1
|
Ghezzi G, Falcidia C, Paolino G, Mercuri SR, Narcisi A, Costanzo A, Valenti M. Chronic Hand Eczema (CHE): A Narrative Review. Dermatol Ther (Heidelb) 2025; 15:771-795. [PMID: 40064754 PMCID: PMC11971080 DOI: 10.1007/s13555-025-01365-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/13/2025] [Indexed: 04/05/2025] Open
Abstract
Chronic hand eczema (CHE) is a common and challenging skin condition, characterized by persistent hand dermatitis which lasts over 3 months or recurs at least twice a year. This condition is often multifactorial, involving genetic predispositions, environmental factors and triggers, such as irritants and allergens. Studies show a higher incidence in women, though prevalence estimates vary across different age groups. The pathogenesis involves complex immune mechanisms, particularly Th1/Th2 cell responses. Clinically, CHE presents in various forms, with symptoms such as redness, scaling and itching that significantly impact patients' quality of life. Treatment approaches are diverse. While emollients and topical corticosteroids have historically been the mainstay, new systemic therapies like JAK inhibitors and biologics are progressively being used for severe cases. Key molecular targets comprise interleukin (IL)-4 and IL-13, the JAK-STAT pathway, phosphodiesterase 4 (PDE4) and chemoattractant chemokines. Managing CHE effectively remains a challenge because of its chronicity and the variability in individual responses to treatment. However, emerging therapeutic strategies will help clinicians to offer more patient-centred approaches.
Collapse
Affiliation(s)
- Gioele Ghezzi
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| | - Costanza Falcidia
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| | | | - Santo R Mercuri
- Unit of Dermatology, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Antonio Costanzo
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy
| | - Mario Valenti
- Dermatology Unit, IRCCS Humanitas Research Hospital, Rozzano, MI, Italy.
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, MI, Italy.
| |
Collapse
|
2
|
Oltramare C, Burri O, Hopf NB, Jaccoud S, Seitz A, Applegate LA, Hirt-Burri N, Berthet A. Development of image analysis tool to evaluate Langerhans cell migration after exposure to isothiazolinones. Arch Toxicol 2025:10.1007/s00204-025-04013-3. [PMID: 40080107 DOI: 10.1007/s00204-025-04013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 02/27/2025] [Indexed: 03/15/2025]
Abstract
Incidence of allergic contact dermatitis (ACD) is rising worldwide as a consequence of raising chemical exposure, especially from biocides present in common water-based products such as cosmetics and household products. Understanding the biological processes involved in skin sensitization is crucial to mitigating ACD. Migration of Langerhans cells to the basal lamina of the skin is a key step in sensitization. Animal testing for sensitization has been largely replaced by alternative in vitro methods due to ethical concerns. This study presents an open-source program using QuPath software enhanced with machine learning to analyze Langerhans cells migration in immunostained human skin samples. We validated scripts for automated detection of skin layers and Langerhans cells position, enabling accurate, reproducible analysis. An ex vivo human skin organo-culture model was used to test Langerhans cells migration after 24-h exposure to four different isothiazolinones diluted in water at different concentrations. The initial results show that the water vehicle has an impact on Langerhans cells migration. We also observed a different Langerhans cells migration pattern for methylisothiazolinone and benzothiazolinone exposed skin compared to octylisothiazolinone. The results suggest that only octylisothiazolinone can induce Langerhans cells migration to the basal lamina of the epidermis as described for sensitizers. This automated approach represents a advancement in ACD risk assessment by minimizing the subjectivity and labor involved in Langerhans cells analysis, providing a valuable tool for future research.
Collapse
Affiliation(s)
- Christelle Oltramare
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066, Epalinges, Switzerland
- Swiss Center for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Swiss School of Public Health (SSPH+), Zurich, Switzerland
| | - Olivier Burri
- BioImaging and Optics Platform, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Nancy B Hopf
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066, Epalinges, Switzerland
- Swiss Center for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Swiss School of Public Health (SSPH+), Zurich, Switzerland
| | - Sandra Jaccoud
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066, Epalinges, Switzerland
| | - Arne Seitz
- BioImaging and Optics Platform, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Lee Ann Applegate
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066, Epalinges, Switzerland
- Center for Applied Biotechnology and Molecular Medicine, University of Zurich, 8057, Zurich, Switzerland
- Oxford OSCAR Suzhou Center, Oxford University, Suzhou, 215123, People's Republic of China
| | - Nathalie Hirt-Burri
- Regenerative Therapy Unit, Lausanne University Hospital, University of Lausanne, 1066, Epalinges, Switzerland
| | - Aurélie Berthet
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1066, Epalinges, Switzerland.
- Swiss Center for Applied Human Toxicology (SCAHT), Basel, Switzerland.
- Swiss School of Public Health (SSPH+), Zurich, Switzerland.
| |
Collapse
|
3
|
Cheng J, Facheris P, Ungar B, Guttman-Yassky E. Current emerging and investigational drugs for the treatment of chronic hand eczema. Expert Opin Investig Drugs 2022; 31:843-853. [PMID: 35658708 DOI: 10.1080/13543784.2022.2087059] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION : Chronic hand eczema (CHE) is a highly prevalent, burdensome condition associated with functional impairment. Currently, topical therapeutics are the mainstay of CHE management. However, many cases are refractory to existing topical therapeutics, and the few existing systemic options are often limited in efficacy and by their side effect profiles. AREAS COVERED : Following a brief overview of CHE pathogenesis and existing treatments, this review will outline the mechanisms and available data on emerging and investigational drugs currently being studied in clinical trials for the treatment of CHE. EXPERT OPINION : Immunomodulatory drugs such as topical and systemic JAK inhibitors and Th2-targeting antibodies such as dupilumab are currently under investigation for CHE treatment, with early promise. Management of CHE will likely move toward more targeted treatments through clinical trials and away from broad immunosuppressants such as cyclosporine and methotrexate, which have previously been investigated for CHE and have more side effects. In coming years, CHE patients may benefit from a wider range of both topical and systemic therapeutics that target immune pathways relevant to the various CHE subtypes.
Collapse
Affiliation(s)
- Julia Cheng
- Department of Dermatology, Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paola Facheris
- Department of Dermatology, Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin Ungar
- Department of Dermatology, Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma Guttman-Yassky
- Department of Dermatology, Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Urciuolo F, Passariello R, Imparato G, Casale C, Netti PA. Bioengineered Wound Healing Skin Models: The Role of Immune Response and Endogenous ECM to Fully Replicate the Dynamic of Scar Tissue Formation In Vitro. Bioengineering (Basel) 2022; 9:233. [PMID: 35735476 PMCID: PMC9219817 DOI: 10.3390/bioengineering9060233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/27/2022] Open
Abstract
The healing of deep skin wounds is a complex phenomenon evolving according with a fine spatiotemporal regulation of different biological events (hemostasis, inflammation, proliferation, remodeling). Due to the spontaneous evolution of damaged human dermis toward a fibrotic scar, the treatment of deep wounds still represents a clinical concern. Bioengineered full-thickness skin models may play a crucial role in this direction by providing a deep understanding of the process that leads to the formation of fibrotic scars. This will allow (i) to identify new drugs and targets/biomarkers, (ii) to test new therapeutic approaches, and (iii) to develop more accurate in silico models, with the final aim to guide the closure process toward a scar-free closure and, in a more general sense, (iv) to understand the mechanisms involved in the intrinsic and extrinsic aging of the skin. In this work, the complex dynamic of events underlaying the closure of deep skin wound is presented and the engineered models that aim at replicating such complex phenomenon are reviewed. Despite the complexity of the cellular and extracellular events occurring during the skin wound healing the gold standard assay used to replicate such a process is still represented by planar in vitro models that have been largely used to identify the key factors regulating the involved cellular processes. However, the lack of the main constituents of the extracellular matrix (ECM) makes these over-simplistic 2D models unable to predict the complexity of the closure process. Three-dimensional bioengineered models, which aim at recreating the closure dynamics of the human dermis by using exogenous biomaterials, have been developed to fill such a gap. Although interesting mechanistic effects have been figured out, the effect of the inflammatory response on the ECM remodelling is not replicated yet. We discuss how more faithful wound healing models can be obtained by creating immunocompetent 3D dermis models featuring an endogenous ECM.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
| | - Roberta Passariello
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Giorgia Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| | - Costantino Casale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy; (C.C.); (P.A.N.)
