1
|
Ottens K, Schneider J, Satterthwaite AB. T-bet-expressing B cells contribute to the autoreactive plasma cell pool in Lyn -/- mice. Eur J Immunol 2023; 53:e2250300. [PMID: 37134326 PMCID: PMC10524956 DOI: 10.1002/eji.202250300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/05/2023]
Abstract
Systemic Lupus Erythematosus (SLE) is characterized by pathogenic autoantibodies against nucleic acid-containing antigens. Understanding which B-cell subsets give rise to these autoantibodies may reveal therapeutic approaches for SLE that spare protective responses. Mice lacking the tyrosine kinase Lyn, which limits B and myeloid cell activation, develop lupus-like autoimmune diseases characterized by increased autoreactive plasma cells (PCs). We used a fate-mapping strategy to determine the contribution of T-bet+ B cells, a subset thought to be pathogenic in lupus, to the accumulation of PCs and autoantibodies in Lyn-/- mice. Approximately, 50% of splenic PCs in Lyn-/- mice originated from T-bet+ cells, a significant increase compared to WT mice. In vitro, splenic PCs derived from T-bet+ B cells secreted both IgM and IgG anti-dsDNA antibodies. To determine the role of these cells in autoantibody production in vivo, we prevented T-bet+ B cells from differentiating into PCs or class switching in Lyn-/- mice. This resulted in a partial reduction in splenic PCs and anti-dsDNA IgM and complete abrogation of anti-dsDNA IgG. Thus, T-bet+ B cells make an important contribution to the autoreactive PC pool in Lyn-/- mice.
Collapse
Affiliation(s)
- Kristina Ottens
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
| | - Jalyn Schneider
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
| | - Anne B. Satterthwaite
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, 75390
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, 75390
| |
Collapse
|
2
|
Zhuang L, Ye Z, Li L, Yang L, Gong W. Next-Generation TB Vaccines: Progress, Challenges, and Prospects. Vaccines (Basel) 2023; 11:1304. [PMID: 37631874 PMCID: PMC10457792 DOI: 10.3390/vaccines11081304] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (MTB), is a prevalent global infectious disease and a leading cause of mortality worldwide. Currently, the only available vaccine for TB prevention is Bacillus Calmette-Guérin (BCG). However, BCG demonstrates limited efficacy, particularly in adults. Efforts to develop effective TB vaccines have been ongoing for nearly a century. In this review, we have examined the current obstacles in TB vaccine research and emphasized the significance of understanding the interaction mechanism between MTB and hosts in order to provide new avenues for research and establish a solid foundation for the development of novel vaccines. We have also assessed various TB vaccine candidates, including inactivated vaccines, attenuated live vaccines, subunit vaccines, viral vector vaccines, DNA vaccines, and the emerging mRNA vaccines as well as virus-like particle (VLP)-based vaccines, which are currently in preclinical stages or clinical trials. Furthermore, we have discussed the challenges and opportunities associated with developing different types of TB vaccines and outlined future directions for TB vaccine research, aiming to expedite the development of effective vaccines. This comprehensive review offers a summary of the progress made in the field of novel TB vaccines.
Collapse
Affiliation(s)
- Li Zhuang
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
- Hebei North University, Zhangjiakou 075000, China
| | - Zhaoyang Ye
- Hebei North University, Zhangjiakou 075000, China
| | - Linsheng Li
- Hebei North University, Zhangjiakou 075000, China
| | - Ling Yang
- Hebei North University, Zhangjiakou 075000, China
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China
| |
Collapse
|
3
|
Tan J, Le A. The Heterogeneity of Breast Cancer Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1311:89-101. [PMID: 34014536 DOI: 10.1007/978-3-030-65768-0_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite advances in screening, therapy, and surveillance that have improved patient survival rates, breast cancer is still the most commonly diagnosed cancer and the second leading cause of cancer mortality among women [1]. Breast cancer is a highly heterogeneous disease rooted in a genetic basis, influenced by extrinsic stimuli, and reflected in clinical behavior. The diversity of breast cancer hormone receptor status and the expression of surface molecules have guided therapy decisions for decades; however, subtype-specific treatment often yields diverse responses due to varying tumor evolution and malignant potential. Although the mechanisms behind breast cancer heterogeneity is not well understood, available evidence suggests that studying breast cancer metabolism has the potential to provide valuable insights into the causes of these variations as well as viable targets for intervention.
