, is a versatile molecule with additional non-canonical actions affecting numerous cellular processes. Based on observations made in patients with hereditary C1q deficiency, C1q is protective against systemic autoimmunity and bacterial infections. Accordingly, C1q deficient mice reproduce this phenotype with susceptibility to autoimmunity and infections. At the same time, beneficial effects of C1q deficiency on disease entities such as neurodegenerative diseases have also been described in murine disease models. This systematic review provides an overview of all currently available literature on the C1q knockout mouse in disease models to identify potential target diseases for treatment strategies focusing on C1q, and discusses potential side-effects when depleting and/or inhibiting C1q.
Collapse
Affiliation(s)
- Kristina Schulz
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
- *Correspondence: Kristina Schulz,
| | - Marten Trendelenburg
- Laboratory of Clinical Immunology, Department of Biomedicine, University of Basel, Basel, Switzerland
- Division of Internal Medicine, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
6
|
Trzeciak A, Mongre RK, Kim MR, Lim K, Madero RA, Parkhurst CN, Pietropaoli AP, Kim M. Neutrophil heterogeneity in complement C1q expression associated with sepsis mortality. Front Immunol 2022; 13:965305. [PMID: 35983035 PMCID: PMC9380571 DOI: 10.3389/fimmu.2022.965305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a life-threatening systemic inflammatory condition causing approximately 11 million annual deaths worldwide. Although key hyperinflammation-based organ dysfunctions that drive disease pathology have been recognized, our understanding of the factors that predispose patients to septic mortality is limited. Due to the lack of reliable prognostic measures, the development of appropriate clinical management that improves patient survival remains challenging. Here, we discovered that a subpopulation of CD49chigh neutrophils with dramatic upregulation of the complement component 1q (C1q) gene expression arises during severe sepsis. We further found that deceased septic patients failed to maintain C1q protein expression in their neutrophils, whereas septic survivors expressed higher levels of C1q. In mouse sepsis models, blocking C1q with neutralizing antibodies or conditionally knocking out C1q in neutrophils led to a significant increase in septic mortality. Apoptotic neutrophils release C1q to control their own clearance in critically injured organs during sepsis; thus, treatment of septic mice with C1q drastically increased survival. These results suggest that neutrophil C1q is a reliable prognostic biomarker of septic mortality and a potential novel therapeutic target for the treatment of sepsis.
Collapse
Affiliation(s)
- Alissa Trzeciak
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Raj Kumar Mongre
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Ma Rie Kim
- Department of Biomedical Engineering, University of Rochester Medical Center, Rochester, NY, United States
| | - Kihong Lim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Rafael A. Madero
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| | - Christopher N. Parkhurst
- Division of Pulmonary and Critical Care Medicine, Weill-Cornell Medicine, New York, NY, United States
| | - Anthony P. Pietropaoli
- Pulmonary and Critical Care Medicine Division, University of Rochester, Rochester, NY, United States
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
7
|
Sasaki S, Nishihira K, Yamashita A, Fujii T, Onoue K, Saito Y, Hatakeyama K, Shibata Y, Asada Y, Ohbayashi C. Involvement of enhanced expression of classical complement C1q in atherosclerosis progression and plaque instability: C1q as an indicator of clinical outcome. PLoS One 2022; 17:e0262413. [PMID: 35085285 PMCID: PMC8794146 DOI: 10.1371/journal.pone.0262413] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
Activation of the classical complement pathway plays a major role in regulating atherosclerosis progression, and it is believed to have both proatherogenic and atheroprotective effects. This study focused on C1q, the first protein in the classical pathway, and examined its potentialities of plaque progression and instability and its relationship with clinical outcomes. To assess the localization and quantity of C1q expression in various stages of atherosclerosis, immunohistochemistry, western blotting, and real-time polymerase chain reaction (PCR) were performed using abdominal aortas from eight autopsy cases. C1q immunoreactivity in relation to plaque instability and clinical outcomes was also examined using directional coronary atherectomy (DCA) samples from 19 patients with acute coronary syndromes (ACS) and 18 patients with stable angina pectoris (SAP) and coronary aspirated specimens from 38 patients with acute myocardial infarction. C1q immunoreactivity was localized in the extracellular matrix, necrotic cores, macrophages and smooth muscle cells in atherosclerotic lesions. Western blotting and real-time PCR illustrated that C1q protein and mRNA expression was significantly higher in advanced lesions than in early lesions. Immunohistochemical analysis using DCA specimens revealed that C1q expression was significantly higher in ACS plaques than in SAP plaques. Finally, immunohistochemical analysis using thrombus aspiration specimens demonstrated that histopathological C1q in aspirated coronary materials could be an indicator of poor medical condition. Our results indicated that C1q is significantly involved in atherosclerosis progression and plaque instability, and it could be considered as one of the indicators of cardiovascular outcomes.
Collapse
Affiliation(s)
- Shoh Sasaki
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| | | | - Atsushi Yamashita
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - Tomomi Fujii
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| | - Kenji Onoue
- Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Yoshihiko Saito
- Cardiovascular Medicine, Nara Medical University, Kashihara, Nara, Japan
| | - Kinta Hatakeyama
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
- Department of Pathology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
- * E-mail:
| | | | - Yujiro Asada
- Department of Pathology, Faculty of Medicine, University of Miyazaki, Kiyotake, Miyazaki, Japan
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Nara, Japan
| |
Collapse
|
8
|
Byrne RAJ, Torvell M, Daskoulidou N, Fathalla D, Kokkali E, Carpanini SM, Morgan BP. Novel Monoclonal Antibodies Against Mouse C1q: Characterisation and Development of a Quantitative ELISA for Mouse C1q. Mol Neurobiol 2021; 58:4323-4336. [PMID: 34002346 PMCID: PMC8487419 DOI: 10.1007/s12035-021-02419-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022]
Abstract
Recent studies have identified roles for complement in synaptic pruning, both physiological during development and pathological in Alzheimer's disease (AD). These reports suggest that C1q initiates complement activation on synapses and C3 fragments then tag them for removal by microglia. There is an urgent need to characterise these processes in rodent AD models; this requires the development of reagents and methods for detection and quantification of rodent C1q in fluids and pathological tissues. These will enable better evaluation of the role of C1q in disease and its value as disease biomarker. We describe the generation in C1q-deficient mice of novel monoclonal antibodies against mouse and rat C1q that enabled development of a sensitive, specific, and quantitative ELISA for mouse and rat C1q capable of measuring C1q in biological fluids and tissue extracts. Serum C1q levels were measured in wild-type (WT), C1q knockout (KO), C3 KO, C7 KO, Crry KO, and 3xTg and APPNL-G-F AD model mice through ageing. C1q levels significantly decreased in WT, APPNL-G-F, and C7 KO mice with ageing. C1q levels were reduced in APPNL-G-F compared to WT at all ages and in 3xTg at 12 months; C3 KO and C7 KO, but not Crry KO mice, also demonstrated significantly lower C1q levels compared to matched WT. In brain homogenates, C1q levels increased with age in both WT and APPNL-G-F mice. This robust and adaptable assay for quantification of mouse and rat C1q provides a vital tool for investigating the expression of C1q in rodent models of AD and other complement-driven pathologies.
