1
|
Chawla YM, Bajpai P, Saini K, Reddy ES, Patel AK, Murali-Krishna K, Chandele A. Regional Variation of the CD4 and CD8 T Cell Epitopes Conserved in Circulating Dengue Viruses and Shared with Potential Vaccine Candidates. Viruses 2024; 16:730. [PMID: 38793612 PMCID: PMC11126086 DOI: 10.3390/v16050730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
As dengue expands globally and many vaccines are under trials, there is a growing recognition of the need for assessing T cell immunity in addition to assessing the functions of neutralizing antibodies during these endeavors. While several dengue-specific experimentally validated T cell epitopes are known, less is understood about which of these epitopes are conserved among circulating dengue viruses and also shared by potential vaccine candidates. As India emerges as the epicenter of the dengue disease burden and vaccine trials commence in this region, we have here aligned known dengue specific T cell epitopes, reported from other parts of the world with published polyprotein sequences of 107 dengue virus isolates available from India. Of the 1305 CD4 and 584 CD8 epitopes, we found that 24% and 41%, respectively, were conserved universally, whereas 27% and 13% were absent in any viral isolates. With these data, we catalogued epitopes conserved in circulating dengue viruses from India and matched them with each of the six vaccine candidates under consideration (TV003, TDEN, DPIV, CYD-TDV, DENVax and TVDV). Similar analyses with viruses from Thailand, Brazil and Mexico revealed regional overlaps and variations in these patterns. Thus, our study provides detailed and nuanced insights into regional variation that should be considered for itemization of T cell responses during dengue natural infection and vaccine design, testing and evaluation.
Collapse
Affiliation(s)
- Yadya M. Chawla
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Prashant Bajpai
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Keshav Saini
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| | - Elluri Seetharami Reddy
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Ashok Kumar Patel
- Kusuma School of Biological Sciences, Indian Institute of Technology Delhi, New Delhi 110016, India;
| | - Kaja Murali-Krishna
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
- Department of Pediatrics, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University, Atlanta, GA 30317, USA
| | - Anmol Chandele
- ICGEB-Emory Vaccine Center, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (Y.M.C.); (P.B.); (K.S.); (E.S.R.)
| |
Collapse
|
2
|
Gowri Sankar S, Alwin Prem Anand A. Cytokine IP-10 and GM-CSF are prognostic biomarkers for severity in secondary dengue infection. Hum Immunol 2021; 82:438-445. [PMID: 33766427 DOI: 10.1016/j.humimm.2021.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Dengue virus (DENV) infection is mostly prevalent in tropical and sub-tropical regions of the world. Though most DENV infections are self-limiting febrile like-illness, a small proportion of secondary infection is fatal, if untreated symptomatically. Among various factors involved in severe dengue, immune enhancement by cytokine is the major one. The objective of the study is to elucidate serum cytokine expression among primary and secondary infection and determine if any signature cytokine is correlated with disease severity. Seventy-six serum samples at acute time points were collected during the 2017 DENV outbreak in Madurai, Tamil Nadu. Among the 76 serum samples, 49 belong to primary and 27 to secondary DENV infection. Interestingly, a large number of primary infection presented with DHF/DSS symptoms and, children were found prone to DHF and DSS in secondary infection. The serum samples were analysed for inflammatory cytokines, namely IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-17A, IFN-γ, TNF-α, IP-10 and GM-CSF using ELISA assay as well as mRNA analysis using qPCR. Among the 12 inflammatory cytokines analysed IP-10 and GMCSF mRNA and protein shows significant upregulation in secondary infection. Similarly, a strong correlation was observed between GM-CSF and IP-10 with thrombocytopenia, ascites, serous effusion and spontaneous bleeding. Based on the observations, GM-CSF and IP-10 could be a potential prognostic biomarkers for secondary DENV infection.
Collapse
Affiliation(s)
- S Gowri Sankar
- ICMR-Vector Control Research Center - Field Station, Madurai 625002, Tamil Nadu, India.
| | - A Alwin Prem Anand
- DBT - BIF Centre (Under DBT BTISNet Scheme), Lady Doak College, Madurai 625002, Tamil Nadu, India
| |
Collapse
|
3
|
Rathore APS, St John AL. Cross-Reactive Immunity Among Flaviviruses. Front Immunol 2020; 11:334. [PMID: 32174923 PMCID: PMC7054434 DOI: 10.3389/fimmu.2020.00334] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/10/2020] [Indexed: 12/11/2022] Open
Abstract
Flaviviruses consist of significant human pathogens responsible for hundreds of millions of infections each year. Their antigenic relationships generate immune responses that are cross-reactive to multiple flaviviruses and their widespread and overlapping geographical distributions, coupled with increases in vaccination coverage, increase the likelihood of exposure to multiple flaviviruses. Depending on the antigenic properties of the viruses to which a person is exposed, flavivirus cross-reactivity can be beneficial or could promote immune pathologies. In this review we describe our knowledge of the functional immune outcomes that arise from varied flaviviral immune statuses. The cross-reactive antibody and T cell immune responses that are protective versus pathological are also addressed.
