1
|
Ogasawara M, Miyashita M, Yamagishi Y, Ota S. Combined immunotherapy employing Wilms' tumor 1 peptide-pulsed dendritic cells and hormone or chemotherapeutic agents in patients with metastatic castration resistant prostate cancer. Ther Apher Dial 2025. [PMID: 40223232 DOI: 10.1111/1744-9987.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
INTRODUCTION Metastatic castration-resistant prostate cancer (mCRPC) has a poor prognosis. This study evaluated the safety, immune responses, and clinical outcomes of Wilms' tumor 1 (WT1) peptide-loaded dendritic cell (DC) vaccination combined with hormone or chemotherapeutic agents in mCRPC patients. METHODS WT1 peptide-loaded mature DCs were administered intradermally and the adjuvant OK-432 every 2-4 weeks. WT1-specific immune responses were assayed using ELISpot, HLA-tetramer, and CD107a assays. RESULTS Vaccination was well tolerated with no severe adverse events. WT1-specific immune responses were significantly enhanced in patients with stable disease (SD), along with reduced regulatory T cells. A PSA reduction of >50% was achieved in 35.7% of patients. Median overall survival (mOS) was 28.5 months, exceeding the Halabi nomogram's estimate (19.0 months). Patients with WT1-specific immune responses exhibited significantly longer mOS, suggesting a link between WT1-specific immunity and favorable outcomes. CONCLUSION This immunotherapy approach shows promise for improving survival in mCRPC patients.
Collapse
Affiliation(s)
- Masahiro Ogasawara
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan
- Institute for Artificial Organ, Transplantation and Cell Therapy, Sapporo, Japan
| | - Mamiko Miyashita
- Institute for Artificial Organ, Transplantation and Cell Therapy, Sapporo, Japan
| | - Yuka Yamagishi
- Cell Processing Center, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Shuichi Ota
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan
| |
Collapse
|
2
|
Nishinakamura H, Shinya S, Irie T, Sakihama S, Naito T, Watanabe K, Sugiyama D, Tamiya M, Yoshida T, Hase T, Yoshida T, Karube K, Koyama S, Nishikawa H. Coactivation of innate immune suppressive cells induces acquired resistance against combined TLR agonism and PD-1 blockade. Sci Transl Med 2025; 17:eadk3160. [PMID: 39937883 DOI: 10.1126/scitranslmed.adk3160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/02/2024] [Accepted: 01/03/2025] [Indexed: 02/14/2025]
Abstract
Immune checkpoint blockade therapy has been successfully applied in clinical settings as a standard therapy for many cancer types, but its clinical efficacy is restricted to patients with immunologically hot tumors. Various strategies to modify the tumor microenvironment (TME), such as Toll-like receptor (TLR) agonists that can stimulate innate immunity, have been explored but have not been successful. Here, we show a mechanism of acquired resistance to combination treatment consisting of an agonist for multiple TLRs, OK-432 (Picibanil), and programmed cell death protein 1 (PD-1) blockade. Adding the TLR agonist failed to convert the TME from immunogenically cold to hot and did not augment antitumor immunity, particularly CD8+ T cell responses, in multiple animal models. The failure was attributed to the coactivation of innate suppressive cells, such as polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) expressing CXCR2, through high CXCL1 production by macrophages in the TME upon OK-432 treatment. A triple combination treatment with OK-432, PD-1 blockade, and a CXCR2 neutralizing antibody overcame the resistance induced by PMN-MDSCs, resulting in a stronger antitumor effect than that of any dual combinations or single treatments. The accumulation of PMN-MDSCs was similarly observed in the pleural effusions of patients with lung cancer after OK-432 administration. We propose that successful combination cancer immunotherapy intended to stimulate innate antitumor immunity requires modulation of unwanted activation of innate immune suppressive cells, including PMN-MDSCs.