Collapse
Affiliation(s)
- Robert A J Byrne
- UK Dementia Research Institute Cardiff, Hadyn Ellis Building, Cardiff University, Maindy Road, Cardiff, CF244HQ, UK.,Division of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Heath Park, Cardiff, CF144XN, UK
| | - Megan Torvell
- UK Dementia Research Institute Cardiff, Hadyn Ellis Building, Cardiff University, Maindy Road, Cardiff, CF244HQ, UK.,Division of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Heath Park, Cardiff, CF144XN, UK
| | - Nikoleta Daskoulidou
- UK Dementia Research Institute Cardiff, Hadyn Ellis Building, Cardiff University, Maindy Road, Cardiff, CF244HQ, UK.,Division of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Heath Park, Cardiff, CF144XN, UK
| | - Dina Fathalla
- UK Dementia Research Institute Cardiff, Hadyn Ellis Building, Cardiff University, Maindy Road, Cardiff, CF244HQ, UK.,Division of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Heath Park, Cardiff, CF144XN, UK
| | - Eirini Kokkali
- School of Optometry and Visual Sciences, Cardiff University, Maindy Road, Cardiff, CF244HQ, UK
| | - Sarah M Carpanini
- UK Dementia Research Institute Cardiff, Hadyn Ellis Building, Cardiff University, Maindy Road, Cardiff, CF244HQ, UK.,Division of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Heath Park, Cardiff, CF144XN, UK
| | - B Paul Morgan
- UK Dementia Research Institute Cardiff, Hadyn Ellis Building, Cardiff University, Maindy Road, Cardiff, CF244HQ, UK. .,Division of Infection and Immunity and Systems Immunity Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Heath Park, Cardiff, CF144XN, UK.
| |
Collapse
|
9
|
Zecevic M, Minic A, Pasic S, Perovic V, Prohászka Z. Case Report: Early Onset Systemic Lupus Erythematosus Due to Hereditary C1q Deficiency Treated With Fresh Frozen Plasma. Front Pediatr 2021; 9:756387. [PMID: 34993161 PMCID: PMC8724570 DOI: 10.3389/fped.2021.756387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/29/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Hereditary C1q deficiency is associated with early-onset autoimmunity causing SLE or SLE-like disease as well as increased risk for infections with encapsulated bacteria. It is a rare genetic condition inherited in an autosomal recessive manner, caused by mutations in C1q genes. Treatment and management of this rare disease are very complex and include prophylactic vaccination, antibiotics, and immunosuppressive drugs. There are two possible modalities for the replacement of the missing protein: regular fresh frozen plasma (FFP) administration and allogeneic hematopoietic stem cell transplant because the protein is derived from monocytes. Replacing C1q with FFP is being attempted in some patients with success in controlling the disease and in avoiding flare. Case Report: We report a case of sixteen-month-old girl with ulcerations in her mouth, skin erythema, and elevated liver enzymes. ANAs were positive, antibodies against dsDNA were negative, but she had positive anti-Smith antibodies. Complement complements C3 and C4 levels were normal. Total complement activity, classical pathway (hemolytic test) was deficient and C1q antigen was below the detection limit supporting the presence of C1q deficiency. The girl has pathogenic homozygous nonsense mutation in C1qC gene, Arg69Ter (c205>T). The initial response to corticosteroid therapy was good. Regular fresh frozen plasma infusions keep her disease under control, and we were able to reduce the dose of corticosteroids. Conclusion: Young patients with cutaneous lesions resembling SLE, early onset of autoimmunity, with normal C3, C4, elevated ANAs, and negative anti-dsDNA, C1q deficiency should be suspected and complement screening tests should be done. It is important to exclude secondary C1q deficiency. FFP in our patient seems to be well tolerated, without any side effects, able to control the disease.
Collapse
Affiliation(s)
- Milica Zecevic
- Clinical Immunology and Allergy Department, Institute for Health Protection of Mother and Child of Serbia "Dr Vukan Cupic", Belgrade, Serbia
| | - Aleksandra Minic
- Clinical Immunology and Allergy Department, Institute for Health Protection of Mother and Child of Serbia "Dr Vukan Cupic", Belgrade, Serbia
| | - Srdjan Pasic
- Clinical Immunology and Allergy Department, Institute for Health Protection of Mother and Child of Serbia "Dr Vukan Cupic", Belgrade, Serbia.,Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vladimir Perovic
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Zoltán Prohászka
- Department of Internal Medicine and Haematology, Semmelweis University, Budapest, Hungary.,Research Group for Immunology and Haematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| |
Collapse
|
10
|
Bone marrow transplantation from a human leukocyte antigen-mismatched unrelated donor in a case with C1q deficiency associated with refractory systemic lupus erythematosus. Int J Hematol 2020; 113:302-307. [PMID: 33000368 DOI: 10.1007/s12185-020-03004-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/10/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Human C1q deficiency is frequently associated with systemic lupus erythematosus (SLE), which requires long-term systemic corticosteroid administration. We report the case of a 12-year-old female patient with C1q deficiency presenting with intractable SLE who successfully underwent bone marrow transplantation from a human leukocyte antigen (HLA)-mismatched unrelated donor with an immunosuppressive conditioning regimen based on fludarabine, melphalan, and anti-thymocyte globulin. She developed Grade I graft-versus-host disease, but did not have any transplantation-related morbidity. Complete donor chimerism has been maintained for 2 years after transplantation, leading to the restoration of C1q levels and the resolution of SLE symptoms. Normal C1q mRNA expression was observed in CD14 + cells. Hematopoietic stem cell transplantation from an HLA-mismatched donor is a feasible treatment for patients with C1q deficiency with refractory SLE that is dependent on systemic corticosteroid treatment who do not have an HLA-matched donor.
Collapse
|
11
|
Kulkarni HS, Scozzi D, Gelman AE. Recent advances into the role of pattern recognition receptors in transplantation. Cell Immunol 2020; 351:104088. [PMID: 32183988 DOI: 10.1016/j.cellimm.2020.104088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022]
Abstract
Pattern recognition receptors (PRRs) are germline-encoded sensors best characterized for their critical role in host defense. However, there is accumulating evidence that organ transplantation induces the release or display of molecular patterns of cellular injury and death that trigger PRR-mediated inflammatory responses. There are also new insights that indicate PRRs are able to distinguish between self and non-self, suggesting the existence of non-clonal mechanisms of allorecognition. Collectively, these reports have spurred considerable interest into whether PRRs or their ligands can be targeted to promote transplant survival. This review examines the mounting evidence that PRRs play in transplant-mediated inflammation. Given the large number of PRRs, we will focus on members from four families: the complement system, toll-like receptors, the formylated peptide receptor, and scavenger receptors through examining reports of their activity in experimental models of cellular and solid organ transplantation as well as in the clinical setting.