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI), University of Naples Federico II, P.le Tecchio 80, 80125 Naples, Italy;
- Center for Advanced Biomaterials for HealthCare@CRIB Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Naples, Italy;
| |
Collapse
|
5
|
Ribeiro WR, Queiroz AG, Mendes E, Casaro MB, Nascimento CM, Coelho LSSF, Martins FS, Leite-Silva VR, Ferreira CM. Preventive oral supplementation with Bifidobacterium longum 5 1A alleviates oxazolone-induced allergic contact dermatitis-like skin inflammation in mice. Benef Microbes 2021; 12:199-209. [PMID: 33573507 DOI: 10.3920/bm2020.0134] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Allergic contact dermatitis (ACD) is a common allergic skin disease that affects individuals subjected to different antigen exposure conditions and significantly impacts the quality of life of those affected. Numerous studies have demonstrated that probiotics suppress inflammation through immunomodulatory effects. In this study, we aimed to evaluate the effect of the probiotic Bifidobacterium longum 51A as a preventive treatment for ACD using an oxazolone-induced murine model. We demonstrated that B. longum 51A exerted a prophylactic effect on oxazolone-induced ACD-like skin inflammation via reductions in ear and dermal thickness and leucocyte infiltration. The administration of inactivated B. longum 51A did not affect oxazolone-induced ACD-like skin inflammation, suggesting that the bacteria must be alive to be effective. Given that B. longum 51A is an acetate producer, we treated mice with acetate intraperitoneally, which also prevented ear and dermal thickening. Moreover, the tissue levels of the inflammatory cytokines and chemokines interleukin (IL)-10, IL-33, tumour necrosis factor-α, chemokine (C-C motif) ligand 2/monocyte chemoattractant protein-1 and chemokine (C-C motif) ligand 5/RANTES were significantly reduced after probiotic treatment, but only IL-33 and IL-10 were reduced when the mice were treated with acetate. These results show that B. longum 51A exerted a potential prophylactic effect on skin inflammation and that acetate represents one potential mechanism. However, other factors are likely involved since these two treatments do not yield the same results.
Collapse
Affiliation(s)
- W R Ribeiro
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - A G Queiroz
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - E Mendes
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - M B Casaro
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - C M Nascimento
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - L S S F Coelho
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| | - F S Martins
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Avenida Presidente Antônio Carlos 6627, Campus Pampulha UFMG Belo Horizonte, MG 31970201, Brazil
| | - V R Leite-Silva
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil.,Therapeutics Research Centre, Translational Research Institute, Diamantina Institute, University of Queensland, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - C M Ferreira
- Department of Pharmaceutical Sciences, Institute of Environmental, Chemistry and Pharmaceutical Sciences, Federal University of São Paulo, R. São Nicolau, 210, Diadema, SP 09913-030, Brazil
| |
Collapse
|
6
|
Dubin C, Del Duca E, Guttman-Yassky E. Drugs for the Treatment of Chronic Hand Eczema: Successes and Key Challenges. Ther Clin Risk Manag 2020; 16:1319-1332. [PMID: 33408476 PMCID: PMC7780849 DOI: 10.2147/tcrm.s292504] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic hand eczema (CHE) is a common and burdensome inflammatory skin condition seen in up to 10% of the population, more often in high-risk occupational workers. Topical therapeutics comprise the standard of care, but up to 65% of cases do not resolve after treatment, and moderate-to-severe cases are often resistant to topical therapeutics and require systemic options instead. To date, there are no systemic therapeutics approved to treat CHE in the United States, but several drugs are under investigation as potential treatments for CHE. The primary focus of this review is on the novel therapeutics, topical and systemic, that are under investigation in recently completed or currently ongoing trials. This review also briefly outlines the existing treatments utilized for CHE, often with limited success or extensive adverse effects. CHE represents a major challenge for physicians and patients alike, and efforts to improve the minimally invasive diagnostic tools and treatment paradigms are ongoing. In the near future, CHE patients may benefit from new topical and systemic therapeutics that specifically target abnormally expressed immune markers.
Collapse
Affiliation(s)
- Celina Dubin
- Department of Dermatology, Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ester Del Duca
- Department of Dermatology, Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Dermatology, University of Magna Graecia, Catanzaro, Italy
| | - Emma Guttman-Yassky
- Department of Dermatology, Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
7
|
Kwak BS, Jin SP, Kim SJ, Kim EJ, Chung JH, Sung JH. Microfluidic skin chip with vasculature for recapitulating the immune response of the skin tissue. Biotechnol Bioeng 2020; 117:1853-1863. [PMID: 32100875 DOI: 10.1002/bit.27320] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/16/2020] [Accepted: 02/24/2020] [Indexed: 12/19/2022]
Abstract
There is a considerable need for cell-based in vitro skin models for studying dermatological diseases and testing cosmetic products, but current in vitro skin models lack physiological relevance compared to human skin tissue. For example, many dermatological disorders involve complex immune responses, but current skin models are not capable of recapitulating the phenomena. Previously, we reported development of a microfluidic skin chip with a vessel structure and vascular endothelial cells. In this study, we cocultured dermal fibroblasts and keratinocytes with vascular endothelial cells, human umbilical vascular endothelial cells. We verified the formation of a vascular endothelium in the presence of the dermis and epidermis layers by examining the expression of tissue-specific markers. As the vascular endothelium plays a critical role in the migration of leukocytes to inflammation sites, we incorporated leukocytes in the circulating media and attempted to mimic the migration of neutrophils in response to external stimuli. Increased secretion of cytokines and migration of neutrophils was observed when the skin chip was exposed to ultraviolet irradiation, showing that the microfluidic skin chip may be useful for studying the immune response of the human tissue.
Collapse
Affiliation(s)
- Bong Shin Kwak
- Department of Chemical Engineering, Hongik University, Republic of Korea
| | - Seon-Pil Jin
- Department of Dermatology, Seoul National University Hospital, Republic of Korea.,Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University College of Medicine, Republic of Korea
| | - Su Jung Kim
- DYNEBIO INC., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Eun Joo Kim
- DYNEBIO INC., Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Jin Ho Chung
- Department of Dermatology, Seoul National University Hospital, Republic of Korea.,Institute of Human-Environmental Interface Biology, Medical Research Center, Seoul National University College of Medicine, Republic of Korea
| | - Jong Hwan Sung
- Department of Chemical Engineering, Hongik University, Republic of Korea
| |
Collapse
|
8
|
Thélu A, Catoire S, Kerdine-Römer S. Immune-competent in vitro co-culture models as an approach for skin sensitisation assessment. Toxicol In Vitro 2020; 62:104691. [DOI: 10.1016/j.tiv.2019.104691] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/05/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
|
9
|
Lämmermann T, Kastenmüller W. Concepts of GPCR-controlled navigation in the immune system. Immunol Rev 2020; 289:205-231. [PMID: 30977203 PMCID: PMC6487968 DOI: 10.1111/imr.12752] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/11/2022]
Abstract
G‐protein–coupled receptor (GPCR) signaling is essential for the spatiotemporal control of leukocyte dynamics during immune responses. For efficient navigation through mammalian tissues, most leukocyte types express more than one GPCR on their surface and sense a wide range of chemokines and chemoattractants, leading to basic forms of leukocyte movement (chemokinesis, haptokinesis, chemotaxis, haptotaxis, and chemorepulsion). How leukocytes integrate multiple GPCR signals and make directional decisions in lymphoid and inflamed tissues is still subject of intense research. Many of our concepts on GPCR‐controlled leukocyte navigation in the presence of multiple GPCR signals derive from in vitro chemotaxis studies and lower vertebrates. In this review, we refer to these concepts and critically contemplate their relevance for the directional movement of several leukocyte subsets (neutrophils, T cells, and dendritic cells) in the complexity of mouse tissues. We discuss how leukocyte navigation can be regulated at the level of only a single GPCR (surface expression, competitive antagonism, oligomerization, homologous desensitization, and receptor internalization) or multiple GPCRs (synergy, hierarchical and non‐hierarchical competition, sequential signaling, heterologous desensitization, and agonist scavenging). In particular, we will highlight recent advances in understanding GPCR‐controlled leukocyte navigation by intravital microscopy of immune cells in mice.