Collapse
Affiliation(s)
- Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, United States
| | - Ashley L St John
- Department of Pathology, Duke University Medical Center, Durham, NC, United States.,Program in Emerging Infectious Diseases, Duke-National University of Singapore Medical School, Singapore, Singapore.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,SingHealth Duke-National University of Singapore Global Health Institute, Singapore, Singapore
| |
Collapse
|
4
|
Cassaniti I, Percivalle E, Adzasehoun KMG, Comolli G, Baldanti F. Dengue Virus-Specific Humoral and T Cellular Immune Response in Italian Residents and Travelers Returning from Endemic Areas. Vector Borne Zoonotic Dis 2019; 20:295-302. [PMID: 31821105 DOI: 10.1089/vbz.2019.2515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dengue virus (DENV), a member of the family Flaviviridae, is the causative agent of dengue fever, the most prevalent mosquito-borne viral illness in humans, representing a major public health concern in the tropical countries. Although humoral immunity to DENV has been extensively studied and widely used, little is known about the potential diagnostic use of T cell response for DENV diagnosis. The aim of our study was to characterize the T cell immunity in subjects with acute or past DENV infection, using an original and easy to perform ex vivo ELISpot assay, and to evaluate the role of cross-reactivity between the four DENV serotypes and between DENV and Zika virus (ZIKV). As controls, DENV-seronegative healthy subjects were enrolled and a cutoff of positive DENV-specific T cell response was calculated. DENV-specific T cell response for at least one DENV serotype was detected among all DENV-specific neutralization positive subject. Furthermore, our data showed that in acute DENV infection, the DENV-specific effector memory T cell response against the relevant serotype was predominant. However, a high level of cross-reactivity among all DENV serotypes was also documented. DENV-specific T cell response was almost undetectable among DENV-seronegative subjects with ZIKV acute infection, supporting the hypothesis that the assay could be useful in differential diagnosis between ZIKV and DENV infection.
Collapse
Affiliation(s)
- Irene Cassaniti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Elena Percivalle
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Kodjo Messan Guy Adzasehoun
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giuditta Comolli
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Experimental Research Laboratories, Biotechnology Area, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fausto Baldanti
- Molecular Virology Unit, Microbiology and Virology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
5
|
Tian Y, Grifoni A, Sette A, Weiskopf D. Human T Cell Response to Dengue Virus Infection. Front Immunol 2019; 10:2125. [PMID: 31552052 PMCID: PMC6737489 DOI: 10.3389/fimmu.2019.02125] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022] Open
Abstract
DENV is a major public health problem worldwide, thus underlining the overall significance of the proposed Program. The four dengue virus (DENV) serotypes (1-4) cause the most common mosquito-borne viral disease of humans, with 3 billion people at risk for infection and up to 100 million cases each year, most often affecting children. The protective role of T cells during viral infection is well-established. Generally, CD8 T cells can control viral infection through several mechanisms, including direct cytotoxicity, and production of pro-inflammatory cytokines such as IFN-γ and TNF-α. Similarly, CD4 T cells are thought to control viral infection through multiple mechanisms, including enhancement of B and CD8 T cell responses, production of inflammatory and anti-viral cytokines, cytotoxicity, and promotion of memory responses. To probe the phenotype of virus-specific T cells, epitopes derived from viral sequences need to be known. Here we discuss the identification of CD4 and CD8 T cell epitopes derived from DENV and how these epitopes have been used by researchers to interrogate the phenotype and function of DENV-specific T cell populations.
Collapse
Affiliation(s)
- Yuan Tian
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alba Grifoni
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Daniela Weiskopf
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| |
Collapse
|
6
|
Aberle JH, Koblischke M, Stiasny K. CD4 T cell responses to flaviviruses. J Clin Virol 2018; 108:126-131. [PMID: 30312909 DOI: 10.1016/j.jcv.2018.09.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/25/2018] [Accepted: 09/30/2018] [Indexed: 12/17/2022]
Abstract
Flaviviruses pose an increasing threat to global health with their potential to cause severe disease in millions of people. Protective and long-lived immunity is closely linked to the generation of CD4 T cells, which provide B cell help and support high affinity neutralizing antibody responses. Research performed during the last years revealed important new insights into the antigen specificities and diverse effector functions of CD4 T cell responses to flaviviruses. Moreover, the identification of mechanisms involved in the regulation of T cell specificity and function provides significant advances in our understanding of how durable protective immunity is established. Here, we summarize what is known about human CD4 T cell responses to flaviviruses, with a special emphasis on CD4 T cells that provide direct help to B cells producing neutralizing and protective antibodies. We review recent progress in the identification of epitope sites in the context of the atomic structures of flavivirus proteins and highlight specific influences that shape the human CD4 T cell response in the context of infection or vaccination. Finally, we discuss challenges facing vaccine efforts to generate appropriate CD4 T cell responses, as well as recent strategies to enhance T cell-mediated antibody responses.
Collapse
Affiliation(s)
- Judith H Aberle
- Center for Virology, Medical University of Vienna, Vienna, Austria.
| | | | - Karin Stiasny
- Center for Virology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
Martins SDT, Kuczera D, Lötvall J, Bordignon J, Alves LR. Characterization of Dendritic Cell-Derived Extracellular Vesicles During Dengue Virus Infection. Front Microbiol 2018; 9:1792. [PMID: 30131785 PMCID: PMC6090163 DOI: 10.3389/fmicb.2018.01792] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
The dengue virus (DENV), transmitted by Aedes spp. mosquitoes, is one of the most important arboviral infections in the world. Dengue begins as a febrile condition, and in certain patients, it can evolve severe clinical outcomes, such as dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The reasons why certain patients develop DHF or DSS have not been thoroughly elucidated to date, and both patient and viral factors have been implicated. Previous work has shown that a severe immune dysfunction involving dendritic cells and T cells plays a key role in increasing the disease severity, especially in secondary heterologous infections. Extracellular vesicles (EVs) are membranous particles that are secreted by several cell types involved in homeostatic and pathological processes. Secretion of EVs by infected cells can enhance immune responses or favor viral evasion. In this study, we compare the molecular content of EVs that are secreted by human primary dendritic cells under different conditions: uninfected or infected with DENV3 strains isolated from patients with different infection phenotypes (a severe case involving DSS and a mild case). Human monocyte-derived dendritic cells (mdDCs) were infected with the dengue virus strains DENV3 5532 (severe) or DENV3 290 (mild), and the EVs were isolated. The presence of cup-shaped EVs was confirmed by electron microscopy and immunostaining with CD9, CD81, and CD83. The RNA content from the mdDC-infected cells contained several mRNAs and miRNAs related to immune responses compared to the EVs from mock-infected mdDCs. A number of these RNAs were detected exclusively during infection with DENV3 290 or DENV3 5532. This result suggests that the differential immune modulation of mdDCs by dengue strains can be achieved through the EV pathway. Additionally, we observed an association of EVs with DENV-infectious particles that seem to be protected from antibodies targeting the DENV envelope protein. We also showed that EVs derived from cells treated with IFN alpha have a protective effect against DENV infection in other cells. These results suggested that during DENV infection, the EV pathway could be exploited to favor viral viability, although immune mechanisms to counteract viral infection can also involve DC-derived EVs.