Collapse
Affiliation(s)
- Hrishikesh S Kulkarni
- Department of Medicine, Division of Pulmonary & Critical Care Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Davide Scozzi
- Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Andrew E Gelman
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA; Department of Surgery, Division of Cardiothoracic Surgery, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Complement C1q expression in Erythema nodosum leprosum. PLoS Negl Trop Dis 2018; 12:e0006321. [PMID: 29499046 PMCID: PMC5851649 DOI: 10.1371/journal.pntd.0006321] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/14/2018] [Accepted: 02/15/2018] [Indexed: 01/05/2023] Open
Abstract
Complement C1q is a soluble protein capable of initiating components of the classical pathway in host defence system. In earlier qualitative studies, C1q has been implicated in the pathogenesis of Erythema Nodosum Leprosum (ENL). However, little is known about the role of this complement in ENL reaction. In the present study we described the protein level of C1q production and its gene expression in the peripheral blood and skin biopsies in patients with ENL reaction and lepromatous leprosy (LL) patient controls before and after treatment. Thirty untreated patients with ENL reaction and 30 non-reactional LL patient controls were recruited at ALERT Hospital, Ethiopia. Peripheral blood and skin biopsies were obtained from each patient before and after treatment. The level of circulating C1q in the plasma was determined by enzyme-linked immunosorbent assay. The mRNA expression of the three C1q components, C1qA, C1qB, and C1qC in the peripheral blood and skin biopsies was determined by qPCR. Circulating C1q in the peripheral blood of untreated ENL patients was significantly decreased compared to LL patient controls. Untreated ENL patients had increased C1q gene expression in the peripheral blood compared to LL controls. Similarly, C1qA and C1qC gene expression were substantially increased in the skin biopsies of untreated ENL patients compared to LL controls. However, after treatment none of these genes show significant difference in both groups. In conclusion, while circulating C1q is inversely correlated with active ENL reactions, its gene expression is directly correlated with ENL. The decreased circulating C1q may suggest the utilization of C1q in immune-complex formation in these patients. Therefore, C1q could be a potential diagnostic marker for active ENL reactions as well as for monitoring ENL treatment.
Collapse
|
13
|
Abstract
The transcription factor MafB is expressed by monocytes and macrophages. Efferocytosis (apoptotic cell uptake) by macrophages is important for inhibiting the development of autoimmune diseases, and is greatly reduced in Mafb-deficient macrophages. Here, we show the expression of the first protein in the classical complement pathway C1q is important for mediating efferocytosis and is reduced in Mafb-deficient macrophages. The efferocytosis defect in Mafb-deficient macrophages can be rescued by adding serum from wild-type mice, but not by adding serum from C1q-deficient mice. By hemolysis assay we also show that activation of the classical complement pathway is decreased in Mafb-deficient mice. In addition, MafB overexpression induces C1q-dependent gene expression and signals that induce C1q genes are less effective in the absence of MafB. We also show that Mafb-deficiency can increase glomerular autoimmunity, including anti-nuclear antibody deposition. These results show that MafB is an important regulator of C1q.
Collapse
|
14
|
Allogeneic Hematopoietic Stem Cell Transplantation in the Treatment of Human C1q Deficiency: The Karolinska Experience. Transplantation 2017; 100:1356-62. [PMID: 26516671 DOI: 10.1097/tp.0000000000000975] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Human C1q deficiency is associated with systemic lupus erythematosus (SLE) and increased susceptibility to severe bacterial infections. These patients require extensive medical therapy and some develop treatment-resistant disease. Because C1q is produced by monocytes, it has been speculated that allogeneic hematopoietic stem cell transplantation (allo-HSCT) may cure this disorder. METHODS We have so far treated 5 patients with C1q deficiency. In 3 cases, SLE symptoms remained relatively mild after the start of medical therapy, but 2 patients developed treatment-resistant SLE, and we decided to pursue treatment with allo-HSCT. For this purpose, we chose a conditioning regimen composed of treosulfan (14 g/m) and fludarabine (30 mg/m) started on day -6 and given for 3 and 5 consecutive days, respectively. Thymoglobulin was given at a cumulative dose of 8 mg/kg, and graft-versus-host disease prophylaxis was composed of cyclosporine and methotrexate. RESULTS A 9-year-old boy and a 12-year-old girl with refractory SLE restored C1q production after allo-HSCT. This resulted in normal functional properties of the classical complement pathway followed by reduced severity of SLE symptoms. The boy developed posttransplant lymphoproliferative disease, which resolved after treatment with rituximab and donor lymphocyte infusion. Unfortunately, donor lymphocyte infusion induced severe cortisone-resistant gastrointestinal graft-versus-host disease, and the patient died from multiple organ failure 4 months after transplantation. The girl is doing well 33 months after transplantation, and clinically, all signs of SLE have resolved. CONCLUSIONS Allo-HSCT can cure SLE in human C1q deficiency and should be considered early in subjects resistant to medical therapy.
Collapse
|
15
|
Lintner KE, Wu YL, Yang Y, Spencer CH, Hauptmann G, Hebert LA, Atkinson JP, Yu CY. Early Components of the Complement Classical Activation Pathway in Human Systemic Autoimmune Diseases. Front Immunol 2016; 7:36. [PMID: 26913032 PMCID: PMC4753731 DOI: 10.3389/fimmu.2016.00036] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/24/2016] [Indexed: 01/06/2023] Open
Abstract
The complement system consists of effector proteins, regulators, and receptors that participate in host defense against pathogens. Activation of the complement system, via the classical pathway (CP), has long been recognized in immune complex-mediated tissue injury, most notably systemic lupus erythematosus (SLE). Paradoxically, a complete deficiency of an early component of the CP, as evidenced by homozygous genetic deficiencies reported in human, are strongly associated with the risk of developing SLE or a lupus-like disease. Similarly, isotype deficiency attributable to a gene copy-number (GCN) variation and/or the presence of autoantibodies directed against a CP component or a regulatory protein that result in an acquired deficiency are relatively common in SLE patients. Applying accurate assay methodologies with rigorous data validations, low GCNs of total C4, and heterozygous and homozygous deficiencies of C4A have been shown as medium to large effect size risk factors, while high copy numbers of total C4 or C4A as prevalent protective factors, of European and East-Asian SLE. Here, we summarize the current knowledge related to genetic deficiency and insufficiency, and acquired protein deficiencies for C1q, C1r, C1s, C4A/C4B, and C2 in disease pathogenesis and prognosis of SLE, and, briefly, for other systemic autoimmune diseases. As the complement system is increasingly found to be associated with autoimmune diseases and immune-mediated diseases, it has become an attractive therapeutic target. We highlight the recent developments and offer a balanced perspective concerning future investigations and therapeutic applications with a focus on early components of the CP in human systemic autoimmune diseases.