Collapse
Affiliation(s)
- Tim Lämmermann
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | |
Collapse
|
10
|
Frempah B, Luckett-Chastain LR, Gallucci RM. IL6Rα function in myeloid cells modulates the inflammatory response during irritant contact dermatitis. Exp Dermatol 2019; 28:948-955. [PMID: 31165501 DOI: 10.1111/exd.13984] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Irritant contact dermatitis (ICD) is characterized by epidermal hyperplasia, infiltration of leucocytes into lesional skin and inflammatory cytokine release. The cellular infiltrate during ICD comprises primarily cells of the myeloid lineage. Our group has previously shown that the cytokine IL-6 confers a protective effect to lesional skin during ICD. How IL-6Rα function in myeloid cells is involved in the inflammatory response during ICD is, however, unknown. In the present study, utilizing a chemical model of ICD, it is shown that mice with a myeloid-specific knockout of the IL-6Rα (IL-6RαΔmyeloid ) display an exaggerated inflammatory response to benzalkonium chloride (BKC) and Jet propellant-8 (JP8) fuel, two well-characterized irritants relative to littermate control. Results from immunohistochemical and flow cytometric analyses revealed that IL-6RαΔmyeloid mouse skin displayed increased epidermal hyperplasia and inflammatory monocyte influx into lesional skin but lower numbers of resident macrophages relative to littermate controls after irritant exposure. Multiplex immunoassay revealed significantly higher levels of pro-inflammatory cytokines IL-1α and TNF-α, but reduced expression of chemokine proteins including CCL2-5, CCL7, CCL11, CXCL1 and CXCL10 in IL-6RαΔmyeloid mouse skin relative to littermate control following irritant exposure. These results highlight a previously unknown role of IL-6Rα function in myeloid cells in modulating the inflammatory response and myeloid population dynamics during ICD.
Collapse
Affiliation(s)
- Benjamin Frempah
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Lerin R Luckett-Chastain
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Randle M Gallucci
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
11
|
Sumpter TL, Balmert SC, Kaplan DH. Cutaneous immune responses mediated by dendritic cells and mast cells. JCI Insight 2019; 4:123947. [PMID: 30626752 DOI: 10.1172/jci.insight.123947] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In the skin, complex cellular networks maintain barrier function and immune homeostasis. Tightly regulated multicellular cascades are required to initiate innate and adaptive immune responses. Innate immune cells, particularly DCs and mast cells, are central to these networks. Early studies evaluated the function of these cells in isolation, but recent studies clearly demonstrate that cutaneous DCs (dermal DCs and Langerhans cells) physically interact with neighboring cells and are receptive to activation signals from surrounding cells, such as mast cells. These interactions amplify immune activation. In this review, we discuss the known functions of cutaneous DC populations and mast cells and recent studies highlighting their roles within cellular networks that determine cutaneous immune responses.
Collapse
Affiliation(s)
| | | | - Daniel H Kaplan
- Department of Dermatology and.,Department of Immunology, University of Pittsburgh School of Medicine,Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Camponogara C, Casoti R, Brusco I, Piana M, Boligon AA, Cabrini DA, Trevisan G, Ferreira J, Silva CR, Oliveira SM. Tabernaemontana catharinensis leaves effectively reduce the irritant contact dermatitis by glucocorticoid receptor-dependent pathway in mice. Biomed Pharmacother 2019; 109:646-657. [DOI: 10.1016/j.biopha.2018.10.132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/09/2018] [Accepted: 10/21/2018] [Indexed: 12/26/2022] Open
|
13
|
Abstract
Allergic contact dermatitis (ACD) is a common skin disease that results in significant cost and morbidity. Despite its high prevalence, therapeutic options are limited. Allergic contact dermatitis is regulated primarily by T cells within the adaptive immune system, but also by natural killer and innate lymphoid cells within the innate immune system. The chemokine receptor system, consisting of chemokine peptides and chemokine G protein-coupled receptors, is a critical regulator of inflammatory processes such as ACD. Specific chemokine signaling pathways are selectively up-regulated in ACD, most prominently CXCR3 and its endogenous chemokines CXCL9, CXCL10, and CXCL11. Recent research demonstrates that these 3 chemokines are not redundant and indeed activate distinct intracellular signaling profiles such as those activated by heterotrimeric G proteins and β-arrestin adapter proteins. Such differential signaling provides an attractive therapeutic target for novel therapies for ACD and other inflammatory diseases.
Collapse
|
14
|
Pan Q, Zhang Q, Chu J, Pais R, Liu S, He C, Eko FO. Chlamydia abortus Pmp18.1 Induces IL-1β Secretion by TLR4 Activation through the MyD88, NF-κB, and Caspase-1 Signaling Pathways. Front Cell Infect Microbiol 2017; 7:514. [PMID: 29326885 PMCID: PMC5741698 DOI: 10.3389/fcimb.2017.00514] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/29/2017] [Indexed: 12/16/2022] Open
Abstract
The polymorphic membrane protein D (Pmp18D) is a 160-kDa outer membrane protein that is conserved and plays an important role in Chlamydia abortus pathogenesis. We have identified an N-terminal fragment of Pmp18D (designated Pmp18.1) as a possible subunit vaccine antigen. In this study, we evaluated the vaccine potential of Pmp18.1 by investigating its ability to induce innate immune responses in dendritic cells and the signaling pathway(s) involved in rPmp18.1-induced IL-1β secretion. We next investigated the immunomodulatory impact of VCG, in comparison with the more established Th1-promoting adjuvants, CpG and FL, on rPmp18.1-mediated innate immune activation. Finally, the effect of siRNA targeting TLR4, MyD88, NF-κB p50, and Caspase-1 mRNA in DCs on IL-1β cytokine secretion was also investigated. Bone marrow-derived dendritic cells (BMDCs) were stimulated with rPmp18.1 in the presence or absence of VCG or CpG or FL and the magnitude of cytokines produced was assessed using a multiplex cytokine ELISA assay. Expression of costimulatory molecules and Toll-like receptors (TLRs) was analyzed by flow cytometry. Quantitation of intracellular levels of myeloid differentiation factor 88 (MyD88), nuclear factor kappa beta (NF-κB p50/p65), and Caspase-1 was evaluated by Western immunoblotting analysis while NF-κB p65 nuclear translocation was assessed by confocal microscopy. The results showed DC stimulation with rPmp18.1 provoked the secretion of proinflammatory cytokines and upregulated expression of TLRs and co-stimulatory molecules associated with DC maturation. These responses were significantly (p ≤ 0.001) enhanced by VCG but not CpG or FL. In addition, rPmp18.1 activated the expression of MyD88, NF-κB p50, and Caspase-1 as well as the nuclear expression of NF-κB p65 in treated DCs. Furthermore, targeting TLR4, MyD88, NF-κB p50, and Caspase-1 mRNA in BMDCs with siRNA significantly reduced their expression levels, resulting in decreased IL-1β cytokine secretion, strongly suggesting their involvement in the rPmp18.1-induced IL-1β cytokine secretion. Taken together, these results indicate that C. abortus Pmp18.1 induces IL-1β secretion by TLR4 activation through the MyD88, NF-κB as well as the Caspase-1 signaling pathways and may be a potential C. abortus vaccine candidate. The vaccine potential of Pmp18.1 will subsequently be evaluated in an appropriate animal model, using VCG as an immunomodulator, following immunization and challenge.