Collapse
Affiliation(s)
- Hitomi Nishinakamura
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Sayoko Shinya
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
- Discovery and Research, Ono Pharmaceutical Co. Ltd., Osaka, 618-8585, Japan
| | - Takuma Irie
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Shugo Sakihama
- Laboratory of Hemato-Immunology, Graduate School of Health Sciences, University of the Ryukyus, Nishihara, 903-0125, Japan
| | - Takeo Naito
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Keisuke Watanabe
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
| | - Daisuke Sugiyama
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Motohiro Tamiya
- Respiratory Medicine, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Tatsuya Yoshida
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo 104-0045, Japan
| | - Tetsunari Hase
- Department of Respiratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Takao Yoshida
- Discovery and Research, Ono Pharmaceutical Co. Ltd., Osaka, 618-8585, Japan
| | - Kennosuke Karube
- Department of Pathology and Laboratory Medicine, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Shohei Koyama
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, 565-0871, Japan
| | - Hiroyoshi Nishikawa
- Division of Cancer Immunology, Research Institute/Exploratory Oncology Research and Clinical Trial Center (EPOC), National Cancer Center Japan, Tokyo, 104-0045/Chiba 277-8577, Japan
- Department of Immunology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Division of Cancer Immune Multicellular System Regulation, Center for Cancer Immunotherapy and Immunobiology (CCII), Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
3
|
Xie Q, Sun J, Sun M, Wang Q, Wang M. Perturbed microbial ecology in neuromyelitis optica spectrum disorder: Evidence from the gut microbiome and fecal metabolome. Mult Scler Relat Disord 2024; 92:105936. [PMID: 39418776 DOI: 10.1016/j.msard.2024.105936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 09/23/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Neuromyelitis optica spectrum disorder (NMOSD) is a central nervous system inflammatory demyelinating immune-mediated ailment, which is influenced by genetic, epigenetic, and environmental elements. The escalating incidence of NMOSD in recent years implies alterations in environmental risk factors. Recent research has established a correlation between gut microbiomes and the development of NMOSD. METHODS Metagenomic shotgun sequencing and gas chromatography-mass spectrometry (GC-MS) were employed to assess alterations of the structure and function in the fecal microbiome, as well as levels of short-chain fatty acids (SCFAs) in fecal and blood samples, among individuals with neuromyelitis optica spectrum disorder (NMOSD) during the acute phase (n = 25), the remission phase (n = 11), and a group of healthy controls (HCs) (n = 24). We further explored the correlation between gut microbiota and the pathogenesis of NMOSD through fecal microbiota transplantation (FMT). The gut microbiome from human donors diagnosed with NMOSD or HCs was transplanted into germ-free mice, followed by an analysis of the alterations in the structure and functionality of the transplanted mice's gut microbiome. Additionally, the impact of microbiome transfer on the immunity and spinal cord of germ-free mice was assessed through various techniques, including ELISA, flow cytometry, western blot, histopathology, and transcriptome sequencing. RESULTS (1) At the taxonomic levels of genus and species, there were significant differences in the α-diversity of the microbiome between HCs and NMOSD patients in the acute phase, with NMOSD patients having higher species diversity. (2) In the acute phase, the gut microbiota of NMOSD patients was characterized by Ruminococcaceae_unclassified, Campylobacter, Parabacteroides, Lactobacillus, Akkermansia, Streptococcus oralis, Clostridium leptum, Clostridium asparagiforme, Firmicutes bacterium CAG 238, and Lactobacillus fermentum. (3) The relative abundances of Coprobacter, Turicimonas, Gemmiger, Enterobacter, Roseburia sp.CAG 471, Veillonella tobetsuensis, Proteobacteria bacterium CAG 139, Ruminococcus bicirculans, Lactococcus lactis, Flavonifractor plautii, and Streptococcus cristatus were notably lower in patients experiencing remission compared to NMOSD patients in the acute phase, On the other hand, the relative abundances of Flavonifractor (P = 0.049) and Clostridium aldenense (P = 0.049) were significantly higher. Following medication, the gut microbiome distribution in NMOSD patients during remission closely resembled that of healthy controls (HCs). (4) Compared with HCs, acetate levels in the feces of patients with NMOSD in the acute phase were significantly lower. (5) In addition, we transplanted feces from NMOSD patients into germ-free mice and revealed a significant increase in the levels of IL-6, IL-17A, and IL-23 in the blood of mice belonging to the NMOSD fecal transplantation (NFMT) group. Additionally, the IL-10 level exhibited a significant reduction. Moreover, the proportion of Th17 cells displayed a significant increase, while the proportion of Treg cells exhibited a significant decrease in the spleens of NFMT mice. CONCLUSION Patients in the acute phase of neuromyelitis optica spectrum disorder (NMOSD) exhibited imbalances in their gut microbiota and a deficiency in short-chain fatty acids (SCFAs). Following drug treatment, the composition of intestinal microbes in NMOSD patients during the remission phase closely resembled that of the healthy control population. The FMT experiment provided evidence of the significant association between intestinal flora and the pathogenesis of NMOSD. Consequently, investigating gut microbiota and identifying novel microbial markers hold promise for the diagnosis and treatment of NMOSD patients.