Collapse
Affiliation(s)
- Katherine E Lintner
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Yee Ling Wu
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Yan Yang
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Charles H Spencer
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| | - Georges Hauptmann
- Laboratoire d'Immuno-Rhumatologie Moleculaire, INSERM UMR_S 1109, LabEx Transplantex, Faculté de Médecine, Université de Strasbourg , Strasbourg , France
| | - Lee A Hebert
- Division of Nephrology, College of Medicine, The Ohio State University , Columbus, OH , USA
| | - John P Atkinson
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine , St. Louis, MO , USA
| | - C Yung Yu
- Center for Molecular and Human Genetics, Division of Pediatric Rheumatology, Department of Pediatrics, Nationwide Children's Hospital, The Ohio State University , Columbus, OH , USA
| |
Collapse
|
16
|
Barbour TD, Ling GS, Ruseva MM, Fossati-Jimack L, Cook HT, Botto M, Pickering MC. Complement receptor 3 mediates renal protection in experimental C3 glomerulopathy. Kidney Int 2016; 89:823-32. [PMID: 26924054 PMCID: PMC4869622 DOI: 10.1016/j.kint.2015.11.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 11/16/2015] [Accepted: 11/19/2015] [Indexed: 12/14/2022]
Abstract
C3 glomerulopathy is a complement-mediated renal disease that is frequently associated with abnormalities in regulation of the complement alternative pathway. Mice with deficiency of factor H (Cfh–/–), a negative alternative pathway regulator, are an established experimental model of C3 glomerulopathy in which complement C3 fragments including iC3b accumulate along the glomerular basement membrane. Here we show that deficiency of complement receptor 3 (CR3), the main receptor for iC3b, enhances the severity of spontaneous renal disease in Cfh–/– mice. This effect was found to be dependent on CR3 expression on bone marrow–derived cells. CR3 also mediated renal protection outside the setting of factor H deficiency, as shown by the development of enhanced renal injury in CR3-deficient mice during accelerated nephrotoxic nephritis. The iC3b–CR3 interaction downregulated the proinflammatory cytokine response of both murine and human macrophages to lipopolysaccharide stimulation in vitro, suggesting that the protective effect of CR3 on glomerular injury was mediated via modulation of macrophage-derived proinflammatory cytokines. Thus, CR3 has a protective role in glomerulonephritis and suggests that pharmacologic potentiation of the macrophage CR3 interaction with iC3b could be therapeutically beneficial.
Collapse
Affiliation(s)
- Thomas D Barbour
- Centre for Complement and Inflammation Research, Imperial College, London, UK
| | - Guang Sheng Ling
- Centre for Complement and Inflammation Research, Imperial College, London, UK
| | - Marieta M Ruseva
- Centre for Complement and Inflammation Research, Imperial College, London, UK
| | - Liliane Fossati-Jimack
- Centre for Complement and Inflammation Research, Imperial College, London, UK; Centre for Experimental Medicine and Rheumatology, Queen Mary University of London, London, UK
| | - H Terence Cook
- Centre for Complement and Inflammation Research, Imperial College, London, UK
| | - Marina Botto
- Centre for Complement and Inflammation Research, Imperial College, London, UK
| | - Matthew C Pickering
- Centre for Complement and Inflammation Research, Imperial College, London, UK.
| |
Collapse
|
17
|
C1q acts in the tumour microenvironment as a cancer-promoting factor independently of complement activation. Nat Commun 2016; 7:10346. [PMID: 26831747 PMCID: PMC4740357 DOI: 10.1038/ncomms10346] [Citation(s) in RCA: 210] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023] Open
Abstract
Complement C1q is the activator of the classical pathway. However, it is now recognized that C1q can exert functions unrelated to complement activation. Here we show that C1q, but not C4, is expressed in the stroma and vascular endothelium of several human malignant tumours. Compared with wild-type (WT) or C3- or C5-deficient mice, C1q-deficient (C1qa−/−) mice bearing a syngeneic B16 melanoma exhibit a slower tumour growth and prolonged survival. This effect is not attributable to differences in the tumour-infiltrating immune cells. Tumours developing in WT mice display early deposition of C1q, higher vascular density and an increase in the number of lung metastases compared with C1qa−/− mice. Bone marrow (BM) chimeras between C1qa−/− and WT mice identify non-BM-derived cells as the main local source of C1q that can promote cancer cell adhesion, migration and proliferation. Together these findings support a role for locally synthesized C1q in promoting tumour growth. C1q is known to initiate the activation of the complement classical pathway. Here, the authors show the C1q is expressed in the tumour microenvironment and can promote cancer cell migration and adhesion in a complement activation-independent manner.
Collapse
|
18
|
van Schaarenburg RA, Schejbel L, Truedsson L, Topaloglu R, Al-Mayouf SM, Riordan A, Simon A, Kallel-Sellami M, Arkwright PD, Åhlin A, Hagelberg S, Nielsen S, Shayesteh A, Morales A, Tam S, Genel F, Berg S, Ketel AG, Merlijn van den Berg J, Kuijpers TW, Olsson RF, Huizinga TWJ, Lankester AC, Trouw LA. Marked variability in clinical presentation and outcome of patients with C1q immunodeficiency. J Autoimmun 2015; 62:39-44. [PMID: 26119135 DOI: 10.1016/j.jaut.2015.06.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 05/22/2015] [Accepted: 06/01/2015] [Indexed: 11/18/2022]
Abstract
OBJECTIVE Globally approximately 60 cases of C1q deficiency have been described with a high prevalence of Systemic Lupus Erythematosus (SLE). So far treatment has been guided by the clinical presentation rather than the underlying C1q deficiency. Recently, it was shown that C1q production can be restored by allogeneic hematopoietic stem cell transplantation. Current literature lacks information on disease progression and quality of life of C1q deficient persons which is of major importance to guide clinicians taking care of patients with this rare disease. METHODS We performed an international survey, of clinicians treating C1q deficient patients. A high response rate of >70% of the contacted clinicians yielded information on 45 patients with C1q deficiency of which 25 are published. RESULTS Follow-up data of 45 patients from 31 families was obtained for a median of 11 years after diagnosis. Of these patients 36 (80%) suffer from SLE, of which 16 suffer from SLE and infections, 5 (11%) suffer from infections only and 4 (9%) have no symptoms. In total 9 (20%) of the C1q deficient individuals had died. All except for one died before the age of 20 years. Estimated survival times suggest 20% case-fatality before the age of 20, and at least 50% of patients are expected to reach their middle ages. CONCLUSION Here we report the largest phenotypic data set on C1q deficiency to date, revealing high variance; with high mortality but also a subset of patients with an excellent prognosis. Management of C1q deficiency requires a personalized approach.