Collapse
Affiliation(s)
- Qing Pan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States.,Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qiang Zhang
- Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jun Chu
- Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Roshan Pais
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shanshan Liu
- Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonosis of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Francis O Eko
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
15
|
Bock S, Said A, Müller G, Schäfer-Korting M, Zoschke C, Weindl G. Characterization of reconstructed human skin containing Langerhans cells to monitor molecular events in skin sensitization. Toxicol In Vitro 2017; 46:77-85. [PMID: 28941582 DOI: 10.1016/j.tiv.2017.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 09/09/2017] [Accepted: 09/19/2017] [Indexed: 10/18/2022]
Abstract
Human cell-based approaches to assess defined key events in allergic contact dermatitis (ACD) are well-established, but lack cutaneous penetration and biotransformation as well as cellular cross-talk. Herein, we integrated in vitro-generated immature MUTZ-3-derived Langerhans-like cells (MUTZ-LCs) or monocyte-derived LC-like cells (MoLCs) into reconstructed human skin (RHS), consistent of a stratified epidermis formed by primary keratinocytes on a dermal compartment with collagen-embedded primary fibroblasts. LC-like cells were mainly localized in the epidermal compartment and distributed homogenously in accordance with native human skin. Topical application of the strong contact sensitizer 2,4-dinitrochlorobenzene (DNCB) induced IL-6 and IL-8 secretion in RHS with LC-like cells, whereas no change was observed in reference models. Increased gene expression of CD83, PD-L1, and CXCR4 in the dermal compartment indicated LC maturation. Importantly, exposure to DNCB enhanced mobility of the LC-like cells from epidermal to dermal compartments. In response to the moderate sensitizer isoeugenol and irritant sodium dodecyl sulphate, the obtained response was less pronounced. In summary, we integrated immature and functional MUTZ-LCs and MoLCs into RHS and provide a unique comparative experimental setting to monitor early events during skin sensitization.
Collapse
Affiliation(s)
- Stephanie Bock
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - André Said
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Gerrit Müller
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Monika Schäfer-Korting
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Christian Zoschke
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany
| | - Günther Weindl
- Institute of Pharmacy (Pharmacology and Toxicology), Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Kosten IJ, van de Ven R, Thon M, Gibbs S, de Gruijl TD. Comparative phenotypic and functional analysis of migratory dendritic cell subsets from human oral mucosa and skin. PLoS One 2017; 12:e0180333. [PMID: 28704477 PMCID: PMC5509153 DOI: 10.1371/journal.pone.0180333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
Antigen exposure to oral mucosa is generally thought to lead to immune tolerance induction. However, very little is known about the subset composition and function of dendritic cells (DC) migrating from human oral mucosa. Here we show that migratory DC from healthy human gingival explants consist of the same phenotypic subsets in the same frequency distribution as DC migrating from human skin. The gingival CD1a+ Langerhans cell and interstitial DC subsets lacked CXCR4 expression in contrast to their cutaneous counterparts, pointing to different migration mechanisms, consistent with previous observations in constructed skin and gingival equivalents. Remarkably, without any exogenous conditioning, gingival explants released higher levels of inflammatory cytokines than human skin explants, resulting in higher DC migration rates and a superior ability of migrated DC to prime allogeneic T cells and to induce type-1 effector T cell differentiation. From these observations we conclude that rather than an intrinsic ability to induce T cell tolerance, DC migrating from oral mucosa may have a propensity to induce effector T cell immunity and maintain a high state of alert against possible pathogenic intruders in the steady state. These findings may have implications for oral immunization strategies.
Collapse
Affiliation(s)
| | - Rieneke van de Ven
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Maria Thon
- Department of Dermatology, VU University Medical Center, Amsterdam, the Netherlands
| | - Susan Gibbs
- Department of Dermatology, VU University Medical Center, Amsterdam, the Netherlands.,Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
17
|
Lipid functions in skin: Differential effects of n-3 polyunsaturated fatty acids on cutaneous ceramides, in a human skin organ culture model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1679-1689. [PMID: 28341437 PMCID: PMC5504780 DOI: 10.1016/j.bbamem.2017.03.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/16/2017] [Accepted: 03/19/2017] [Indexed: 12/31/2022]
Abstract
Ceramides are important for skin health, with a multitude of species found in both dermis and epidermis. The epidermis contains linoleic acid-Ester-linked Omega-hydroxylated ceramides of 6-Hydroxy-sphingosine, Sphingosine and Phytosphingosine bases (CER[EOH], CER[EOS] and CER[EOP], respectively), that are crucial for the formation of the epidermal barrier, conferring protection from environmental factors and preventing trans-epidermal water loss. Furthermore, a large number of ceramides, derivatives of the same sphingoid bases and various fatty acids, are produced by dermal and epidermal cells and perform signalling roles in cell functions ranging from differentiation to apoptosis. Supplementation with the n-3 polyunsaturated fatty acids (PUFA) eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have shown promise as therapeutic agents in a number of inflammatory skin conditions, altering the lipid profile of the skin and production of bioactive lipids such as the eicosanoids, docosanoids and endocannabinoids. In this study we wished to investigate whether EPA and DHA could also affect the ceramide profile in epidermis and dermis, and, in this way, contribute to formation of a robust lipid barrier and ceramide-mediated regulation of skin functions. Ex vivo skin explants were cultured for 6 days, and supplemented with EPA or DHA (50 μM). Liquid chromatography coupled to tandem mass spectrometry with electrospray ionisation was used to assess the prevalence of 321 individual ceramide species, and a number of sphingoid bases, phosphorylated sphingoid bases, and phosphorylated ceramides, within the dermis and epidermis. EPA augmented dermal production of members of the ceramide families containing Non-hydroxy fatty acids and Sphingosine or Dihydrosphingosine bases (CER[NS] and CER[NDS], respectively), while epidermal CER[EOH], CER[EOS] and CER[EOP] ceramides were not affected. DHA did not significantly affect ceramide production. Ceramide-1-phosphate levels in the epidermis, but not the dermis, increased in response to EPA, but not DHA. This ex vivo study shows that dietary supplementation with EPA has the potential to alter the ceramide profile of the skin, and this may contribute to its anti-inflammatory profile. This has implications for formation of the epidermal lipid barrier, and signalling pathways within the skin mediated by ceramides and other sphingolipid species. This article is part of a Special Issue entitled: Membrane Lipid Therapy: Drugs Targeting Biomembranes edited by Pablo V. Escribá. Omega-3 fatty acid supplementation alters ex vivo skin ceramide profiles Eicosapentaenoic acid (EPA) increases dermal ceramides with non-hydroxy fatty acids (CER[NS] and CER[NDS]) EPA increases ceramide-1-phosphate (C1P) in the epidermis but not dermis Long-chain linoleic-acid-containing ceramides were unaltered by EPA or docosahexaenoic acid (DHA)
Collapse
|
18
|
Nakajima A, Sato H, Oda S, Yokoi T. Fluoroquinolones and propionic acid derivatives induce inflammatory responses in vitro. Cell Biol Toxicol 2017; 34:65-77. [DOI: 10.1007/s10565-017-9391-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
|
19
|