Collapse
Affiliation(s)
- QinFang Xie
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Jing Sun
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - MengJiao Sun
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China
| | - Qi Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China.
| | - ManXia Wang
- Department of Neurology, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou, Gansu 730030, China.
| |
Collapse
|
4
|
Melero I, Castanon E, Alvarez M, Champiat S, Marabelle A. Intratumoural administration and tumour tissue targeting of cancer immunotherapies. Nat Rev Clin Oncol 2021; 18:558-576. [PMID: 34006998 PMCID: PMC8130796 DOI: 10.1038/s41571-021-00507-y] [Citation(s) in RCA: 296] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Immune-checkpoint inhibitors and chimeric antigen receptor (CAR) T cells are revolutionizing oncology and haematology practice. With these and other immunotherapies, however, systemic biodistribution raises safety issues, potentially requiring the use of suboptimal doses or even precluding their clinical development. Delivering or attracting immune cells or immunomodulatory factors directly to the tumour and/or draining lymph nodes might overcome these problems. Hence, intratumoural delivery and tumour tissue-targeted compounds are attractive options to increase the in situ bioavailability and, thus, the efficacy of immunotherapies. In mouse models, intratumoural administration of immunostimulatory monoclonal antibodies, pattern recognition receptor agonists, genetically engineered viruses, bacteria, cytokines or immune cells can exert powerful effects not only against the injected tumours but also often against uninjected lesions (abscopal or anenestic effects). Alternatively, or additionally, biotechnology strategies are being used to achieve higher functional concentrations of immune mediators in tumour tissues, either by targeting locally overexpressed moieties or engineering 'unmaskable' agents to be activated by elements enriched within tumour tissues. Clinical trials evaluating these strategies are ongoing, but their development faces issues relating to the administration methodology, pharmacokinetic parameters, pharmacodynamic end points, and immunobiological and clinical response assessments. Herein, we discuss these approaches in the context of their historical development and describe the current landscape of intratumoural or tumour tissue-targeted immunotherapies.
Collapse
Affiliation(s)
- Ignacio Melero
- Department of Immunology, Clínica Universidad de Navarra, Pamplona, Spain.
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain.
- Program for Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Eduardo Castanon
- Department of Immunology, Clínica Universidad de Navarra, Pamplona, Spain
- Department of Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Universidad de Navarra, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Stephane Champiat
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Université Paris Saclay, Gustave Roussy, Villejuif, France
- INSERM U1015, Gustave Roussy, Villejuif, France
- Biotherapies for In Situ Antitumor Immunization (BIOTHERIS), Centre d'Investigation Clinique INSERM CICBT1428, Villejuif, France
| | - Aurelien Marabelle
- Département d'Innovation Thérapeutique et d'Essais Précoces (DITEP), Université Paris Saclay, Gustave Roussy, Villejuif, France.
- INSERM U1015, Gustave Roussy, Villejuif, France.