Collapse
Affiliation(s)
| | - Lone Schejbel
- Department of Clinical Immunology, Laboratory of Molecular Medicine, Rigshospitalet, Copenhagen, Denmark
| | - Lennart Truedsson
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | - Rezan Topaloglu
- Dept of Pediatric Nephrology and Rheumatology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sulaiman M Al-Mayouf
- Pediatric Rheumatology Department, King Faisal Specialist Hospital & Research Center, Alfaisal University, Riyadh, Kingdom of Saudi Arabia
| | - Andrew Riordan
- Alder Hey Children's NHS Foundation Trust, Liverpool, United Kingdom
| | - Anna Simon
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | | | - Anders Åhlin
- Department of Clinical Science and Education, Sachs' Children's Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Stefan Hagelberg
- Department of Clinical Science and Education, Sachs' Children's Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Susan Nielsen
- Pediatric Rheumatology Rigshospitalet, Copenhagen, Denmark
| | | | - Adelaida Morales
- Nephrology Unit from Hospital Dr Molina Orosa. Ctra. Arrecife-Tinajo, Lanzarote, Spain
| | - Schuman Tam
- Asthma & Allergy Clinic of Marin & San Francisco Inc, San Francisco, USA
| | - Ferah Genel
- Dr Behcet Uz Children's Hospital, Izmir/Konak, Turkey
| | - Stefan Berg
- Pediatric Immunology, The Queen Silvia Children's Hospital, Goteborg, Sweden
| | - Arnoldus G Ketel
- Department of Pediatrics, Spaarne Hospital, Hoofddorp, The Netherlands
| | - J Merlijn van den Berg
- Emma Children's Hospital, Academic Amsterdam Medical Center (AMC), Dept of Pediatric Hematology, Immunology and Infectious Disease, University of Amsterdam (UvA), Amsterdam, The Netherlands
| | - Taco W Kuijpers
- Emma Children's Hospital, Academic Amsterdam Medical Center (AMC), Dept of Pediatric Hematology, Immunology and Infectious Disease, University of Amsterdam (UvA), Amsterdam, The Netherlands
| | - Richard F Olsson
- Centre for Allogeneic Stem Cell Transplantation, Karolinska University Hospital, Sweden; Division of Therapeutic Immunology, Department of Laboratory Medicine, Karolinska Institutet, Sweden; Centre for Clinical Research Sörmland, Uppsala University, Sweden
| | - Tom W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arjan C Lankester
- Department of Pediatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - Leendert A Trouw
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
19
|
Cai Y, Yang Q, Tang Y, Zhang M, Liu H, Zhang G, Deng Q, Huang J, Gao Z, Zhou B, Feng CG, Chen X. Increased complement C1q level marks active disease in human tuberculosis. PLoS One 2014; 9:e92340. [PMID: 24647646 PMCID: PMC3960215 DOI: 10.1371/journal.pone.0092340] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/21/2014] [Indexed: 12/25/2022] Open
Abstract
Background Complement functions as an important host defense system and complement C5 and C7 have been implicated in immunopathology of tuberculosis. However, little is known about the role of other complement components in tuberculosis. Methods Complement gene expression in peripheral blood mononuclear cells of tuberculosis patients and controls were determined using whole genome transcriptional microarray assays. The mRNA and protein levels of three C1q components, C1qA, C1qB, and C1qC, were further validated by qRT-PCR and enzyme-linked immunosorbent assay, respectively. The percentages of C1q expression in CD14 positive cells were determined by flow cytometry. Finally, C1qC protein level was quantified in the pleural fluid of tuberculosis and non-tuberculosis pleurisy. Results C1q expression increases significantly in the peripheral blood of patients with active tuberculosis compared to healthy controls and individuals with latent TB infection. The percentage of C1q-expressing CD14 positive cells is significantly increased in active TB patients. C1q expression in the peripheral blood correlates with sputum smear positivity in tuberculosis patients and is reduced after anti-tuberculosis chemotherapy. Notably, receiver operating characteristic analysis showed that C1qC mRNA levels in peripheral blood efficiently discriminate active from latent tuberculosis infection and healthy controls. Additionally, C1qC protein level in pleural effusion shows improved power in discriminating tuberculosis from non-tuberculosis pleurisy when compared to other inflammatory markers, such as IL-6 and TNF-α. Conclusions C1q expression correlates with active disease in human tuberculosis. C1q could be a potential diagnostic marker to discriminate active tuberculosis from latent tuberculosis infection as well as tuberculosis pleurisy from non-tuberculosis pleurisy.
Collapse
Affiliation(s)
- Yi Cai
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, China
| | - Qianting Yang
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, China
| | - Yueqiang Tang
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, China
| | - Mingxia Zhang
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Haiying Liu
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China
| | - Guoliang Zhang
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Qunyi Deng
- Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, China
| | - Jian Huang
- Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, China
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, National Engineering Center for Biochip at Shanghai, Shanghai, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Boping Zhou
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
| | - Carl G. Feng
- Department of Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney University, Australia
| | - Xinchun Chen
- Guangdong Key Laboratory for Emerging Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, China
- Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People's Hospital, Guangdong Medical College, Shenzhen, China
- * E-mail:
| |
Collapse
|
20
|
Higuchi Y, Shimizu J, Hatanaka M, Kitano E, Kitamura H, Takada H, Ishimura M, Hara T, Ohara O, Asagoe K, Kubo T. The identification of a novel splicing mutation in C1qB in a Japanese family with C1q deficiency: a case report. Pediatr Rheumatol Online J 2013; 11:41. [PMID: 24160257 PMCID: PMC3874733 DOI: 10.1186/1546-0096-11-41] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/25/2013] [Indexed: 01/20/2023] Open
Abstract
C1q deficiency is a rare disease that is associated with a high probability of developing systemic lupus erythematosus. We report a 4-year-old Japanese girl who presented with fever, facial erythema, joint pain, and oral ulceration. Complement deficiencies were suspected because of her persistent hypocomplementemia and normal levels of the complement proteins C3 and C4. We identified a novel homozygous splicing mutation in the C1qB gene, c.187 + 1G > T, which is the first mutation to be confirmed in a Japanese individual. Because treatment with steroids and immunosuppressive drugs was not effective, we commenced use of fresh frozen plasma to provide C1q supplements. Currently, the patient remains almost asymptomatic, and we are attempting to control the drug dosage and administration intervals of fresh frozen plasma.