Palazzo E, Kellett MD, Cataisson C, Bible PW, Bhattacharya S, Sun HW, Gormley AC, Yuspa SH, Morasso MI. A novel DLX3-PKC integrated signaling network drives keratinocyte differentiation. Cell Death Differ 2017; 24:717-730. [PMID: 28186503 PMCID: PMC5384032 DOI: 10.1038/cdd.2017.5] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 12/16/2017] [Accepted: 01/10/2017] [Indexed: 12/19/2022] Open
Abstract
Epidermal homeostasis relies on a well-defined transcriptional control of keratinocyte proliferation and differentiation, which is critical to prevent skin diseases such as atopic dermatitis, psoriasis or cancer. We have recently shown that the homeobox transcription factor DLX3 and the tumor suppressor p53 co-regulate cell cycle-related signaling and that this mechanism is functionally involved in cutaneous squamous cell carcinoma development. Here we show that DLX3 expression and its downstream signaling depend on protein kinase C α (PKCα) activity in skin. We found that following 12-O-tetradecanoyl-phorbol-13-acetate (TPA) topical treatment, DLX3 expression is significantly upregulated in the epidermis and keratinocytes from mice overexpressing PKCα by transgenic targeting (K5-PKCα), resulting in cell cycle block and terminal differentiation. Epidermis lacking DLX3 (DLX3cKO), which is linked to the development of a DLX3-dependent epidermal hyperplasia with hyperkeratosis and dermal leukocyte recruitment, displays enhanced PKCα activation, suggesting a feedback regulation of DLX3 and PKCα. Of particular significance, transcriptional activation of epidermal barrier, antimicrobial peptide and cytokine genes is significantly increased in DLX3cKO skin and further increased by TPA-dependent PKC activation. Furthermore, when inhibiting PKC activity, we show that epidermal thickness, keratinocyte proliferation and inflammatory cell infiltration are reduced and the PKC-DLX3-dependent gene expression signature is normalized. Independently of PKC, DLX3 expression specifically modulates regulatory networks such as Wnt signaling, phosphatase activity and cell adhesion. Chromatin immunoprecipitation sequencing analysis of primary suprabasal keratinocytes showed binding of DLX3 to the proximal promoter regions of genes associated with cell cycle regulation, and of structural proteins and transcription factors involved in epidermal differentiation. These results indicate that Dlx3 potentially regulates a set of crucial genes necessary during the epidermal differentiation process. Altogether, we demonstrate the existence of a robust DLX3–PKCα signaling pathway in keratinocytes that is crucial to epidermal differentiation control and cutaneous homeostasis.
Collapse
Affiliation(s)
| | | | | | - Paul W Bible
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| | | | - Hong-Wei Sun
- Biodata Mining and Discovery Section, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Anna C Gormley
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, NCI, NIH, Bethesda, MD 20892, USA
| | - Maria I Morasso
- Laboratory of Skin Biology, NIAMS, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Zinkevičienė A, Kainov D, Lastauskienė E, Kvedarienė V, Bychkov D, Byrne M, Girkontaitė I. Serum Biomarkers of Allergic Contact Dermatitis: A Pilot Study. Int Arch Allergy Immunol 2016; 168:161-4. [PMID: 26790150 DOI: 10.1159/000442749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/24/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Allergic contact dermatitis (ACD) is an inflammatory skin disease caused by repeated skin exposure to contact allergens. The goal of this pilot study was to identify inflammatory proteins which can serve as biomarkers for ACD. METHODS We measured levels of 102 cytokines, chemokines, and growth factors in the sera of 16 ACD patients during acute and remission phases, and 16 healthy volunteers. RESULTS Serum levels of adiponectin, chemokine (C-C motif) ligand 5 (CCL5), C-reactive protein (CRP), chitinase 3-like 1 (CHI3L1), complement factor D (CFD), endoglin, lipocalin-2, osteopontin, retinol-binding protein 4 (RBP4), and platelet factor 4 (PF4) were significantly higher, whereas levels of trefoil factor 3 (TFF3) were significantly lower, in ACD patients than in healthy controls. In ACD patients, serum levels of CCL5 were elevated, whereas levels of TFF3, soluble intercellular adhesion molecule-1 (sICAM-1), and platelet-derived growth factor (PDGF)-AB/BB were found to be lower during the remission phase of the disease. CONCLUSIONS Serum levels of adiponectin, CCL5, CRP, CHI3L1, CFD, endoglin, lipocalin-2, osteopontin, RBP4, PF4, and TFF3 might be exploited as biomarkers for ACD, whereas levels of CCL5, TFF3, sICAM-1, and PDGF-AB/BB might be exploited for evaluation of disease progression and efficacy of ACD treatment.
Collapse
Affiliation(s)
- Auksė Zinkevičienė
- Department of Immunology, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | | | | | | | | | | |
Collapse
|
21
|
Nakajima A, Oda S, Yokoi T. Allopurinol induces innate immune responses through mitogen-activated protein kinase signaling pathways in HL-60 cells. J Appl Toxicol 2015; 36:1120-8. [PMID: 26641773 DOI: 10.1002/jat.3272] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/21/2015] [Accepted: 10/29/2015] [Indexed: 11/06/2022]
Abstract
Allopurinol, an inhibitor of xanthine oxidase, is a frequent cause of severe cutaneous adverse reactions (SCARs) in humans, including drug rash with eosinophilia and systemic symptoms, Stevens-Johnson syndrome and toxic epidermal necrolysis. Although SCARs have been suspected to be immune-mediated, the mechanisms of allopurinol-induced SCARs remain unclear. In this study, we examined whether allopurinol has the ability to induce innate immune responses in vitro using human dendritic cell (DC)-like cell lines, including HL-60, THP-1 and K562, and a human keratinocyte cell line, HaCaT. In this study, we demonstrate that treatment of HL-60 cells with allopurinol significantly increased the mRNA expression levels of interleukin-8, monocyte chemotactic protein-1 and tumor necrosis factor α in a time- and concentration-dependent manner. Furthermore, allopurinol induced the phosphorylation of mitogen-activated protein kinases (MAPK), such as c-Jun N-terminal kinase and extracellular signal-regulated kinase, which regulate cytokine production in DC. In addition, allopurinol-induced increases in cytokine expression were inhibited by co-treatment with the MAPK inhibitors. Collectively, these results suggest that allopurinol has the ability to induce innate immune responses in a DC-like cell line through activation of the MAPK signaling pathways. These results indicate that innate immune responses induced by allopurinol might be involved in the development of allopurinol-induced SCARs. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Akira Nakajima
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
22
|
Gingiva Equivalents Secrete Negligible Amounts of Key Chemokines Involved in Langerhans Cell Migration Compared to Skin Equivalents. J Immunol Res 2015; 2015:627125. [PMID: 26539556 PMCID: PMC4619927 DOI: 10.1155/2015/627125] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/05/2015] [Indexed: 11/18/2022] Open
Abstract
Both oral mucosa and skin have the capacity to maintain immune homeostasis or regulate immune responses upon environmental assault. Whereas much is known about key innate immune events in skin, little is known about oral mucosa. Comparative studies are limited due to the scarce supply of oral mucosa for ex vivo studies. Therefore, we used organotypic tissue equivalents (reconstructed epithelium on fibroblast-populated collagen hydrogel) to study cross talk between cells. Oral mucosa and skin equivalents were compared regarding secretion of cytokines and chemokines involved in LC migration and general inflammation. Basal secretion, representative of homeostasis, and also secretion after stimulation with TNFα, an allergen (cinnamaldehyde), or an irritant (SDS) were assessed. We found that proinflammatory IL-18 and chemokines CCL2, CCL20, and CXCL12, all involved in LC migration, were predominantly secreted by skin as compared to gingiva. Furthermore, CCL27 was predominantly secreted by skin whereas CCL28 was predominantly secreted by gingiva. In contrast, general inflammatory cytokines IL-6 and CXCL8 were secreted similarly by skin and gingiva. These results indicate that the cytokines and chemokines triggering innate immunity and LC migration are different in skin and gingiva. This differential regulation should be figured into novel therapy or vaccination strategies in the context of skin versus mucosa.