Collapse
Affiliation(s)
- Sharon de T Martins
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, FIOCRUZ, Curitiba, Brazil
| | - Diogo Kuczera
- Laboratory of Molecular Virology, Carlos Chagas Institute, FIOCRUZ, Curitiba, Brazil
| | - Jan Lötvall
- Krefting Research Centre, University of Gothenburg, Gothenburg, Sweden
| | - Juliano Bordignon
- Laboratory of Molecular Virology, Carlos Chagas Institute, FIOCRUZ, Curitiba, Brazil
| | - Lysangela R Alves
- Laboratory of Gene Expression Regulation, Carlos Chagas Institute, FIOCRUZ, Curitiba, Brazil
| |
Collapse
|
8
|
Malavige GN, Ogg GS. Pathogenesis of vascular leak in dengue virus infection. Immunology 2017; 151:261-269. [PMID: 28437586 DOI: 10.1111/imm.12748] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/26/2017] [Accepted: 04/17/2017] [Indexed: 12/31/2022] Open
Abstract
Endothelial dysfunction leading to vascular leak is the hallmark of severe dengue. Vascular leak typically becomes clinically evident 3-6 days after the onset of illness, which is known as the critical phase. This critical phase follows the period of peak viraemia, and lasts for 24-48 hr and usually shows rapid and complete reversal, suggesting that it is likely to occur as a result of inflammatory mediators, rather than infection of the endothelium. Cytokines such as tumour necrosis factor-α, which are known to be elevated in the critical phase of dengue, are likely to be contributing factors. Dengue NS1, a soluble viral protein, has also been shown to disrupt the endothelial glycocalyx and thus contribute to vascular leak, although there appears to be a discordance between the timing of NS1 antigenaemia and occurrence of vascular leak. In addition, many inflammatory lipid mediators are elevated in acute dengue viral infection such as platelet activating factor (PAF) and leukotrienes. Furthermore, many other inflammatory mediators such as vascular endothelial growth factor and angiopoietin-2 have been shown to be elevated in patients with dengue haemorrhagic fever, exerting their action in part by inducing the activity of phospholipases, which have diverse inflammatory effects including generation of PAF. Platelets have also been shown to significantly contribute to endothelial dysfunction by production of interleukin-1β through activation of the NLRP3 inflammasome and also by inducing production of inflammatory cytokines by monocytes. Drugs that block down-stream immunological mediator pathways such as PAF may also be beneficial in the treatment of severe disease.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Centre for Dengue Research, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.,MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Graham S Ogg
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
9
|
Jeewandara C, Gomes L, Paranavitane SA, Tantirimudalige M, Panapitiya SS, Jayewardene A, Fernando S, Fernando RH, Prathapan S, Ogg GS, Malavige GN. Change in Dengue and Japanese Encephalitis Seroprevalence Rates in Sri Lanka. PLoS One 2015; 10:e0144799. [PMID: 26696417 PMCID: PMC4687926 DOI: 10.1371/journal.pone.0144799] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/24/2015] [Indexed: 01/15/2023] Open
Abstract
Background Sri Lanka has been affected by epidemics of dengue infections for many decades and the incidence and severity of dengue infections have been rising each year. Therefore, we investigated the age stratified seroprevalence of dengue infections in order to facilitate future dengue vaccine strategies. In addition, since the symptomatic dengue infections have increased during the past few decades, we also investigated the possible association with Japanese Encephalitis Virus (JEV) antibody seropositivity with symptomatic dengue in a community cohort in Sri Lanka. Methods 1689 healthy individuals who were attending a primary health care facility were recruited. Dengue and JEV antibody status was determined in all individuals and JEV vaccination status was recorded. Results 1152/1689 (68.2%) individuals were seropositive for dengue and only 133/1152 (11.5%) of them had been hospitalized to due to dengue. A significant and positive correlation was observed for dengue antibody seropositivity and age in children (Spearmans R = 0.84, p = 0.002) and in adults (Spearmans R = 0.96, p = 0.004). We observed a significant rise in the age stratified seroprevalence rates in children over a period of 12 years. For instance, in year 2003 the annual seroconversion rate was 1.5% per annum, which had risen to 3.79% per annum by 2014. We also found that both adults (p<0.001) and in children (p = 0.03) who were hospitalized due to dengue were more likely to be seropositive for JEV antibodies. However, 244 (91.4%) of adults who were seropositive for JEV had not had the JEV vaccine. Conclusions Dengue seroprevalence rates have risen significantly over the last 12 years in Sri Lanka, possibly due to increased transmission. As individuals who were hospitalized due to dengue were more likely to be seropositive for JEV, the possibility of cross-reactive assays and/or of JEV infection on immunity to the DENV and clinical disease severity should be further investigated.