Collapse
Affiliation(s)
- Yousuke Higuchi
- Department of Pediatrics, National Hospital Organization Okayama Medical Center, 1711-1 Tamasu, Kita-ku, Okayama 701-1192, Japan
| | - Junya Shimizu
- Department of Pediatrics, National Hospital Organization Okayama Medical Center, 1711-1 Tamasu, Kita-ku, Okayama 701-1192, Japan.
| | - Michiyo Hatanaka
- Department of Medical Technology Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Ohtanicho, Nagata-ku, Kobe 653-0838, Japan
| | - Etsuko Kitano
- Department of Medical Technology Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Ohtanicho, Nagata-ku, Kobe 653-0838, Japan
| | - Hajime Kitamura
- Department of Medical Technology Faculty of Health Sciences, Kobe Tokiwa University, 2-6-2 Ohtanicho, Nagata-ku, Kobe 653-0838, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higasi-ku, Fukuoka 812-8582, Japan
| | - Masataka Ishimura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higasi-ku, Fukuoka 812-8582, Japan
| | - Toshiro Hara
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higasi-ku, Fukuoka 812-8582, Japan
| | - Osamu Ohara
- Department of Human Genome Technology, Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Chiba 292-0818, Japan
| | - Kenji Asagoe
- Department of Dermatology, National Hospital Organization Okayama Medical Center, 1711-1 Tamasu, Kita-ku, Okayama 701-1192, Japan
| | - Toshihide Kubo
- Department of Pediatrics, National Hospital Organization Okayama Medical Center, 1711-1 Tamasu, Kita-ku, Okayama 701-1192, Japan
| |
Collapse
|
21
|
Successful cure of C1q deficiency in human subjects treated with hematopoietic stem cell transplantation. J Allergy Clin Immunol 2013; 133:265-7. [PMID: 24035158 DOI: 10.1016/j.jaci.2013.07.035] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/19/2013] [Accepted: 07/31/2013] [Indexed: 11/20/2022]
|
22
|
Hosszu KK, Valentino A, Ji Y, Matkovic M, Pednekar L, Rehage N, Tumma N, Peerschke EIB, Ghebrehiwet B. Cell surface expression and function of the macromolecular c1 complex on the surface of human monocytes. Front Immunol 2012; 3:38. [PMID: 22566921 PMCID: PMC3342062 DOI: 10.3389/fimmu.2012.00038] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 02/16/2012] [Indexed: 11/13/2022] Open
Abstract
The synthesis of the subunits of the C1 complex (C1q, C1s, C1r), and its regulator C1 inhibitor (C1-Inh) by human monocytes has been previously established. However, surface expression of these molecules by monocytes has not been shown. Using flow cytometry and antigen-capture enzyme-linked immunosorbent assay, we show here for the first time that, in addition to C1q, peripheral blood monocytes, and the monocyte-derived U937 cells express C1s and C1r, as well as Factor B and C1-Inh on their surface. C1s and C1r immunoprecipitated with C1q, suggesting that at least some of the C1q on these cells is part of the C1 complex. Furthermore, the C1 complex on U937 cells was able to trigger complement activation via the classical pathway. The presence of C1-Inh may ensure that an unwarranted autoactivation of the C1 complex does not take place. Since C1-Inh closely monitors the activation of the C1 complex in a sterile or infectious inflammatory environment, further elucidation of the role of C1 complex is crucial to dissect its function in monocyte, dendritic cell, and T cell activities, and its implications in host defense and tolerance.
Collapse
Affiliation(s)
- Kinga K Hosszu
- The Department of Medicine, Stony Brook University Stony Brook, NY, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Molecular basis of hereditary C1q deficiency--revisited: identification of several novel disease-causing mutations. Genes Immun 2011; 12:626-34. [PMID: 21654842 DOI: 10.1038/gene.2011.39] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
C1q is the central pattern-recognition molecule in the classical pathway of the complement system and is known to have a key role in the crossroads between adaptive and innate immunity. Hereditary C1q deficiency is a rare genetic condition strongly associated with systemic lupus erythematosus and increased susceptibility to bacterial infections. However, the clinical symptoms may vary. For long, the molecular basis of C1q deficiency was ascribed to only six different mutations. In the present report, we describe five new patients with C1q deficiency, present the 12 causative mutations described till now and review the clinical spectrum of symptoms found in patients with C1q deficiency. With the results presented here, confirmed C1q deficiency is reported in 64 patients from at least 38 families.
Collapse
|
24
|
Skattum L, van Deuren M, van der Poll T, Truedsson L. Complement deficiency states and associated infections. Mol Immunol 2011; 48:1643-55. [PMID: 21624663 DOI: 10.1016/j.molimm.2011.05.001] [Citation(s) in RCA: 144] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 10/18/2022]
Abstract
A major function of the immune system is to protect the host from microbial infections. The complement system plays important roles in both the innate and the adaptive immune defense and also acts as a bridge between these arms of immunity. This is obvious from complement deficiencies which in varying degree, depending on which factor is missing, are associated with increased infection susceptibility and also increased risk for other, mainly autoimmune diseases. Genetically determined deficiencies are described for almost all complement proteins but the consequences show a wide variation. Here the genetic defects and molecular abnormalities in complement deficient persons, related clinically relevant infections and the options for prevention and therapy are reviewed. The roles of complement in host defense against common infections are also discussed.