Collapse
|
23
|
Kosten IJ, Spiekstra SW, de Gruijl TD, Gibbs S. MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure. Toxicol Appl Pharmacol 2015; 287:35-42. [PMID: 26028481 DOI: 10.1016/j.taap.2015.05.017] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/09/2015] [Accepted: 05/19/2015] [Indexed: 12/31/2022]
Abstract
After allergen or irritant exposure, Langerhans cells (LC) undergo phenotypic changes and exit the epidermis. In this study we describe the unique ability of MUTZ-3 derived Langerhans cells (MUTZ-LC) to display similar phenotypic plasticity as their primary counterparts when incorporated into a physiologically relevant full-thickness skin equivalent model (SE-LC). We describe differences and similarities in the mechanisms regulating LC migration and plasticity upon allergen or irritant exposure. The skin equivalent consisted of a reconstructed epidermis containing primary differentiated keratinocytes and CD1a(+) MUTZ-LC on a primary fibroblast-populated dermis. Skin equivalents were exposed to a panel of allergens and irritants. Topical exposure to sub-toxic concentrations of allergens (nickel sulfate, resorcinol, cinnamaldehyde) and irritants (Triton X-100, SDS, Tween 80) resulted in LC migration out of the epidermis and into the dermis. Neutralizing antibody to CXCL12 blocked allergen-induced migration, whereas anti-CCL5 blocked irritant-induced migration. In contrast to allergen exposure, irritant exposure resulted in cells within the dermis becoming CD1a(-)/CD14(+)/CD68(+) which is characteristic of a phenotypic switch of MUTZ-LC to a macrophage-like cell in the dermis. This phenotypic switch was blocked with anti-IL-10. Mechanisms previously identified as being involved in LC activation and migration in native human skin could thus be reproduced in the in vitro constructed skin equivalent model containing functional LC. This model therefore provides a unique and relevant research tool to study human LC biology in situ under controlled in vitro conditions, and will provide a powerful tool for hazard identification, testing novel therapeutics and identifying new drug targets.
Collapse
Affiliation(s)
- Ilona J Kosten
- Department of Dermatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Sander W Spiekstra
- Department of Dermatology, VU University Medical Center, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Dermatology Medical Oncology, VU University Medical Center, Amsterdam, The Netherlands
| | - Susan Gibbs
- Department of Dermatology, VU University Medical Center, Amsterdam, The Netherlands; Department of Oral Cell Biology, Academic Center for Dentistry (ACTA), Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Kim HS, Park WS, Baek JI, Lee BS, Yoo DS, Park SJ. Continuous irradiation with a 633-nm light-emitting diode exerts an anti-aging effect on human skin cells. Int J Mol Med 2014; 35:383-90. [PMID: 25503577 DOI: 10.3892/ijmm.2014.2030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 11/24/2014] [Indexed: 11/06/2022] Open
Abstract
Accumulating evidence has indicated that the light source emitted from light‑emitting diode (LED) has a potential anti-aging effect on human skin. Studies using single and interval LED irradiation have documented such effects; however, to the best of our knowledge, the anti-aging effects of continuous LED irradiation have not yet been investigated. In the present study, we demonstrated that continuous irradiation with a 633±3-nm LED exerted anti-aging effects in both in vitro and ex vivo experiments. More specifically, irradiation with a 633-nm LED for 2 days increased the synthesis of type 1 procollagen and decreased the expression of matrix metalloproteinase (MMP)1 and MMP2 in skin fibroblasts. In addition, irradiation with a 633-nm LED decreased the expression levels of inflammatory genes, such has cyclooxygenase-2 (COX-2), and interleukin-1-α (IL-1α) in keratinocytes. Furthermore, a 14-day LED irradiation moderately increased keratinocyte proliferation. Using human skin explants, we confirmed the safety of this 633-nm LED irradiation, which resulted in unaltered morphology and allergy-free potential in human tissue. Overall, these data provide insight into the anti-aging effects of continuous LED irradiation on human skin.
Collapse
Affiliation(s)
- Hak Sun Kim
- Samsung Display Co., Ltd., Yongin, Gyeonggi-do 446-811, Republic of Korea
| | - Won Sang Park
- Samsung Display Co., Ltd., Yongin, Gyeonggi-do 446-811, Republic of Korea
| | - Jong-In Baek
- Samsung Display Co., Ltd., Yongin, Gyeonggi-do 446-811, Republic of Korea
| | - Bo-Sub Lee
- R&D Center, ACT Co., Ltd., Suwon, Gyeonggi-do 443-734, Republic of Korea
| | - Dae Sung Yoo
- R&D Center, ACT Co., Ltd., Suwon, Gyeonggi-do 443-734, Republic of Korea
| | - Si Jun Park
- R&D Center, ACT Co., Ltd., Suwon, Gyeonggi-do 443-734, Republic of Korea
| |
Collapse
|
25
|
Eberting CL, Blickenstaff N, Goldenberg A. Pathophysiologic Treatment Approach to Irritant Contact Dermatitis. CURRENT TREATMENT OPTIONS IN ALLERGY 2014. [DOI: 10.1007/s40521-014-0030-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
26
|
Epaulard O, Adam L, Poux C, Zurawski G, Salabert N, Rosenbaum P, Dereuddre-Bosquet N, Zurawski S, Flamar AL, Oh S, Romain G, Chapon C, Banchereau J, Lévy Y, Le Grand R, Martinon F. Macrophage- and neutrophil-derived TNF-α instructs skin langerhans cells to prime antiviral immune responses. THE JOURNAL OF IMMUNOLOGY 2014; 193:2416-26. [PMID: 25057007 DOI: 10.4049/jimmunol.1303339] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dendritic cells are major APCs that can efficiently prime immune responses. However, the roles of skin-resident Langerhans cells (LCs) in eliciting immune responses have not been fully understood. In this study, we demonstrate for the first time, to our knowledge, that LCs in cynomolgus macaque skin are capable of inducing antiviral-specific immune responses in vivo. Targeting HIV-Gag or influenza hemagglutinin Ags to skin LCs using recombinant fusion proteins of anti-Langerin Ab and Ags resulted in the induction of the viral Ag-specific responses. We further demonstrated that such Ag-specific immune responses elicited by skin LCs were greatly enhanced by TLR ligands, polyriboinosinic polyribocytidylic acid, and R848. These enhancements were not due to the direct actions of TLR ligands on LCs, but mainly dependent on TNF-α secreted from macrophages and neutrophils recruited to local tissues. Skin LC activation and migration out of the epidermis are associated with macrophage and neutrophil infiltration into the tissues. More importantly, blocking TNF-α abrogated the activation and migration of skin LCs. This study highlights that the cross-talk between innate immune cells in local tissues is an important component for the establishment of adaptive immunity. Understanding the importance of local immune networks will help us to design new and effective vaccines against microbial pathogens.