Collapse
Affiliation(s)
- Jessica Tan
- Wayne State University School of Medicine, Detroit, MI, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA. .,Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
4
|
Xue Q, Ma Y, Wang L, Shao H. T follicular helper cells are elevated in a rat model of autoimmune myocarditis. FEBS Open Bio 2020; 10:1304-1315. [PMID: 32416035 PMCID: PMC7327924 DOI: 10.1002/2211-5463.12894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 03/27/2020] [Accepted: 05/13/2020] [Indexed: 02/03/2023] Open
Abstract
Myocarditis is an inflammatory disease of the myocardium that is associated with immune dysfunction. Earlier studies have suggested that T helper 1/2 cell imbalance plays an important role in the development of myocarditis, but the role of T follicular helper (Tfh) cells in the development of autoimmune myocarditis has not previously been reported. Here, we investigated this involvement by using a rat model of experimental autoimmune myocarditis (EAM). Inflammatory cell infiltration, myocardial structure destruction and tissue necrosis were observed in EAM myocardial tissues, and the percentages of CD4+ CXCR5+ Tfh cells and CD19+ B cells were both significantly higher in spleen and myocardial tissues of the EAM model as compared with the control group. Furthermore, the expression levels of interleukin-21, CXCL13 and myosin antibody were significantly higher in the serum of rats with EAM compared with the control group on days 14 and 35 after immunization. Fourteen or 35 days after immunization, the expression levels of interleukin-21 and CXCL13 were both significantly higher in myocardial tissues of rats with EAM as compared with the control group. Our findings suggest that Tfh cell balance is disrupted during the pathological process of autoimmune myocarditis.
Collapse
Affiliation(s)
- Qi Xue
- Department of Cardiology, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Yuan Ma
- Department of Cardiology, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Lihong Wang
- Department of Cardiology, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Hong Shao
- Department of Cardiology, People's Hospital of Hangzhou Medical College, Zhejiang Provincial People's Hospital, Hangzhou, China
| |
Collapse
|
5
|
Brodie EJ, Infantino S, Low MSY, Tarlinton DM. Lyn, Lupus, and (B) Lymphocytes, a Lesson on the Critical Balance of Kinase Signaling in Immunity. Front Immunol 2018; 9:401. [PMID: 29545808 PMCID: PMC5837976 DOI: 10.3389/fimmu.2018.00401] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/13/2018] [Indexed: 01/23/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is a progressive autoimmune disease characterized by increased sensitivity to self-antigens, auto-antibody production, and systemic inflammation. B cells have been implicated in disease progression and as such represent an attractive therapeutic target. Lyn is a Src family tyrosine kinase that plays a major role in regulating signaling pathways within B cells as well as other hematopoietic cells. Its role in initiating negative signaling cascades is especially critical as exemplified by Lyn-/- mice developing an SLE-like disease with plasma cell hyperplasia, underscoring the importance of tightly regulating signaling within B cells. This review highlights recent advances in our understanding of the function of the Src family tyrosine kinase Lyn in B lymphocytes and its contribution to positive and negative signaling pathways that are dysregulated in autoimmunity.
Collapse
Affiliation(s)
- Erica J. Brodie
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Simona Infantino
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| | - Michael S. Y. Low
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Immunology Division, Walter and Eliza Hall Institute of Medical Research, University of Melbourne, Parkville, VIC, Australia
- Department of Haematology, Monash Health, Monash Hospital, Clayton, VIC, Australia
| | - David M. Tarlinton
- Department of Immunology and Pathology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Satterthwaite AB. Bruton's Tyrosine Kinase, a Component of B Cell Signaling Pathways, Has Multiple Roles in the Pathogenesis of Lupus. Front Immunol 2018; 8:1986. [PMID: 29403475 PMCID: PMC5786522 DOI: 10.3389/fimmu.2017.01986] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 12/21/2017] [Indexed: 01/08/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by the loss of adaptive immune tolerance to nucleic acid-containing antigens. The resulting autoantibodies form immune complexes that promote inflammation and tissue damage. Defining the signals that drive pathogenic autoantibody production is an important step in the development of more targeted therapeutic approaches for lupus, which is currently treated primarily with non-specific immunosuppression. Here, we review the contribution of Bruton’s tyrosine kinase (Btk), a component of B and myeloid cell signaling pathways, to disease in murine lupus models. Both gain- and loss-of-function genetic studies have revealed that Btk plays multiple roles in the production of autoantibodies. These include promoting the activation, plasma cell differentiation, and class switching of autoreactive B cells. Small molecule inhibitors of Btk are effective at reducing autoantibody levels, B cell activation, and kidney damage in several lupus models. These studies suggest that Btk may promote end-organ damage both by facilitating the production of autoantibodies and by mediating the inflammatory response of myeloid cells to these immune complexes. While Btk has not been associated with SLE in GWAS studies, SLE B cells display signaling defects in components both upstream and downstream of Btk consistent with enhanced activation of Btk signaling pathways. Taken together, these observations indicate that limiting Btk activity is critical for maintaining B cell tolerance and preventing the development of autoimmune disease. Btk inhibitors, generally well-tolerated and approved to treat B cell malignancy, may thus be a useful therapeutic approach for SLE.