Collapse
Affiliation(s)
- Lillemor Skattum
- Department of Laboratory Medicine, Section of Microbiology, Immunology and Glycobiology, Lund University, Lund, Sweden
| | | | | | | |
Collapse
|
25
|
Hayakawa J, Migita M, Ueda T, Itoh Y, Fukunaga Y. An Infantile Case of Early Manifestation of SLE-like Symptoms in Complete C1q Deficiency. J NIPPON MED SCH 2011; 78:322-8. [DOI: 10.1272/jnms.78.322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jun Hayakawa
- Department of Pediatrics, Graduate School of Medicine, Nippon Medical School
- Department of Pediatrics, Nippon Medical School
| | - Makoto Migita
- Department of Pediatrics, Graduate School of Medicine, Nippon Medical School
- Department of Pediatrics, Nippon Medical School
| | - Takahiro Ueda
- Department of Pediatrics, Graduate School of Medicine, Nippon Medical School
- Department of Pediatrics, Nippon Medical School
| | - Yasuhiko Itoh
- Department of Pediatrics, Graduate School of Medicine, Nippon Medical School
- Department of Pediatrics, Nippon Medical School
| | - Yoshitaka Fukunaga
- Department of Pediatrics, Graduate School of Medicine, Nippon Medical School
- Department of Pediatrics, Nippon Medical School
| |
Collapse
|
26
|
Bigler C, Hopfer H, Danner D, Schaller M, Mihatsch MJ, Trendelenburg M. Anti-C1q autoantibodies do not correlate with the occurrence or severity of experimental lupus nephritis. Nephrol Dial Transplant 2010; 26:1220-8. [PMID: 20841491 DOI: 10.1093/ndt/gfq558] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND In systemic lupus erythematosus patients, a strong association between the occurrence of antibodies against complement C1q (anti-C1q) and lupus nephritis can be observed. However, the predictive value of anti-C1q titres for a renal flare remains to be determined. Increasing titres of anti-C1q before the occurrence of clinical apparent nephritis might not only serve as a clinical parameter but also indicate a direct pathogenic mechanism of anti-C1q. METHODS The aim of this study was to analyse the occurrence of anti-C1q before the onset of experimental lupus nephritis in MRL/MpJ +/+ mice and to correlate anti-C1q titres with the type and severity of glomerulonephritis (GN) developing at advanced age. RESULTS As judged by a number of morphological and immunological analyses, GN in MRL/MpJ +/+ mice resembled human lupus nephritis and occurred in variable degrees of severity. We also observed an abundant and early presence of anti-C1q. However, anti-C1q neither correlated with overall survival nor with any histological marker of severity of GN. CONCLUSIONS The absence of a correlation between the presence of anti-C1q and the occurrence of experimental lupus nephritis contradicts the hypothesis that anti-C1q are pathogenic. However, different pathogenic mechanisms of experimental lupus nephritis and human proliferative lupus nephritis cannot be excluded.
Collapse
Affiliation(s)
- Cornelia Bigler
- Clinical Immunology, Department of Biomedicine, University Hospital Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Mehta P, Norsworthy PJ, Hall AE, Kelly SJ, Walport MJ, Botto M, Pickering MC. SLE with C1q deficiency treated with fresh frozen plasma: a 10-year experience. Rheumatology (Oxford) 2009; 49:823-4. [PMID: 19965977 DOI: 10.1093/rheumatology/kep387] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
B cells in glomerulonephritis: focus on lupus nephritis. Semin Immunopathol 2007; 29:337-53. [PMID: 17943287 DOI: 10.1007/s00281-007-0092-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 09/28/2007] [Indexed: 01/10/2023]
Abstract
The production of pathogenic antibody has been traditionally viewed as the principle contribution of B cells to the pathogenesis of immune-mediated glomerulonephritis. However, it is increasingly appreciated that B cells play a much broader role in such diseases, functioning as antigen-presenting cells, regulators of T cells, dendritic cells, and macrophages and orchestrators of local lymphatic expansion. In this review, we provide an overview of basic B cell biology and consider the evidence implicating B cells in one of the archetypal immune-mediated glomerulonephritides, lupus nephritis.
Collapse
|
29
|
|
30
|
Fossati-Jimack L, Cortes-Hernandez J, Norsworthy PJ, Walport MJ, Cook HT, Botto M. C1q deficiency promotes the production of transgenic-derived IgM and IgG3 autoantibodies in anti-DNA knock-in transgenic mice. Mol Immunol 2007; 45:787-95. [PMID: 17675234 PMCID: PMC2080686 DOI: 10.1016/j.molimm.2007.06.162] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2007] [Accepted: 06/20/2007] [Indexed: 01/03/2023]
Abstract
C1q-deficient mice have been shown to develop a lupus-like disease and to display an impaired clearance of apoptotic cells that are enriched in lupus autoantigens. However, the role of C1q in the regulation of autoreactive B cells remains debatable. To explore this we crossed MRL/Mp C1q-deficient mice with knock-in transgenic (Tg) mice expressing an anti-ssDNA antibody (VH3H9R and VH3H9R/VLκ8R). Analysis of the VH3H9R mice showed that in the absence of C1q higher titres of Tg-derived IgM and IgG3 anti-ssDNA antibodies were detectable. In contrast, in the VH3H9R/VLκ8R C1q-deficient animals no increase in Tg antibody levels was observed. In both models the lack of C1q induced a marked reduction of marginal zone B cells and this was paralleled by a significant increase in the percentage of plasmocytes. Thus, one could postulate that in the absence of C1q the failure to clear efficiently dying cells provides an additional stimulus to the autoreactive Tg B cells resulting in their emigration from the marginal zone B cell compartment with subsequent increase in plasmocytes. However, the lack of C1q led to an increased production of Tg IgM and IgG3 antibodies only in VH3H9R mice indicating that additional genetic susceptibility factors are required to break self-tolerance.
Collapse
Affiliation(s)
- Liliane Fossati-Jimack
- Molecular Genetics & Rheumatology Section, Faculty of Medicine, Imperial College London, Hammersmith Campus, Du Cane Road, London W12 0NN, UK.
| | | | | | | | | | | |
Collapse
|
31
|
Moosig F, Damm F, Knorr-Spahr A, Ritgen M, Zeuner RA, Kneba M, Ernst M, Schröder JO. Reduced expression of C1q-mRNA in monocytes from patients with systemic lupus erythematosus. Clin Exp Immunol 2007; 146:409-16. [PMID: 17100759 PMCID: PMC1810409 DOI: 10.1111/j.1365-2249.2006.03225.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Inherited C1q deficiency is associated strongly with the development of systemic lupus erythematosus (SLE). The aim of our study was to evaluate the ability of monocytes from SLE patients without inherited C1q deficiency to up-regulate C1q-mRNA upon stimulation. Furthermore, we wanted to elucidate the physiological stimulus for up-regulation of C1q-mRNA. Peripheral blood mononuclear cell (PBMC)-derived monocytes from 10 SLE patients, 10 patients with rheumatoid arthritis (RA) and 10 healthy controls (HC) were stimulated with dexamethasone (DXM), interferon-gamma or both. Additionally, purified monocytes from HC were stimulated with interleukin (IL)-10. C1q-mRNA expression was measured by quantitative reverse transcription-polymerase chain reaction (RT-PCR). C1q protein was detected using the standard alkaline phosphatase/anti-alkaline phosphatase (APAAP) technique. SLE monocytes were significantly less able to up-regulate C1q-mRNA when compared to RA or HC. IL-10 was identified as an important stimulus for C1q synthesis. In SLE patients there is a significant functional impairment of monocytes to synthesize C1q upon stimulation. As C1q is linked to the process of recognition and removal of apoptotic cells, this relative C1q deficiency is likely to contribute to the reduced phagocytosis of apoptotic material observed in SLE and thereby might be a central pathogenetic factor.