Collapse
Affiliation(s)
- Olivier Epaulard
- French Alternative Energies and Atomic Energy Commission, Division of Immuno-Virology, Institute for Emerging Diseases and Innovative Therapies, Infectious Diseases Models for Innovative Therapies Center, 92265 Fontenay-aux-Roses, France; Unité Mixte de Recherche E1, Université Paris-Sud, 91405 Orsay, France; Vaccine Research Institute, 94010 Créteil, France; Infectious Diseases Unit, Grenoble University Hospital, 38043 Grenoble, France
| | - Lucille Adam
- French Alternative Energies and Atomic Energy Commission, Division of Immuno-Virology, Institute for Emerging Diseases and Innovative Therapies, Infectious Diseases Models for Innovative Therapies Center, 92265 Fontenay-aux-Roses, France; Unité Mixte de Recherche E1, Université Paris-Sud, 91405 Orsay, France; Vaccine Research Institute, 94010 Créteil, France
| | - Candice Poux
- French Alternative Energies and Atomic Energy Commission, Division of Immuno-Virology, Institute for Emerging Diseases and Innovative Therapies, Infectious Diseases Models for Innovative Therapies Center, 92265 Fontenay-aux-Roses, France; Unité Mixte de Recherche E1, Université Paris-Sud, 91405 Orsay, France; Vaccine Research Institute, 94010 Créteil, France
| | - Gerard Zurawski
- Vaccine Research Institute, 94010 Créteil, France; Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Nina Salabert
- French Alternative Energies and Atomic Energy Commission, Division of Immuno-Virology, Institute for Emerging Diseases and Innovative Therapies, Infectious Diseases Models for Innovative Therapies Center, 92265 Fontenay-aux-Roses, France; Unité Mixte de Recherche E1, Université Paris-Sud, 91405 Orsay, France; Vaccine Research Institute, 94010 Créteil, France
| | - Pierre Rosenbaum
- French Alternative Energies and Atomic Energy Commission, Division of Immuno-Virology, Institute for Emerging Diseases and Innovative Therapies, Infectious Diseases Models for Innovative Therapies Center, 92265 Fontenay-aux-Roses, France; Unité Mixte de Recherche E1, Université Paris-Sud, 91405 Orsay, France; Vaccine Research Institute, 94010 Créteil, France
| | - Nathalie Dereuddre-Bosquet
- French Alternative Energies and Atomic Energy Commission, Division of Immuno-Virology, Institute for Emerging Diseases and Innovative Therapies, Infectious Diseases Models for Innovative Therapies Center, 92265 Fontenay-aux-Roses, France; Unité Mixte de Recherche E1, Université Paris-Sud, 91405 Orsay, France; Vaccine Research Institute, 94010 Créteil, France
| | - Sandra Zurawski
- Vaccine Research Institute, 94010 Créteil, France; Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Anne-Laure Flamar
- Vaccine Research Institute, 94010 Créteil, France; Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Sangkon Oh
- Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Gabrielle Romain
- French Alternative Energies and Atomic Energy Commission, Division of Immuno-Virology, Institute for Emerging Diseases and Innovative Therapies, Infectious Diseases Models for Innovative Therapies Center, 92265 Fontenay-aux-Roses, France; Unité Mixte de Recherche E1, Université Paris-Sud, 91405 Orsay, France; Vaccine Research Institute, 94010 Créteil, France
| | - Catherine Chapon
- French Alternative Energies and Atomic Energy Commission, Division of Immuno-Virology, Institute for Emerging Diseases and Innovative Therapies, Infectious Diseases Models for Innovative Therapies Center, 92265 Fontenay-aux-Roses, France; Unité Mixte de Recherche E1, Université Paris-Sud, 91405 Orsay, France; Vaccine Research Institute, 94010 Créteil, France
| | - Jacques Banchereau
- Vaccine Research Institute, 94010 Créteil, France; Baylor Institute for Immunology Research, Dallas, TX 75204
| | - Yves Lévy
- Vaccine Research Institute, 94010 Créteil, France; INSERM, Unité U955, 94010 Créteil, France; Universite Paris-Est, Faculte de Medecine, Unité Mixte de Recherche-S 955, 94010 Créteil, France; and
| | - Roger Le Grand
- French Alternative Energies and Atomic Energy Commission, Division of Immuno-Virology, Institute for Emerging Diseases and Innovative Therapies, Infectious Diseases Models for Innovative Therapies Center, 92265 Fontenay-aux-Roses, France; Unité Mixte de Recherche E1, Université Paris-Sud, 91405 Orsay, France; Vaccine Research Institute, 94010 Créteil, France
| | - Frédéric Martinon
- French Alternative Energies and Atomic Energy Commission, Division of Immuno-Virology, Institute for Emerging Diseases and Innovative Therapies, Infectious Diseases Models for Innovative Therapies Center, 92265 Fontenay-aux-Roses, France; Unité Mixte de Recherche E1, Université Paris-Sud, 91405 Orsay, France; Vaccine Research Institute, 94010 Créteil, France; INSERM, 75014 Paris, France
| |
Collapse
|
27
|
Mattii M, Ayala F, Balato N, Filotico R, Lembo S, Schiattarella M, Patruno C, Marone G, Balato A. The balance between pro- and anti-inflammatory cytokines is crucial in human allergic contact dermatitis pathogenesis: the role of IL-1 family members. Exp Dermatol 2014; 22:813-9. [PMID: 24164463 DOI: 10.1111/exd.12272] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2013] [Indexed: 12/26/2022]
Abstract
The interleukin (IL)-1 family includes 11 members that are important in inflammatory processes. It includes various agonists and two antagonists, IL-1Ra and IL-36Ra. Our aim was to investigate whether the IL-1 family is involved in allergic contact dermatitis (ACD). The expression of IL-1 family members was evaluated by PCR and immunohistochemistry in the positive patch test reaction site (involved skin) and in the uninvolved skin of ACD patients. We also examined these cytokines in an ex vivo model of ACD. The antagonistic activity of IL-36Ra was evaluated by injecting recombinant IL-36Ra in uninvolved skin biopsies of ACD patients. IL-1Ra and IL-36Ra expression was quantified in mononuclear cells of nickel-sensitized patients challenged in vitro with nickel. IL-33 involvement in ACD was investigated by intra-dermal injection of anti-IL-33 in the uninvolved skin of patients ex vivo. Results showed that IL-1β, IL-1Ra, IL-36α, IL-36β, IL-36γ and IL-33 expression, but not IL-36Ra expression, was enhanced in ACD-involved skin. Immunohistochemical analysis and ex vivo skin cultures confirmed these results. Injection of anti-IL-33 in ACD-uninvolved skin inhibited IL-8 expression, whereas IL-36Ra inhibited IL-36α, IL-36β, IL-36γ and IL-8 expression. Nickel induced IL-1Ra expression in lymphocytes of nickel-sensitized patients. Hence, various IL-1 agonists and antagonists may be involved in ACD pathogenesis.
Collapse
Affiliation(s)
- Martina Mattii
- Department of Dermatology, University of Naples Federico II, School of Medicine, Naples, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Eaton LH, Mellody KT, Kimber I, Dearman RJ. The XS106 cell: a Langerhans’ cell surrogate with a selective type 2 phenotype. Cutan Ocul Toxicol 2014; 33:303-12. [DOI: 10.3109/15569527.2013.873046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Roggen EL. In VitroApproaches for Detection of Chemical Sensitization. Basic Clin Pharmacol Toxicol 2014; 115:32-40. [DOI: 10.1111/bcpt.12202] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/14/2014] [Indexed: 11/30/2022]
|
30
|
Cytokines and chemokines in irritant contact dermatitis. Mediators Inflamm 2013; 2013:916497. [PMID: 24371376 PMCID: PMC3858878 DOI: 10.1155/2013/916497] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/08/2013] [Indexed: 11/29/2022] Open
Abstract
Irritant contact dermatitis is a result of activated innate immune response to various external stimuli and consists of complex interplay which involves skin barrier disruption, cellular changes, and release of proinflammatory mediators. In this review, we will focus on key cytokines and chemokines involved in the pathogenesis of irritant contact dermatitis and also contrast the differences between allergic contact dermatitis and irritant contact dermatitis.