Collapse
Affiliation(s)
- Anne B Satterthwaite
- Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, United States.,Department of Immunology, The University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
7
|
Abstract
Despite advances in screening, therapy, and surveillance that have improved survival rates, breast cancer is still the most commonly diagnosed cancer and the second leading cause of cancer mortality among women [1]. Breast cancer is a highly heterogeneous disease rooted in a genetic basis and reflected in clinical behavior. The diversity of breast cancer hormone receptor status and the expression of surface molecules has guided therapy decisions for decades; however, subtype-specific treatment often yields diverse responses due to varying tumor evolution and malignant potential. Although understanding the mechanisms behind breast cancer heterogeneity is still a challenge, available evidence suggests that studying its metabolism has the potential to give valuable insight into the causes of these variations, as well as viable targets for intervention.
Collapse
Affiliation(s)
- Jessica Tan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne Le
- Department of Pathology and Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
8
|
Autoantigen Microarray for High-throughput Autoantibody Profiling in Systemic Lupus Erythematosus. GENOMICS PROTEOMICS & BIOINFORMATICS 2015; 13:210-8. [PMID: 26415621 PMCID: PMC4610965 DOI: 10.1016/j.gpb.2015.09.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/19/2022]
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disease characterized by the production of autoantibodies to a broad range of self-antigens. Profiling the autoantibody repertoire using array-based technology has emerged as a powerful tool for the identification of biomarkers in SLE and other autoimmune diseases. Proteomic microarray has the capacity to hold large number of self-antigens on a solid surface and serve as a high-throughput screening method for the determination of autoantibody specificities. The autoantigen arrays carrying a wide variety of self-antigens, such as cell nuclear components (nucleic acids and associated proteins), cytoplasmic proteins, phospholipid proteins, cell matrix proteins, mucosal/secreted proteins, glomeruli, and other tissue-specific proteins, have been used for screening of autoantibody specificities associated with different manifestations of SLE. Arrays containing synthetic peptides and molecular modified proteins are also being utilized for identification of autoantibodies targeting to special antigenic epitopes. Different isotypes of autoantibodies, including IgG, IgM, IgA, and IgE, as well as other Ig subtypes, can be detected simultaneously with multi-color labeled secondary antibodies. Serum and plasma are the most common biologic materials for autoantibody detection, but other body fluids such as cerebrospinal fluid, synovial fluid, and saliva can also be a source of autoantibody detection. Proteomic microarray as a multiplexed high-throughput screening platform is playing an increasingly-important role in autoantibody diagnostics. In this article, we highlight the use of autoantigen microarrays for autoantibody exploration in SLE.
Collapse
|
9
|
Mayeux J, Skaug B, Luo W, Russell LM, John S, Saelee P, Abbasi H, Li QZ, Garrett-Sinha LA, Satterthwaite AB. Genetic Interaction between Lyn, Ets1, and Btk in the Control of Antibody Levels. THE JOURNAL OF IMMUNOLOGY 2015. [PMID: 26209625 DOI: 10.4049/jimmunol.1500165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tight control of B cell differentiation into plasma cells (PCs) is critical for proper immune responses and the prevention of autoimmunity. The Ets1 transcription factor acts in B cells to prevent PC differentiation. Ets1(-/-) mice accumulate PCs and produce autoantibodies. Ets1 expression is downregulated upon B cell activation through the BCR and TLRs and is maintained by the inhibitory signaling pathway mediated by Lyn, CD22 and SiglecG, and SHP-1. In the absence of these inhibitory components, Ets1 levels are reduced in B cells in a Btk-dependent manner. This leads to increased PCs, autoantibodies, and an autoimmune phenotype similar to that of Ets1(-/-) mice. Defects in inhibitory signaling molecules, including Lyn and Ets1, are associated with human lupus, although the effects are more subtle than the complete deficiency that occurs in knockout mice. In this study, we explore the effect of partial disruption of the Lyn/Ets1 pathway on B cell tolerance and find that Lyn(+/-)Ets1(+/-) mice demonstrate greater and earlier production of IgM, but not IgG, autoantibodies compared with Lyn(+/-) or Ets1(+/-) mice. We also show that Btk-dependent downregulation of Ets1 is important for normal PC homeostasis when inhibitory signaling is intact. Ets1 deficiency restores the decrease in steady state PCs and Ab levels observed in Btk(-/-) mice. Thus, depending on the balance of activating and inhibitory signals to Ets1, there is a continuum of effects on autoantibody production and PC maintenance. This ranges from full-blown autoimmunity with complete loss of Ets1-maintaining signals to reduced PC and Ab levels with impaired Ets1 downregulation.