Collapse
Affiliation(s)
- F Moosig
- University of Schleswig Holstein, Campus Kiel, Kiel, Germany, and Forschungszentrum Borstel, Borstel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Arias CF, Ballesteros-Tato A, García MI, Martín-Caballero J, Flores JM, Martínez-A C, Balomenos D. p21CIP1/WAF1 Controls Proliferation of Activated/Memory T Cells and Affects Homeostasis and Memory T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2007; 178:2296-306. [PMID: 17277135 DOI: 10.4049/jimmunol.178.4.2296] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Development of autoantibodies and lupus-like autoimmunity by 129/Sv x C57BL/6 p21(-/-) mice has established that cell cycle deregulation is one the defective pathways leading to break of tolerance. Memory T cell accumulation is thought to be related to tolerance loss in murine lupus models. We studied T cell memory responses in C57BL/6 p21(-/-) mice that develop lupus-like disease manifestations. p21 did not affect primary proliferation of naive T cells, and was required for cycling control, but not for apoptosis of activated/memory T cells. When we induced apoptosis by secondary TCR challenge, surviving memory T cells depended on p21 for proliferation control. Under conditions of secondary T cell stimulation that did not cause apoptosis, p21 was also needed for regulation of activated/memory T cell expansion. The requirement for p21 in the control of T cell proliferation of activated/memory T cells suggests that in addition to apoptosis, cycling regulation by p21 constitutes a new pathway for T cell homeostasis. Concurring with this view, we found accumulation in p21(-/-) mice of memory CD4(+) T cells that showed increased proliferative potential after TCR stimulation. Furthermore, OVA immunization of p21(-/-) mice generated hyperresponsive OVA-specific T cells. Overall, the data show that p21 controls the proliferation of only activated/memory T cells, and suggest that p21 forms part of the memory T cell homeostasis mechanism, contributing to maintenance of tolerance.
Collapse
Affiliation(s)
- Cristina F Arias
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Consejo Superior de Investigaciones Cientificas, Campus de Cantoblanco, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Kravitz MS, Shoenfeld Y. Autoimmunity to protective molecules: is it the perpetuum mobile (vicious cycle) of autoimmune rheumatic diseases? ACTA ACUST UNITED AC 2006; 2:481-90. [PMID: 16951703 DOI: 10.1038/ncprheum0290] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 07/19/2006] [Indexed: 01/08/2023]
Abstract
Apoptotic defects and impaired clearance of cellular debris are considered key events in the development of autoimmunity, as they can contribute to autoantigen overload and might be involved in the initiation of an autoimmune response. The C1q protein and mannose-binding lectin are activators of the complement system. The pentraxins are a group of highly conserved proteins including the short pentraxins, C-reactive protein and serum amyloid P, and the long pentraxin family member, pentraxin 3, all of which are involved in innate immunity and in acute-phase responses. In addition to their role in innate immunity and inflammation, each of these proteins participates in the removal of damaged and apoptotic cells. In this article, we discuss the clinical significance of different levels of these proteins, their role in the induction of or protection against autoimmunity, and the presence of specific autoantibodies against them in various autoimmune diseases.
Collapse
Affiliation(s)
- Martine Szyper Kravitz
- Department of Medicine B and the Center for Autoimmune Diseases, Chaim Sheba Medical Center, Tel-Hashomer, and Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | |
Collapse
|
34
|
Rovere-Querini P, Sabbadini MG, Di Comite G, Manfredi AA. Novel hints on the pathogenesis of lupus fromin vivomodels. ACTA ACUST UNITED AC 2006. [DOI: 10.2217/17460816.1.2.217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
Takahashi K, Ip WE, Michelow IC, Ezekowitz RAB. The mannose-binding lectin: a prototypic pattern recognition molecule. Curr Opin Immunol 2005; 18:16-23. [PMID: 16368230 PMCID: PMC7126801 DOI: 10.1016/j.coi.2005.11.014] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Accepted: 11/25/2005] [Indexed: 11/25/2022]
Abstract
The innate immune system is comprised of a sophisticated network of recognition and effector molecules that act together to protect the host in the first minutes or hours of exposure to an infectious challenge. The mannose-binding lectin (MBL) is an evolutionary conserved circulating host defense protein that acts as a broad-spectrum recognition molecule against a wide variety of infectious agents. Target binding triggers the MBL pathway of complement activation. MBL can be considered conceptually as an 'ante-antibody' because it has a role in mammals during the lag period that is required to develop an antibody response against infectious agents. Additionally, there are MBL-like homologues in animals that lack adaptive immunity that activate a primitive complement system, and under these circumstances these MBL-like molecules play an analogous role to antibodies in higher animals. These molecules might be considered to be functional antecedents of antibodies. Recent work also indicates that MBL recognizes altered self-antigens, and as such MBL has a role that extends beyond a traditional role in first line host defense as it appears to play a role as a modulator of inflammation.
Collapse
Affiliation(s)
- Kazue Takahashi
- Laboratory of Developmental Immunology, Massachusetts General Hospital, Harvard Department of Pediatrics, 55 Fruit Street, Boston, MA 02114, USA
| | | | | | | |
Collapse
|
36
|
Iyoda T, Nagata K, Akashi M, Kobayashi Y. Neutrophils Accelerate Macrophage-Mediated Digestion of Apoptotic Cells In Vivo as Well as In Vitro. THE JOURNAL OF IMMUNOLOGY 2005; 175:3475-83. [PMID: 16148089 DOI: 10.4049/jimmunol.175.6.3475] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is generally believed that the clearance of apoptotic cells does not lead to inflammation. In contrast, we previously found that injection of apoptotic cells into the peritoneal cavity induced the expression of an inflammatory chemokine, MIP-2, and infiltration of neutrophils, and that anti-MIP-2 Abs suppressed the infiltration significantly. Because our previous study showed that whole-body x-irradiation caused neutrophil infiltration into the thymus along with T cell apoptosis, we examined the role of neutrophils in apoptotic cell clearance. Neutrophil infiltration reached a peak 12 h after irradiation with 1 Gy of x-rays. Immunohistological analysis revealed that apoptotic cells disappeared dramatically from 10.5 to 12 h after x-irradiation. As neutrophils moved from an inner area of the cortex to the periphery, apoptotic cells disappeared concomitantly. Either anti-MIP-2 or anti-CXCR2 Abs suppressed neutrophil infiltration significantly, and the suppression of neutrophil infiltration by anti-MIP-2 Abs delayed the disappearance of apoptotic cells. Moreover, macrophage-mediated digestion of apoptotic thymocytes was accelerated in vitro on coculturing with neutrophils, even if neutrophils were separated from macrophages. These results suggest that neutrophils are recruited to the thymus mainly by MIP-2 after whole-body x-irradiation and that such neutrophils may not induce inflammation but rather accelerate complete digestion of apoptotic cells by macrophages.
Collapse
Affiliation(s)
- Takuya Iyoda
- Division of Molecular Medicine, Department of Biomolecular Science, Faculty of Science, Toho University, Funabashi, Japan
| | | | | | | |
Collapse
|