Collapse
|
31
|
Chau DYS, Johnson C, MacNeil S, Haycock JW, Ghaemmaghami AM. The development of a 3D immunocompetent model of human skin. Biofabrication 2013; 5:035011. [PMID: 23880658 DOI: 10.1088/1758-5082/5/3/035011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
As the first line of defence, skin is regularly exposed to a variety of biological, physical and chemical insults. Therefore, determining the skin sensitization potential of new chemicals is of paramount importance from the safety assessment and regulatory point of view. Given the questionable biological relevance of animal models to human as well as ethical and regulatory pressure to limit or stop the use of animal models for safety testing, there is a need for developing simple yet physiologically relevant models of human skin. Herein, we describe the construction of a novel immunocompetent 3D human skin model comprising of dendritic cells co-cultured with keratinocytes and fibroblasts. This model culture system is simple to assemble with readily-available components and importantly, can be separated into its constitutive individual layers to allow further insight into cell-cell interactions and detailed studies of the mechanisms of skin sensitization. In this study, using non-degradable microfibre scaffolds and a cell-laden gel, we have engineered a multilayer 3D immunocompetent model comprised of keratinocytes and fibroblasts that are interspersed with dendritic cells. We have characterized this model using a combination of confocal microscopy, immuno-histochemistry and scanning electron microscopy and have shown differentiation of the epidermal layer and formation of an epidermal barrier. Crucially the immune cells in the model are able to migrate and remain responsive to stimulation with skin sensitizers even at low concentrations. We therefore suggest this new biologically relevant skin model will prove valuable in investigating the mechanisms of allergic contact dermatitis and other skin pathologies in human. Once fully optimized, this model can also be used as a platform for testing the allergenic potential of new chemicals and drug leads.
Collapse
Affiliation(s)
- David Y S Chau
- Allergy Research Group, School of Molecular Medical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | | | | | | | | |
Collapse
|
32
|
Dendritic cell migration assay: A potential prediction model for identification of contact allergens. Toxicol In Vitro 2013; 27:1170-9. [DOI: 10.1016/j.tiv.2012.05.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 05/15/2012] [Accepted: 05/29/2012] [Indexed: 11/18/2022]
|
33
|
Roggen EL. Application of the acquired knowledge and implementation of the Sens-it-iv toolbox for identification and classification of skin and respiratory sensitizers. Toxicol In Vitro 2013; 27:1122-6. [DOI: 10.1016/j.tiv.2012.09.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 09/24/2012] [Accepted: 09/27/2012] [Indexed: 12/31/2022]
|
34
|
Ouwehand K, Spiekstra SW, Waaijman T, Breetveld M, Scheper RJ, de Gruijl TD, Gibbs S. CCL5 and CCL20 mediate immigration of Langerhans cells into the epidermis of full thickness human skin equivalents. Eur J Cell Biol 2012; 91:765-73. [PMID: 22857950 DOI: 10.1016/j.ejcb.2012.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 06/23/2012] [Accepted: 06/25/2012] [Indexed: 01/08/2023] Open
Abstract
Epidermal Langerhans cells (LC) play a key role in initiation and regulation of immune responses. Whereas LC migration out of the epidermis upon environmental assault is extensively studied, the mechanisms involved in the (re)population of the epidermis with LC are poorly understood. Here, we investigated the immigration of LC derived from the human MUTZ-3 cell line (MUTZ-LC) into the epidermis of a full thickness skin equivalent, comprising a fully differentiated epidermis on a fibroblast-populated dermis. MUTZ-LC were used to determine which epidermis-derived chemokines play a role in mediating LC trans-dermal migration into the epidermis. We found evidence for a role of keratinocyte-derived CCL5 and CCL20 in the chemo-attraction of MUTZ-LC. Neutralizing antibodies against CCL5 and CCL20 blocked LC migration towards keratinocytes. Secretion of these two chemokines was associated with incorporation of MUTZ-LC into the epidermis of full thickness skin equivalents. In conclusion, our findings suggest that epidermis derived CCL5 and CCL20 are pivotal mediators in recruitment of LC into the epidermis.
Collapse
Affiliation(s)
- Krista Ouwehand
- Department of Dermatology, VU University Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
35
|
Inter-laboratory study of the in vitro dendritic cell migration assay for identification of contact allergens. Toxicol In Vitro 2011; 25:2124-34. [DOI: 10.1016/j.tiv.2011.09.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/26/2011] [Accepted: 09/27/2011] [Indexed: 11/21/2022]
|
36
|
Sharma NS, Jindal R, Mitra B, Lee S, Li L, Maguire TJ, Schloss R, Yarmush ML. Perspectives on Non-Animal Alternatives for Assessing Sensitization Potential in Allergic Contact Dermatitis. Cell Mol Bioeng 2011; 5:52-72. [PMID: 24741377 DOI: 10.1007/s12195-011-0189-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Skin sensitization remains a major environmental and occupational health hazard. Animal models have been used as the gold standard method of choice for estimating chemical sensitization potential. However, a growing international drive and consensus for minimizing animal usage have prompted the development of in vitro methods to assess chemical sensitivity. In this paper, we examine existing approaches including in silico models, cell and tissue based assays for distinguishing between sensitizers and irritants. The in silico approaches that have been discussed include Quantitative Structure Activity Relationships (QSAR) and QSAR based expert models that correlate chemical molecular structure with biological activity and mechanism based read-across models that incorporate compound electrophilicity. The cell and tissue based assays rely on an assortment of mono and co-culture cell systems in conjunction with 3D skin models. Given the complexity of allergen induced immune responses, and the limited ability of existing systems to capture the entire gamut of cellular and molecular events associated with these responses, we also introduce a microfabricated platform that can capture all the key steps involved in allergic contact sensitivity. Finally, we describe the development of an integrated testing strategy comprised of two or three tier systems for evaluating sensitization potential of chemicals.
Collapse
Affiliation(s)
- Nripen S Sharma
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Rohit Jindal
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Bhaskar Mitra
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Serom Lee
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Lulu Li
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Tim J Maguire
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Rene Schloss
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA
| | - Martin L Yarmush
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, 231, Piscataway, NJ 08854, USA ; Center for Engineering in Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
37
|
Ouwehand K, Oosterhoff D, Breetveld M, Scheper RJ, de Gruijl TD, Gibbs S. Irritant-Induced Migration of Langerhans Cells Coincides with an IL-10-Dependent Switch to a Macrophage-Like Phenotype. J Invest Dermatol 2011; 131:418-25. [DOI: 10.1038/jid.2010.336] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
38
|
Oosterhoff D, Sluijter BJR, Hangalapura BN, de Gruijl TD. The dermis as a portal for dendritic cell-targeted immunotherapy of cutaneous melanoma. Curr Top Microbiol Immunol 2011; 351:181-220. [PMID: 21681685 DOI: 10.1007/82_2011_136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Complete surgical excision at an early stage remains the only curative treatment for cutaneous melanoma with few available adjuvant therapy options. Nevertheless, melanoma is a relatively immunogenic tumor type and particularly amenable to immunotherapeutic approaches. A dense network of cutaneous dendritic cells (DC) may account for the reported efficacy of vaccination through the skin and provide an attractive target for the immunotherapy of melanoma. Several phenotypically distinct DC subsets are discernable in the skin, among others, epidermal Langerhans cells and dermal DC. Upon appropriate activation both subsets can efficiently migrate to melanoma-draining lymph nodes (LN) to prime T cell-mediated responses. Unfortunately, from an early stage, melanoma development is characterized by strong immune suppression, facilitating unchecked tumor growth and spread. Particularly the primary tumor site and the first-line tumor-draining LN, the so-called sentinel LN, bear the brunt of this melanoma-induced immune suppression-and these are exactly the sites where anti-melanoma effector T cell responses should be primed by DC in order to prevent early metastasis. Through local immunopotentiation or through DC-targeted vaccination, the dermis may be utilized as a portal to activate DC and kick-start or boost effective T cell-mediated anti-melanoma immunity, even in the face of this immune suppression.
Collapse
Affiliation(s)
- D Oosterhoff
- Department of Medical Oncology, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|