Collapse
Affiliation(s)
- Jessica Mayeux
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Brian Skaug
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Wei Luo
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Lisa M Russell
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Shinu John
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Prontip Saelee
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Hansaa Abbasi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Quan-Zhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Lee Ann Garrett-Sinha
- Department of Biochemistry, Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, Buffalo, NY 14203; and
| | - Anne B Satterthwaite
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
10
|
Tsantikos E, Gottschalk TA, Maxwell MJ, Hibbs ML. Role of the Lyn tyrosine kinase in the development of autoimmune disease. ACTA ACUST UNITED AC 2014. [DOI: 10.2217/ijr.14.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Der E, Dimo J, Trigunaite A, Jones J, Jørgensen TN. Gr1+ cells suppress T-dependent antibody responses in (NZB x NZW)F1 male mice through inhibition of T follicular helper cells and germinal center formation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:1570-6. [PMID: 24442428 DOI: 10.4049/jimmunol.1302479] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Systemic lupus erythematosus is an autoimmune disease characterized by elevated production of autoreactive Abs. The disease has a much higher prevalence in women than in men. Although testosterone has been shown to be protective in the disease, and estrogens exacerbating, the discrepancy in prevalence between men and women is still not well understood and the mechanism behind it is unknown. We have recently described that male (New Zealand black [NZB] × New Zealand white [NZW])F1 mice have higher levels of Gr1(+)CD11b(+) cells, and that these cells suppress autoantibody production in vivo. In this article, we extend our findings to show that similarly to humans, female lupus-prone (NZB × NZW)F1 mice also respond with stronger Ab responses to thymus-dependent Ag immunization than male littermates. Furthermore, the presence or absence of Gr1-expressing cells not only control Ag-specific Ab responses in male, but not female, (NZB × NZW)F1 mice, but also significantly alter the activation and differentiation of CD4(+) T cells in vitro and in vivo. In particular, we found that Gr1(+) cells from male (NZB × NZW)F1 mice suppress the differentiation and effector function of CXCR5(+)PD-1(+) T follicular helper cells, thereby controlling germinal center formation and plasma cell differentiation. This new finding strongly supports efforts to develop new drugs that target myeloid cell subsets in a number of T and B cell-mediated diseases with a female predominance.
Collapse
Affiliation(s)
- Evan Der
- Department of Immunology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195
| | | | | | | | | |
Collapse
|
12
|
Hua Z, Gross AJ, Lamagna C, Ramos-Hernández N, Scapini P, Ji M, Shao H, Lowell CA, Hou B, DeFranco AL. Requirement for MyD88 signaling in B cells and dendritic cells for germinal center anti-nuclear antibody production in Lyn-deficient mice. THE JOURNAL OF IMMUNOLOGY 2013; 192:875-85. [PMID: 24379120 DOI: 10.4049/jimmunol.1300683] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The intracellular tyrosine kinase Lyn mediates inhibitory receptor function in B cells and myeloid cells, and Lyn(-/-) mice spontaneously develop an autoimmune and inflammatory disease that closely resembles human systemic lupus erythematosus. TLR-signaling pathways have been implicated in the production of anti-nuclear Abs in systemic lupus erythematosus and mouse models of it. We used a conditional allele of Myd88 to determine whether the autoimmunity of Lyn(-/-) mice is dependent on TLR/MyD88 signaling in B cells and/or in dendritic cells (DCs). The production of IgG anti-nuclear Abs, as well as the deposition of these Abs in the glomeruli of the kidneys, leading to glomerulonephritis in Lyn(-/-) mice, were completely abolished by selective deletion of Myd88 in B cells, and autoantibody production and glomerulonephritis were delayed or decreased by deletion of Myd88 in DCs. The reduced autoantibody production in mice lacking MyD88 in B cells or DCs was accompanied by a dramatic decrease in the spontaneous germinal center (GC) response, suggesting that autoantibodies in Lyn(-/-) mice may depend on GC responses. Consistent with this view, IgG anti-nuclear Abs were absent if T cells were deleted (TCRβ(-/-) TCRδ(-/-) mice) or if T cells were unable to contribute to GC responses as the result of mutation of the adaptor molecule SAP. Thus, the autoimmunity of Lyn(-/-) mice was dependent on T cells and on TLR/MyD88 signaling in B cells and in DCs, supporting a model in which DC hyperactivity combines with defects in tolerance in B cells to lead to a T cell-dependent systemic autoimmunity in Lyn(-/-) mice.
Collapse
Affiliation(s)
- Zhaolin Hua
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|