Collapse
Affiliation(s)
- Chandima Jeewandara
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayawardenapura, Nugegoda, Sri Lanka
- Department of Family Medicine, Faculty of Medical Sciences, University of Sri Jayawardanapura, Nugegoda, Sri Lanka
| | - Laksiri Gomes
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayawardenapura, Nugegoda, Sri Lanka
| | - S. A. Paranavitane
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayawardenapura, Nugegoda, Sri Lanka
| | - Mihiri Tantirimudalige
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayawardenapura, Nugegoda, Sri Lanka
| | - Sumedha Sandaruwan Panapitiya
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayawardenapura, Nugegoda, Sri Lanka
| | - Amitha Jayewardene
- Department of Family Medicine, Faculty of Medical Sciences, University of Sri Jayawardanapura, Nugegoda, Sri Lanka
| | - Samitha Fernando
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayawardenapura, Nugegoda, Sri Lanka
| | - R. H. Fernando
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayawardenapura, Nugegoda, Sri Lanka
| | - Shamini Prathapan
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayawardenapura, Nugegoda, Sri Lanka
| | - Graham S. Ogg
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford NIHR Biomedical Research Centre and University of Oxford, United Kingdom
- Department of Dermatology, Churchill Hospital, Oxford, United Kingdom
| | - Gathsaurie Neelika Malavige
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayawardenapura, Nugegoda, Sri Lanka
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford NIHR Biomedical Research Centre and University of Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Rothman AL, Currier JR, Friberg HL, Mathew A. Analysis of cell-mediated immune responses in support of dengue vaccine development efforts. Vaccine 2015; 33:7083-90. [PMID: 26458801 DOI: 10.1016/j.vaccine.2015.09.104] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 11/23/2022]
Abstract
Dengue vaccine development has made significant strides, but a better understanding of how vaccine-induced immune responses correlate with vaccine efficacy can greatly accelerate development, testing, and deployment as well as ameliorate potential risks and safety concerns. Advances in basic immunology knowledge and techniques have already improved our understanding of cell-mediated immunity of natural dengue virus infection and vaccination. We conclude that the evidence base is adequate to argue for inclusion of assessments of cell-mediated immunity as part of clinical trials of dengue vaccines, although further research to identify useful correlates of protective immunity is needed.
Collapse
Affiliation(s)
- Alan L Rothman
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA.
| | - Jeffrey R Currier
- Virus Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, USA.
| | - Heather L Friberg
- Virus Diseases Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave., Silver Spring, MD, USA.
| | - Anuja Mathew
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, 80 Washington St., Providence, RI 02903, USA.
| |
Collapse
|
11
|
Functionality of dengue virus specific memory T cell responses in individuals who were hospitalized or who had mild or subclinical dengue infection. PLoS Negl Trop Dis 2015; 9:e0003673. [PMID: 25875020 PMCID: PMC4395258 DOI: 10.1371/journal.pntd.0003673] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/04/2015] [Indexed: 01/28/2023] Open
Abstract
Background Although antibody responses to dengue virus (DENV) in naturally infected individuals have been extensively studied, the functionality of DENV specific memory T cell responses in relation to clinical disease severity is incompletely understood. Methodology/Principal findings Using ex vivo IFNγ ELISpot assays, and by determining cytokines produced in ELISpot supernatants, we investigated the functionality of DENV-specific memory T cell responses in a large cohort of individuals from Sri Lanka (n=338), who were naturally infected and were either hospitalized due to dengue or had mild or sub clinical dengue infection. We found that T cells of individuals with both past mild or sub clinical dengue infection and who were hospitalized produced multiple cytokines when stimulated with DENV-NS3 peptides. However, while DENV-NS3 specific T cells of those with mild/sub clinical dengue infection were more likely to produce only granzyme B (p=0.02), those who were hospitalized were more likely to produce both TNFα and IFNγ (p=0.03) or TNFα alone. We have also investigated the usefulness of a novel T cell based assay, which can be used to determine the past infecting DENV serotype. 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Individuals who were seronegative, but had received the Japanese encephalitis vaccine too made no responses, suggesting that the peptides used in this assay did not cross react with the Japanese encephalitis virus. Conclusions/significance The types of cytokines produced by DENV-specific memory T cells appear to influence the outcome of clinical disease severity. The novel T cell based assay, is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials. Although dengue viral infections cause severe clinical disease, the majority of individuals infected with the dengue virus (DENV) develop asymptomatic infection. The function of DENV specific memory T cells in relation to past clinical disease severity is incompletely understood. In this study, we sought to investigate the function of DENV specific memory T cell responses in a large cohort (n = 338) of individuals who were naturally infected with the DENV but developed varying severity of clinical disease. We found that T cells of individuals who were hospitalized due to dengue and those with mild/sub clinical dengue infection produced multiple cytokines when stimulated with DENV-NS3 peptides. In addition, we have also validated a novel T cell based assay, which can be used to determine the past infecting DENV serotype. We found that 92.4% of DENV seropositive individuals responded to at least one DENV serotype of this assay and none of the seronegatives responded. Moreover, the peptides used in this assay did not cross react with Japanese encephalitis virus. Therefore, this assay is likely to be useful in determining the past infecting DENV serotype in immune-epidemiological studies and also in dengue vaccine trials.
Collapse
|
12
|
Lucchese G, Capone G, Kanduc D. Peptide sharing between influenza A H1N1 hemagglutinin and human axon guidance proteins. Schizophr Bull 2014; 40:362-75. [PMID: 23378012 PMCID: PMC3932078 DOI: 10.1093/schbul/sbs197] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Epidemiologic data suggest that maternal microbial infections may cause fetal neurodevelopmental disorders, potentially increasing susceptibility to heavy psychopathologies such as schizophrenia, schizophreniform disorder, autism, pervasive developmental disorders, bipolar disorders, psychosis, epilepsy, language and speech disorders, and cognitive impairment in adult offspring. However, the molecular pathomechanisms underlying such a relationship are not clear. Here we analyze the potential role of the maternal immune response to viral infection in determining fetal brain injuries that increase the risk of neurological disorders in the adult. We use influenza infection as a disease model and human axon guidance pathway, a key process in the formation of neural network during midgestation, as a potential fetal target of immune insults. Specifically, we examined influenza A H1N1 hemagglutinin (HA), an antigenic viral protein, for amino acid sequence similarity to a random library of 188 axon guidance proteins. We obtain the results that (1) contrary to any theoretical expectations, 45 viral pentapeptide matches are distributed throughout a subset of 36 guidance molecules; (2) in 24 guidance proteins, the peptide sharing with HA antigen involves already experimentally validated influenza HA epitopes; and (3) most of the axon guidance vs HA peptide overlap is conserved among influenza A viral strains and subsets. Taken together, our data indicate that immune cross-reactivity between influenza HA and axon guidance molecules is possible and may well represent a pathologic mechanism capable of determining neurodevelopmental disruption in the fetus.
