1
|
Nappi F. Myocarditis and Inflammatory Cardiomyopathy in Dilated Heart Failure. Viruses 2025; 17:484. [PMID: 40284927 PMCID: PMC12031395 DOI: 10.3390/v17040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Inflammatory cardiomyopathy is a condition that is characterised by the presence of inflammatory cells in the myocardium, which can lead to a significant deterioration in cardiac function. The etiology of this condition involves multiple factors, both infectious and non-infectious causes. While it is primarily associated with viral infections, other potential causes include bacterial, protozoal, or fungal infections, as well as a wide variety of toxic substances and drugs, and systemic immune-mediated pathological conditions. In spite of comprehensive investigation, the presence of inflammatory cardiomyopathy accompanied by left ventricular dysfunction, heart failure or arrhythmia is indicative of an unfavourable outcome. The reasons for the occurrence of either favourable outcomes, characterised by the absence of residual myocardial injury, or unfavourable outcomes, marked by the development of dilated cardiomyopathy, in patients afflicted by the condition remain to be elucidated. The relative contributions of pathogenic agents, genomic profiles of the host, and environmental factors in disease progression and resolution remain subjects of ongoing discourse. This includes the determination of which viruses function as active inducers and which merely play a bystander role. It remains unknown which changes in the host immune profile are critical in determining the outcome of myocarditis caused by various viruses, including coxsackievirus B3 (CVB3), adenoviruses, parvoviruses B19 and SARS-CoV-2. The objective of this review is unambiguous: to provide a concise summary and comprehensive assessment of the extant evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy. Its focus is exclusively on virus-induced and virus-associated myocarditis. In addition, the extant lacunae of knowledge in this field are identified and the extant experimental models are evaluated, with the aim of proposing future directions for the research domain. This includes differential gene expression that regulates iron and lipid and metabolic remodelling. Furthermore, the current state of knowledge regarding the cardiovascular implications of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is also discussed, along with the open questions that remain to be addressed.
Collapse
Affiliation(s)
- Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord, 93200 Saint-Denis, France
| |
Collapse
|
2
|
Pressley KR, Naseem Y, Nalawade S, Forsthuber TG. The distinct functions of MIF in inflammatory cardiomyopathy. Front Immunol 2025; 16:1544484. [PMID: 40092999 PMCID: PMC11906721 DOI: 10.3389/fimmu.2025.1544484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
The immune system plays a crucial role in cardiac homeostasis and disease, and the innate and adaptive immune systems can be beneficial or detrimental in cardiac injury. The pleiotropic proinflammatory cytokine macrophage migration inhibitory factor (MIF) is involved in the pathogenesis of many human disease conditions, including heart diseases and inflammatory cardiomyopathies. Inflammatory cardiomyopathies are frequently observed after microbial infection but can also be caused by systemic immune-mediated diseases, drugs, and toxic substances. Immune cells and MIF are implicated in many of these conditions and may affect progression of inflammatory cardiomyopathy (ICM) to myocardial remodeling and dilated cardiomyopathy (DCM). The potential for targeting MIF therapeutically in patients with inflammatory diseases is an active area of investigation. Here we review the current literature supporting the role(s) of MIF in ICM and cardiac dysfunction. We posit that future research to further elucidate the underlying functions of MIF in cardiac pathologies is warranted.
Collapse
Affiliation(s)
- Kyle R. Pressley
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
- Department of Neuroscience, Developmental and Regenerative Biology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Yashfa Naseem
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| | - Saisha Nalawade
- Department of Pre-clinical Immunology, Corner Therapeutics, Watertown, MA, United States
| | - Thomas G. Forsthuber
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
3
|
Sun J, Yao J, Olén O, Halfvarson J, Bergman D, Ebrahimi F, Roelstraete B, Rosengren A, Sundström J, Ludvigsson JF. Long-Term Risk of Myocarditis in Patients With Inflammatory Bowel Disease: A Nationwide Cohort Study in Sweden. Am J Gastroenterol 2024; 119:1866-1874. [PMID: 38315442 DOI: 10.14309/ajg.0000000000002701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/28/2023] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Despite a suggested link between inflammatory bowel disease (IBD) and myocarditis, the association has not been well established. This study aimed to investigate the long-term risk of myocarditis in patients with IBD. METHODS This nationwide cohort involved all patients with biopsy-confirmed IBD in Sweden (1969-2017) (n = 83,264, Crohn's disease [CD, n = 24,738], ulcerative colitis [UC, n = 46,409], and IBD-unclassified [IBD-U, n = 12,117]), general population reference individuals (n = 391,344), and IBD-free full siblings (n = 96,149) and followed until 2019. Primary outcome was incident myocarditis, and secondary outcome was severe myocarditis (complicated with heart failure, death, or readmission). Flexible parametric survival models were used to estimate adjusted hazard ratios (aHRs) and cumulative incidence of outcomes, along with 95% confidence intervals. RESULTS During a median follow-up of 12 years, there were 256 myocarditis cases in patients with IBD (incidence rate [IR] = 22.6/100,000 person-years) and 710 in reference individuals (IR = 12.9), with an aHR of 1.55 (95% confidence interval 1.33-1.81). The increased risk persisted through 20 years after IBD diagnosis, corresponding to 1 extra myocarditis case in 735 patients with IBD until then. This increased risk was observed in CD (aHR = 1.48 [1.11-1.97]) and UC (aHR = 1.58 [1.30-1.93]). IBD was also associated with severe myocarditis (IR: 10.1 vs 3.5; aHR = 2.44 [1.89-3.15]), irrespective of IBD subtypes (CD: aHR = 2.39 [1.43-4.01], UC: aHR = 2.82 [1.99-4.00], and IBD-U: aHR = 3.14 [1.55-6.33]). Sibling comparison analyses yielded similar results. DISCUSSION Patients with IBD had an increased risk of myocarditis, especially severe myocarditis, for ≥20 years after diagnosis, but absolute risks were low.