- Biotherapies for In Situ Antitumor Immunization (BIOTHERIS), Centre d'Investigation Clinique INSERM CICBT1428, Villejuif, France.
| |
Collapse
|
5
|
Koya T, Date I, Kawaguchi H, Watanabe A, Sakamoto T, Togi M, Kato T, Yoshida K, Kojima S, Yanagisawa R, Koido S, Sugiyama H, Shimodaira S. Dendritic Cells Pre-Pulsed with Wilms' Tumor 1 in Optimized Culture for Cancer Vaccination. Pharmaceutics 2020; 12:pharmaceutics12040305. [PMID: 32231023 PMCID: PMC7238244 DOI: 10.3390/pharmaceutics12040305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/21/2022] Open
Abstract
With recent advances in cancer vaccination therapy targeting tumor-associated antigens (TAAs), dendritic cells (DCs) are considered to play a central role as a cell-based drug delivery system in the bioactive immune environment. Ex vivo generation of monocyte-derived DCs has been conventionally applied in adherent manufacturing systems with separate loading of TAAs before clinical use. We developed DCs pre-pulsed with Wilms’ tumor (WT1) peptides in low-adhesion culture maturation (WT1-DCs). Quality tests (viability, phenotype, and functions) of WT1-DCs were performed for process validation, and findings were compared with those for conventional DCs (cDCs). In comparative analyses, WT1-DCs showed an increase in viability and recovery of the DC/monocyte ratio, displaying lower levels of IL-10 (an immune suppressive cytokine) and a similar antigen-presenting ability in an in vitro cytotoxic T lymphocytes (CTLs) assay with cytomegalovirus, despite lower levels of CD80 and PD-L2. A clinical study revealed that WT1-specific CTLs (WT1-CTLs) were detected upon using the WT1-DCs vaccine in patients with cancer. A DC vaccine containing TAAs produced under an optimized manufacturing protocol is a potentially promising cell-based drug delivery system to induce acquired immunity.
Collapse
Affiliation(s)
- Terutsugu Koya
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
| | - Ippei Date
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
| | - Haruhiko Kawaguchi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
| | - Asuka Watanabe
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
| | - Takuya Sakamoto
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
| | - Misa Togi
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
| | - Tomohisa Kato
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
| | - Kenichi Yoshida
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
| | - Shunsuke Kojima
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto, Nagano 390-8621, Japan; (S.K.); (R.Y.)
| | - Ryu Yanagisawa
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto, Nagano 390-8621, Japan; (S.K.); (R.Y.)
| | - Shigeo Koido
- Department of Gastroenterology and Hepatology, The Jikei University School of Medicine, Kashiwa, Chiba 277-8567, Japan;
| | - Haruo Sugiyama
- Department of Cancer Immunology, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan;
| | - Shigetaka Shimodaira
- Department of Regenerative Medicine, Kanazawa Medical University, Uchinada, Kahoku 920-0293, Japan; (T.K.); (I.D.); (H.K.); (A.W.); (T.S.); (M.T.); (T.K.J.)
- Center for Regenerative medicine, Kanazawa Medical University Hospital, Uchinada, Kahoku 920-0293, Japan;
- Center for Advanced Cell Therapy, Shinshu University Hospital, Matsumoto, Nagano 390-8621, Japan; (S.K.); (R.Y.)
- Correspondence: ; Tel.: +81-76-218-8304
| |
Collapse
|
6
|
Ogasawara M, Miyashita M, Yamagishi Y, Ota S. Phase I/II Pilot Study of Wilms' Tumor 1 Peptide-Pulsed Dendritic Cell Vaccination Combined With Conventional Chemotherapy in Patients With Head and Neck Cancer. Ther Apher Dial 2019; 23:279-288. [PMID: 31033141 DOI: 10.1111/1744-9987.12831] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 02/25/2019] [Indexed: 11/30/2022]
Abstract
The prognosis of metastatic or relapsed head and neck squamous cell carcinoma (HNSCC) remains poor despite the introduction of immune checkpoint blockade agents. We aimed to investigate the safety and the feasibility of a vaccination with Wilms' tumor 1 peptide-loaded dendritic cells (DCs) and OK-432 adjuvant combined with conventional chemotherapy. Eleven eligible patients with metastatic or relapsed HNSCC were enrolled. No severe adverse events related to a vaccination were observed. Five patients had durable stable disease and six other patients had disease progression after DC vaccination. Median progression-free survival and overall survival was 6.4 months and 12.1 months, respectively. DC vaccination augmented Wilms' tumor 1-specific immunity which might be related to clinical outcome. These results indicate that DC-based immunotherapy combined with a conventional chemotherapy is safe and feasible for patients in advanced stage of HNSCC.