Collapse
Affiliation(s)
- Guglielmo Lucchese
- To whom correspondence should be addressed; tel: +39.080.544.3321, fax: +39.080.544.3317, e-mail:
| | - Giovanni Capone
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Bari, Italy
| | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Bari, Italy,To whom correspondence should be addressed; tel: +39.080.544.3321, fax: +39.080.544.3317, e-mail:
| |
Collapse
|
13
|
Malavige GN, Ogg GS. T cell responses in dengue viral infections. J Clin Virol 2013; 58:605-11. [PMID: 24220605 DOI: 10.1016/j.jcv.2013.10.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 10/04/2013] [Accepted: 10/19/2013] [Indexed: 11/17/2022]
Abstract
Dengue viral infections are the commonest mosquito borne viral infection in the world, affecting more than 100 countries and 390 million individuals annually. Currently, there are no effective antiviral drugs or an effective vaccine to prevent infection. A main hurdle in developing a safe and effective vaccine has been our poor understanding of the complex nature of the protective immune response in acute dengue infection and the presence of four dengue virus (DV) serotypes that are highly homologous. The role of DV specific T cells in the pathogenesis of severe clinical disease in not clear. It has been speculated that highly cross reactive T cells for the previous infecting heterologous DV serotype, which produce pro-inflammatory cytokines, contribute to disease pathogenesis. These cross reactive T cells are believed to be suboptimal in clearing the infection with the current DV-serotype. However, other studies have shown that cross-reactive DV-specific T cells are absent or present in very low frequency during acute infection, appearing only during the convalescent period in the majority of patients. Furthermore, significant apoptosis of T cells occurs in severe acute clinical disease. Overall therefore, it is unclear what role T cells play in contributing to disease pathogenesis during acute dengue infection. Existing data have been complicated by cross-reactivity in T cells assays. These findings can now be re-evaluated in the light of novel technologies to identify serotype-specific T cell responses.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Centre for Dengue Research, Department of Microbiology, Faculty of Medical Sciences, University of Sri Jayawardanapura, Sri Lanka; MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, Oxford NIHR Biomedical Research Centre and University of Oxford, OX3 9DS, UK.
| | | |
Collapse
|
14
|
Malavige GN, Jeewandara C, Alles KML, Salimi M, Gomes L, Kamaladasa A, Jayaratne SD, Ogg GS. Suppression of virus specific immune responses by IL-10 in acute dengue infection. PLoS Negl Trop Dis 2013; 7:e2409. [PMID: 24040431 PMCID: PMC3764236 DOI: 10.1371/journal.pntd.0002409] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 07/24/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Elevated IL-10 has been shown to be associated with severe dengue infection (DI). We proceeded to investigate the role of IL-10 in the pathogenesis of acute DI. MATERIALS AND METHODS Ex vivo and cultured IFNγ ELISpot assays for dengue virus (DENV) NS3 protein and non dengue viral proteins were carried out in 26 patients with acute DI (16 with dengue haemorrhagic fever) and 12 healthy dengue seropositive individuals from Sri Lanka. DENV serotype specific (SS) responses were determined by using a panel of SS peptides. RESULTS Serum IL-10 level were significantly higher (p = 0.02) in those who did not have in vitro responses to DENV-SS peptides (mean 144.2 pg/ml) when compared to those who responded (mean 75.7 pg/ml). DENV-NS3 specific ex vivo IFNγ ELISpot responses were also significantly lower (p = 0.0001) in those who did not respond to DENV-SS peptides (mean 42 SFU/million PBMCs) when compared to those who responded to DENV-SS peptides (mean 1024 SFU/million PBMCs). Serum IL-10 levels correlated significantly (p = 0.03) and inversely (Spearmans R = -0.45) with ex vivo DENV-NS3 specific responses but not with ex vivo non DENV specific responses (Spearmans R = -014, p = 0.52). Blockage of IL-10 in vitro significantly increased (p = 0.04) the ex vivo IFNγ ELISpot DENV-NS3 specific responses but had no effect on responses to non DENV proteins. CONCLUSION IL-10 appears to contribute to the pathogenesis of acute dengue infections by inhibiting DENV-specific T cell responses, which can be restored by blocking IL-10.
Collapse
Affiliation(s)
- Gathsaurie Neelika Malavige
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardanapura, Gangodawila, Nugegoda, Sri Lanka
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Chandima Jeewandara
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardanapura, Gangodawila, Nugegoda, Sri Lanka
| | - K. M. Luckmaal Alles
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardanapura, Gangodawila, Nugegoda, Sri Lanka
| | - Maryam Salimi
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Laksiri Gomes
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardanapura, Gangodawila, Nugegoda, Sri Lanka
| | - Achala Kamaladasa
- Centre for Dengue Research, Faculty of Medical Sciences, University of Sri Jayawardanapura, Gangodawila, Nugegoda, Sri Lanka
| | - S. D. Jayaratne
- Department of Medicine, Faculty of Medical Sciences, University of Sri Jayawardanapura, Gangodawila, Nugegoda, Sri Lanka
| | - Graham Stuart Ogg
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Dermatology, Churchill Hospital, Oxford, United Kingdom
| |
Collapse
|
15
|
Alagarasu K, Mulay A, Singh R, Gavade V, Shah P, Cecilia D. Association of HLA-DRB1 and TNF genotypes with dengue hemorrhagic fever. Hum Immunol 2013; 74:610-7. [DOI: 10.1016/j.humimm.2013.01.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 12/31/2012] [Accepted: 01/24/2013] [Indexed: 10/27/2022]
|
16
|
Kanduc D. Homology, similarity, and identity in peptide epitope immunodefinition. J Pept Sci 2012; 18:487-94. [PMID: 22696298 DOI: 10.1002/psc.2419] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Revised: 04/10/2012] [Accepted: 04/25/2012] [Indexed: 01/03/2023]
Abstract
The tendency to use the terms homology, similarity, and identity interchangeably persists in comparative biology. When translated to immunology, overlapping the concepts of homology, similarity, and identity complicates the exact definition of the self-nonself dichotomy and, in particular, affects immunopeptidomics, an emerging field aimed at cataloging and distinguishing immunoreactive peptide epitopes from silent nonreactive amino acid sequences. The definition of similar/dissimilar peptides in immunology is discussed with special attention to the analysis of immunological (dis)similarity between two or more protein sequences that equates to measuring sequence similarity with the use of a proper measurement unit such as a length determinant.
Collapse
Affiliation(s)
- Darja Kanduc
- Department of Biosciences, Biotechnologies and Pharmacological Sciences, University of Bari, Bari, Italy.
| |
Collapse
|
17
|
Malavige GN, McGowan S, Atukorale V, Salimi M, Peelawatta M, Fernando N, Jayaratne SD, Ogg G. Identification of serotype-specific T cell responses to highly conserved regions of the dengue viruses. Clin Exp Immunol 2012; 168:215-23. [PMID: 22471283 DOI: 10.1111/j.1365-2249.2012.04566.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Determining previous infecting dengue virus (DENV) serotypes has been difficult due to highly cross-reactive immune responses from previous DENV infections. Determining the correlates of serotype-specific immune responses would be crucial in understanding dengue transmission in the community and would also help to determine the correlates of protective immune responses. Therefore, we set out to define highly conserved, serotype-specific regions of the DENVs. Serotype-specific and highly conserved regions of the four DENV serotypes were identified using Basic Local Alignment Search Tool (BLAST) searches and custom perl scripts. Using ex-vivo and cultured enzyme-linked immunospot (ELISPOT) assays, we identified serotype-specific T cell epitopes within the four DENV serotypes in healthy adult donors from Sri Lanka. We identified T cell responses to 19 regions of the four DENV serotypes. Six peptides were from the NS2A region and four peptides were from the NS4A region. All immune donors responded to peptides of at least two DENV serotypes, suggesting that heterologous infection is common in Sri Lanka. Eight of 20 individuals responded to at least two peptides of DENV-4, despite this serotype not being implicated previously in any of the epidemics in Sri Lanka. The use of these regions to determine past and current infecting DENV serotypes will be of value to characterize further the dynamics of silent dengue transmission in the community. In addition, these T cell responses to these regions could be used to characterize DENV serotype-specific immune responses and thus possibly help us to understand the immune correlates of a protective immune response.
Collapse
Affiliation(s)
- G N Malavige
- Department of Microbiology, University of Sri Jayawardanapura, Nugegoda, Sri Lanka
| | | | | | | | | | | | | | | |
Collapse
|
18
|
West Nile virus T-cell ligand sequences shared with other flaviviruses: a multitude of variant sequences as potential altered peptide ligands. J Virol 2012; 86:7616-24. [PMID: 22573867 DOI: 10.1128/jvi.00166-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Phylogenetic relatedness and cocirculation of several major human pathogen flaviviruses are recognized as a possible cause of deleterious immune responses to mixed infection or immunization and call for a greater understanding of the inter-Flavivirus protein homologies. This study focused on the identification of human leukocyte antigen (HLA)-restricted West Nile virus (WNV) T-cell ligands and characterization of their distribution in reported sequence data of WNV and other flaviviruses. H-2-deficient mice transgenic for either A2, A24, B7, DR2, DR3, or DR4 HLA alleles were immunized with overlapping peptides of the WNV proteome, and peptide-specific T-cell activation was measured by gamma interferon (IFN-γ) enzyme-linked immunosorbent spot (ELISpot) assays. Approximately 30% (137) of the WNV proteome peptides were identified as HLA-restricted T-cell ligands. The majority of these ligands were conserved in ∼≥88% of analyzed WNV sequences. Notably, only 51 were WNV specific, and the remaining 86, chiefly of E, NS3, and NS5, shared an identity of nine or more consecutive amino acids with sequences of 64 other flaviviruses, including several major human pathogens. Many of the shared ligands had an incidence of >50% in the analyzed sequences of one or more of six major flaviviruses. The multitude of WNV sequences shared with other flaviviruses as interspecies variants highlights the possible hazard of defective T-cell activation by altered peptide ligands in the event of dual exposure to WNV and other flaviviruses, by either infection or immunization. The data suggest the possible preferred use of sequences that are pathogen specific with minimum interspecies sequence homology for the design of Flavivirus vaccines.
Collapse
|
19
|
Cross-reactivity and expansion of dengue-specific T cells during acute primary and secondary infections in humans. Sci Rep 2011; 1:51. [PMID: 22355570 PMCID: PMC3216538 DOI: 10.1038/srep00051] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/18/2011] [Indexed: 12/17/2022] Open
Abstract
Serotype-cross-reactive memory T cells responding to secondary dengue virus (DENV) infection are thought to contribute to disease. However, epitope-specific T cell responses have not been thoroughly compared between subjects with primary versus secondary DENV infection. We studied CD8(+) T cells specific for the HLA-A*1101-restricted NS3(133) epitope in a cohort of A11(+) DENV-infected patients throughout acute illness and convalescence. We compared the expansion, serotype-cross-reactivity, and activation of these cells in PBMC from patients experiencing primary or secondary infection and mild or severe disease by flow cytometry. Our results show expansion and activation of DENV-specific CD8(+) T cells during acute infection, which are predominantly serotype-cross-reactive regardless of DENV infection history. These data confirm marked T cell activation and serotype-cross-reactivity during the febrile phase of dengue; however, A11-NS3(133)-specific responses did not correlate with prior antigenic exposure or current disease severity.