Collapse
Affiliation(s)
- Masahiro Ogasawara
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan.,Institute for Artificial Organ, Transplantation and Cell Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Mamiko Miyashita
- Institute for Artificial Organ, Transplantation and Cell Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Yuka Yamagishi
- Cell Processing Center, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Shuichi Ota
- Department of Internal Medicine, Sapporo Hokuyu Hospital, Sapporo, Japan
| |
Collapse
|
7
|
Ogasawara M, Miyashita M, Ota S. Vaccination of Urological Cancer Patients With WT1 Peptide-Pulsed Dendritic Cells in Combination With Molecular Targeted Therapy or Conventional Chemotherapy Induces Immunological and Clinical Responses. Ther Apher Dial 2018; 22:266-277. [PMID: 29851270 DOI: 10.1111/1744-9987.12694] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/13/2018] [Indexed: 02/01/2023]
Abstract
The prognosis of metastatic or relapsed renal cell carcinoma (RCC) or bladder cancer (BC) remains poor despite the introduction of immune checkpoint blockade agents. We aimed to investigate the safety and the feasibility of a vaccination with WT1 peptide-loaded dendritic cells (DCs) and OK-432 adjuvant combined with molecular targeted therapy or conventional chemotherapy. Five eligible patients with metastatic or relapsed RCC and five eligible patients with BC were enrolled. No severe adverse events related to a vaccination were observed. Seven patients with RCC or non-muscle invasive BC had durable stable disease and three other patients had disease progression after DC vaccination. DC vaccination augmented WT1 specific immunity and the reduction of regulatory T cells which might be related to clinical outcome. These results indicate that DC-based immunotherapy combined with a molecular targeted therapy or a conventional chemotherapy is safe and feasible for patients in advanced stage of RCC or BC.
Collapse
Affiliation(s)
- Masahiro Ogasawara
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan.,Institute for Artificial Organs, Transplantation and Gene Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Mamiko Miyashita
- Institute for Artificial Organs, Transplantation and Gene Therapy, Sapporo Hokuyu Hospital, Sapporo, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Japan
| |
Collapse
|
8
|
Oba MS, Teramukai S, Ohashi Y, Ogawa K, Maehara Y, Sakamoto J. The efficacy of adjuvant immunochemotherapy with OK-432 after curative resection of gastric cancer: an individual patient data meta-analysis of randomized controlled trials. Gastric Cancer 2016; 19:616-624. [PMID: 25804300 DOI: 10.1007/s10120-015-0489-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 03/13/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND OK-432 has been used as a cancer treatment for 40 years, and the immunostimulatory effects of OK-432 therapy have been intensely investigated in Japan. Recently, it has received attention as a possible booster for cancer vaccine treatments. Our previous meta-analysis based on summary measures revealed a significant improvement in the survival of patients with curatively resected gastric cancer. However, it is impossible to exclude the possibility of bias due to several prognostic factors. METHODS We collected individual data for patients with stage III or stage IV gastric cancer after curative resection from 14 trials that were identified in a previous meta-analysis. Immunochemotherapy with OK-432 was compared with treatment with standard chemotherapy on an intention-to-treat basis. The primary end point was overall survival. Stratified survival analyses were performed with the trial as the stratification factor. Subgroup analyses were also performed according to the potential prognostic factors, which included pathological factors, splenectomy, and delayed-type hypersensitivity. RESULTS There were 796 and 726 patients in the OK-432 and control groups, respectively. The median overall survival was 42.6 months for the OK-432 group and 32.3 months for the control group. The overall hazard ratio was 0.88 (95 % confidence interval 0.77-1.00, p = 0.050). No factor showed a statistically significant interaction in the subgroup analyses. CONCLUSIONS The results suggest that immunochemotherapy treatment with OK-432 could have a borderline significant effect for patients with stage III or stage IV gastric cancer after curative resection.