Collapse
|
20
|
Dung NTP, Duyen HTL, Thuy NTV, Ngoc TV, Chau NVV, Hien TT, Rowland-Jones SL, Dong T, Farrar J, Wills B, Simmons CP. Timing of CD8+ T cell responses in relation to commencement of capillary leakage in children with dengue. THE JOURNAL OF IMMUNOLOGY 2010; 184:7281-7. [PMID: 20483770 DOI: 10.4049/jimmunol.0903262] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Immune activation is a feature of dengue hemorrhagic fever (DHF) and CD8+ T cell responses in particular have been suggested as having a role in the vasculopathy that characterizes this disease. By phenotyping CD8+ T cells (CD38+/HLA-DR+, CD38+/Ki-67+, or HLA-DR+/Ki-67+) in serial blood samples from children with dengue, we found no evidence of increased CD8+ T cell activation prior to the commencement of resolution of viremia or hemoconcentration. Investigations with MHC class I tetramers to detect NS3(133-142)-specific CD8+ T cells in two independent cohorts of children suggested the commencement of hemoconcentration and thrombocytopenia in DHF patients generally begins before the appearance of measurable frequencies of NS3(133-142)-specific CD8+ T cells. The temporal mismatch between the appearance of measurable surface activated or NS3(133-142)-specific CD8+ T cells suggests that these cells are sequestered at sites of infection, have phenotypes not detected by our approach, or that other mechanisms independent of CD8+ T cells are responsible for early triggering of capillary leakage in children with DHF.
Collapse
Affiliation(s)
- Nguyen Thi Phuong Dung
- Oxford University Clinical Research Unit and Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Memory CD8+ T cells from naturally acquired primary dengue virus infection are highly cross-reactive. Immunol Cell Biol 2010; 89:122-9. [PMID: 20421879 DOI: 10.1038/icb.2010.61] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Cross-reactive memory T cells induced by primary infection with one of the four serotypes of dengue virus (DENV) are hypothesized to have an immunopathological function in secondary heterologous DENV infection. To define the T-cell response to heterologous serotypes, we isolated HLA-A(*)1101-restricted epitope-specific CD8(+) T-cell lines from primary DENV-immune donors. Cell lines exhibited marked cross-reactivity toward peptide variants representing the four DENV serotypes in tetramer binding and functional assays. Many clones responded similarly to homologous and heterologous serotypes with striking cross-reactivity between the DENV-1 and DENV-3 epitope variants. In vitro-stimulated T-cell lines consistently revealed a hierarchical induction of MIP-1β>degranulation>tumor necrosis factor α (TNFα)>interferon-γ (IFNγ), which depended on the concentration of agonistic peptide. Phosphoflow assays showed peptide dose-dependent phosphorylation of ERK1/2, which correlated with cytolysis, degranulation, and induction of TNFα and IFNγ, but not MIP-1β production. This is the first study to show significant DENV serotype-cross-reactivity of CD8(+) T cells after naturally acquired primary infection. We also show qualitatively different T-cell receptor signaling after stimulation with homologous and heterologous peptides. Our data support a model whereby the order of sequential DENV infections influences the immune response to secondary heterologous DENV infection, contributing to varying disease outcomes.
Collapse
|
22
|
Wu WL, Ho LJ, Chang DM, Chen CH, Lai JH. Triggering of DC migration by dengue virus stimulation of COX-2-dependent signaling cascades in vitro highlights the significance of these cascades beyond inflammation. Eur J Immunol 2010; 39:3413-22. [PMID: 19862774 DOI: 10.1002/eji.200939306] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A term "bone-breaking fever" is used in Chinese medicine to describe the symptoms of patients infected with dengue virus (DV). We examined the significance of the COX-prostaglandin pathway in human DC infected by DV. We show that DV infection induced the expression of COX-2 and the production of prostaglandin E2 (PGE2) in DC, and stimulated the DNA binding of NF-kappaB and the kinase activity of both IkappaBalpha kinase (IKK) alpha and beta. DV infection also activated MAPK and AP-1 signaling. Both IkappaBalpha kinase-NF-kappaB and MAPK-AP-1 were upstream of COX-2 activation. Our investigation into the significance of COX-2-PGE2 pathway also revealed that DV infection enhances DC migration by inducing CC chemokine receptor 7 (CCR7) expression, and that blocking COX-2 or MAPK activity suppresses DV-induced DC migration. Our data also suggest that PGE2 can induce CCR7 expression on DC and that antagonists of the PGE2 receptors EP2 and EP4 suppress DV-induced DC migration. We further show that the increased CCR7 expression was observed in both DV-infected and bystander DC, suggesting the presence of secondary effects in inducing CCR7 expression. Collectively, this study reveals not only the pathways involved in COX-2 synthesis in DV-infected DC but also the autocrine action of PGE2 on the migration of DV-infected DC.
Collapse
Affiliation(s)
- Wan-Lin Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
23
|
Webster DP, Farrar J, Rowland-Jones S. Progress towards a dengue vaccine. THE LANCET. INFECTIOUS DISEASES 2009; 9:678-87. [PMID: 19850226 DOI: 10.1016/s1473-3099(09)70254-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The spread of dengue virus throughout the tropics represents a major, rapidly growing public health problem with an estimated 2.5 billion people at risk of dengue fever and the life-threatening disease, severe dengue. A safe and effective vaccine for dengue is urgently needed. The pathogenesis of severe dengue results from a complex interaction between the virus, the host, and, at least in part, immune-mediated mechanisms. Vaccine development has been slowed by fears that immunisation might predispose individuals to the severe form of dengue infection. A pipeline of candidate vaccines now exists, including live attenuated, inactivated, chimeric, DNA, and viral-vector vaccines, some of which are at the stage of clinical testing. In this Review, we present what is understood about dengue pathogenesis and its implications for vaccine design, the progress that is being made in the development of a vaccine, and the future challenges.
Collapse
Affiliation(s)
- Daniel P Webster
- Department of Infectious Diseases and Microbiology, John Radcliffe Hospital, Oxford, UK.
| | | | | |
Collapse
|
24
|
Gag- and Nef-specific CD4+ T cells recognize and inhibit SIV replication in infected macrophages early after infection. Proc Natl Acad Sci U S A 2009; 106:9791-6. [PMID: 19478057 DOI: 10.1073/pnas.0813106106] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The precise immunological role played by CD4(+) T cells in retroviral infections is poorly defined. Here, we describe a new function of these cells, the elimination of retrovirus-infected macrophages. After experimental CD8(+) cell depletion, elite controlling macaques with set-point viral loads < or = 500 viral RNA copies/mL mounted robust Gag- and Nef-specific CD4(+) T cell responses during reestablishment of control with > or = 54% of all virus-specific CD4(+) T cells targeting these 2 proteins. Ex vivo, these simian immunodeficiency virus (SIV)-specific CD4(+) T cells neither recognized nor suppressed viral replication in SIV-infected CD4(+) T cells. In contrast, they recognized SIV-infected macrophages as early as 2 h postinfection because of presentation of epitopes derived from virion-associated Gag and Nef proteins. Furthermore, virus-specific CD4(+) T cells displayed direct effector function and eliminated SIV-infected macrophages. These results suggest that retrovirus-specific CD4(+) T cells may contribute directly to elite control by inhibiting viral replication in macrophages.
Collapse
|
25
|
Khan AM, Miotto O, Nascimento EJM, Srinivasan KN, Heiny AT, Zhang GL, Marques ET, Tan TW, Brusic V, Salmon J, August JT. Conservation and variability of dengue virus proteins: implications for vaccine design. PLoS Negl Trop Dis 2008; 2:e272. [PMID: 18698358 PMCID: PMC2491585 DOI: 10.1371/journal.pntd.0000272] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 07/10/2008] [Indexed: 12/27/2022] Open
Abstract
Background Genetic variation and rapid evolution are hallmarks of RNA viruses, the result of high mutation rates in RNA replication and selection of mutants that enhance viral adaptation, including the escape from host immune responses. Variability is uneven across the genome because mutations resulting in a deleterious effect on viral fitness are restricted. RNA viruses are thus marked by protein sites permissive to multiple mutations and sites critical to viral structure-function that are evolutionarily robust and highly conserved. Identification and characterization of the historical dynamics of the conserved sites have relevance to multiple applications, including potential targets for diagnosis, and prophylactic and therapeutic purposes. Methodology/Principal Findings We describe a large-scale identification and analysis of evolutionarily highly conserved amino acid sequences of the entire dengue virus (DENV) proteome, with a focus on sequences of 9 amino acids or more, and thus immune-relevant as potential T-cell determinants. DENV protein sequence data were collected from the NCBI Entrez protein database in 2005 (9,512 sequences) and again in 2007 (12,404 sequences). Forty-four (44) sequences (pan-DENV sequences), mainly those of nonstructural proteins and representing ∼15% of the DENV polyprotein length, were identical in 80% or more of all recorded DENV sequences. Of these 44 sequences, 34 (∼77%) were present in ≥95% of sequences of each DENV type, and 27 (∼61%) were conserved in other Flaviviruses. The frequencies of variants of the pan-DENV sequences were low (0 to ∼5%), as compared to variant frequencies of ∼60 to ∼85% in the non pan-DENV sequence regions. We further showed that the majority of the conserved sequences were immunologically relevant: 34 contained numerous predicted human leukocyte antigen (HLA) supertype-restricted peptide sequences, and 26 contained T-cell determinants identified by studies with HLA-transgenic mice and/or reported to be immunogenic in humans. Conclusions/Significance Forty-four (44) pan-DENV sequences of at least 9 amino acids were highly conserved and identical in 80% or more of all recorded DENV sequences, and the majority were found to be immune-relevant by their correspondence to known or putative HLA-restricted T-cell determinants. The conservation of these sequences through the entire recorded DENV genetic history supports their possible value for diagnosis, prophylactic and/or therapeutic applications. The combination of bioinformatics and experimental approaches applied herein provides a framework for large-scale and systematic analysis of conserved and variable sequences of other pathogens, in particular, for rapidly mutating viruses, such as influenza A virus and HIV. Dengue viruses (DENVs) circulate in nature as a population of 4 distinct types, each with multiple genotypes and variants, and represent an increasing global public health issue with no prophylactic and therapeutic formulations currently available. Viral genomes contain sites that are evolutionarily stable and therefore highly conserved, presumably because changes in these sites have deleterious effects on viral fitness and survival. The identification and characterization of the historical dynamics of these sites in DENV have relevance to several applications such as diagnosis and drug and vaccine development. In this study, we have identified sequence fragments that were conserved across the majority of available DENV sequences, analyzed their historical dynamics, and evaluated their relevance as candidate vaccine targets, using various bioinformatics-based methods and immune assay in human leukocyte antigen (HLA) transgenic mice. This approach provides a framework for large-scale and systematic analysis of other human pathogens.
Collapse
Affiliation(s)
- Asif M. Khan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Olivo Miotto
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Institute of Systems Science, National University of Singapore, Singapore
| | - Eduardo J. M. Nascimento
- Department of Medicine, Division of Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - K. N. Srinivasan
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Product Evaluation and Registration Division, Centre for Drug Administration, Health Sciences Authority, Singapore
| | - A. T. Heiny
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Guang Lan Zhang
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - E. T. Marques
- Department of Medicine, Division of Infectious Diseases, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Tin Wee Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vladimir Brusic
- Cancer Vaccine Center, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Jerome Salmon
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - J. Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|