Collapse
Affiliation(s)
- Mari S Oba
- Department of Biostatistics and Epidemiology, Yokohama City University, Yokohama, Japan. .,, 4-57 Urafune-cho, Minami-ku, Yokohama, 232-0024, Japan.
| | - Satoshi Teramukai
- Department of Biostatistics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuo Ohashi
- Department of Integrated Science and Engineering for Sustainable Society, Chuo University, Tokyo, Japan
| | - Kenji Ogawa
- Department of Surgery, Tokyo Women's Medical University Medical Center East, Tokyo, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | |
Collapse
|
9
|
Fernández-García EM, Vera-Badillo FE, Perez-Valderrama B, Matos-Pita AS, Duran I. Immunotherapy in prostate cancer: review of the current evidence. Clin Transl Oncol 2014; 17:339-57. [DOI: 10.1007/s12094-014-1259-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 11/21/2014] [Indexed: 01/03/2023]
|
10
|
Rammensee HG, Singh-Jasuja H. HLA ligandome tumor antigen discovery for personalized vaccine approach. Expert Rev Vaccines 2013; 12:1211-7. [PMID: 24090147 PMCID: PMC3821395 DOI: 10.1586/14760584.2013.836911] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Every cancer is different and cancer cells differ from normal cells, in particular, through genetic alterations. HLA molecules on the cell surface enable T lymphocytes to recognize cellular alterations as antigens, including mutations, increase in gene product copy numbers or expression of genes usually not used in the adult organism. The search for cancer-associated antigens shared by many patients with a particular cancer has yielded a number of hits used in clinical vaccination trials with indication of survival benefit. Targeting cancer-specific antigens, which are exclusively expressed on cancer cells and not on normal cells, holds the promise for much better results and perhaps even a cure. Such antigens, however, may specifically appear in very few patients or may be mutated appearing just in one patient. Therefore, to target these in a molecularly defined way, the approach has to be individualized.
Collapse
Affiliation(s)
- Hans-Georg Rammensee
- Department of Immunology, Institute of Cell Biology, and German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ) Partner Site Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | | |
Collapse
|
11
|
Darrasse-Jèze G, Podsypanina K. How numbers, nature, and immune status of foxp3(+) regulatory T-cells shape the early immunological events in tumor development. Front Immunol 2013; 4:292. [PMID: 24133490 PMCID: PMC3784046 DOI: 10.3389/fimmu.2013.00292] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 09/05/2013] [Indexed: 12/21/2022] Open
Abstract
The influence of CD4(+)CD25(+)Foxp3(+) regulatory T-cells (Tregs) on cancer progression has been demonstrated in a large number of preclinical models and confirmed in several types of malignancies. Neoplastic processes trigger an increase of Treg numbers in draining lymph nodes, spleen, blood, and tumors, leading to the suppression of anti-tumor responses. Treg-depletion before or early in tumor development may lead to complete tumor eradication and extends survival of mice and humans. However this strategy is ineffective in established tumors, highlighting the critical role of the early Treg-tumor encounters. In this review, after discussing old and new concepts of immunological tumor tolerance, we focus on the nature (thymus-derived vs. peripherally derived) and status (naïve or activated/memory) of the regulatory T-cells at tumor emergence. The recent discoveries in this field suggest that the activation status of Tregs and effector T-cells (Teffs) at the first encounter with the tumor are essential to shape the fate and speed of the immune response across a variety of tumor models. The relative timing of activation/recruitment of anti-tumor cells vs. tolerogenic cells at tumor emergence appears to be crucial in the identification of tumor cells as friend or foe, which has broad implications for the design of cancer immunotherapies.
Collapse
Affiliation(s)
- Guillaume Darrasse-Jèze
- Faculté de Médecine, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; Unité 1013, Institut National de la Santé et de le Recherche Médicale, Hôpital Necker , Paris , France ; Immunoregulation and Immunopathology Team, INEM , Paris , France
| | | |
Collapse
|