Collapse
Affiliation(s)
- Jiangwei Sun
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jialu Yao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ola Olén
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
- Sachs' Children and Youth Hospital, Stockholm South General Hospital, Stockholm, Sweden
- Department of Clinical Science and Education Södersjukhuset, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Halfvarson
- Department of Gastroenterology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - David Bergman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Fahim Ebrahimi
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Gastroenterology and Hepatology, Clarunis University Center for Gastrointestinal and Liver Diseases, Basel, Switzerland
| | - Bjorn Roelstraete
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Annika Rosengren
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska University Hospital VG-Region, Gothenburg, Sweden
| | - Johan Sundström
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Jonas F Ludvigsson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatrics, Örebro University Hospital, Örebro, Sweden
- Division of Digestive and Liver Disease, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
4
|
Won T, Song EJ, Kalinoski HM, Moslehi JJ, Čiháková D. Autoimmune Myocarditis, Old Dogs and New Tricks. Circ Res 2024; 134:1767-1790. [PMID: 38843292 DOI: 10.1161/circresaha.124.323816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
Autoimmunity significantly contributes to the pathogenesis of myocarditis, underscored by its increased frequency in autoimmune diseases such as systemic lupus erythematosus and polymyositis. Even in cases of myocarditis caused by viral infections, dysregulated immune responses contribute to pathogenesis. However, whether triggered by existing autoimmune conditions or viral infections, the precise antigens and immunologic pathways driving myocarditis remain incompletely understood. The emergence of myocarditis associated with immune checkpoint inhibitor therapy, commonly used for treating cancer, has afforded an opportunity to understand autoimmune mechanisms in myocarditis, with autoreactive T cells specific for cardiac myosin playing a pivotal role. Despite their self-antigen recognition, cardiac myosin-specific T cells can be present in healthy individuals due to bypassing the thymic selection stage. In recent studies, novel modalities in suppressing the activity of pathogenic T cells including cardiac myosin-specific T cells have proven effective in treating autoimmune myocarditis. This review offers an overview of the current understanding of heart antigens, autoantibodies, and immune cells as the autoimmune mechanisms underlying various forms of myocarditis, along with the latest updates on clinical management and prospects for future research.
Collapse
Affiliation(s)
- Taejoon Won
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign (T.W.)
| | - Evelyn J Song
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco (E.J.S., J.J.M.)
| | - Hannah M Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (H.M.K., D.Č)
| | - Javid J Moslehi
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco (E.J.S., J.J.M.)
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (H.M.K., D.Č)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (D.Č)
| |
Collapse
|
5
|
Golino M, Harding D, Del Buono MG, Fanti S, Mohiddin S, Toldo S, Smyth J, Sanna T, Marelli-Berg F, Abbate A. Innate and adaptive immunity in acute myocarditis. Int J Cardiol 2024; 404:131901. [PMID: 38403204 PMCID: PMC11450758 DOI: 10.1016/j.ijcard.2024.131901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 02/27/2024]
Abstract
Acute myocarditis is an acute inflammatory cardiomyopathy associated with cardiac damage triggered by a virus or a pathological immune activation. It may present with a wide range of clinical presentations, ranging from mild symptoms to severe forms like fulminant myocarditis, characterized by hemodynamic compromise and cardiogenic shock. The immune system plays a central role in the pathogenesis of myocarditis. In fact, while its function is primarily protective, aberrant responses can be detrimental. In this context, both innate and adaptive immunity play pivotal roles; notably, the innate system offers a non-specific and immediate defense, while the adaptive provides specialized protection with immunological memory. However, dysregulation in these systems can misidentify cardiac tissue, triggering autoimmune reactions and possibly leading to significant cardiac tissue damage. This review highlights the importance of innate and adaptive immune responses in the progression and treatment of acute myocarditis.
Collapse
Affiliation(s)
- Michele Golino
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America; Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States of America
| | - Daniel Harding
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Marco Giuseppe Del Buono
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Silvia Fanti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom
| | - Saidi Mohiddin
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom; Barts Heart Centre, London, United Kingdom
| | - Stefano Toldo
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America
| | - James Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carillion, Roanoke, VA, United States of America; Virginia Tech Carilion School of Medicine, Roanoke, VA, United States of America; Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, United States of America
| | - Tommaso Sanna
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, London, United Kingdom.
| | - Antonio Abbate
- Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, United States of America.
| |
Collapse
|
6
|
Lv C, Hu C, Zhu C, Wan X, Chen C, Ji X, Qin Y, Lu L, Guo X. Empagliflozin alleviates the development of autoimmune myocarditis via inhibiting NF-κB-dependent cardiomyocyte pyroptosis. Biomed Pharmacother 2024; 170:115963. [PMID: 38042114 DOI: 10.1016/j.biopha.2023.115963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023] Open
Abstract
Autoimmune myocarditis, which falls within the broad spectrum of myocarditis, is characterized by an excessive inflammatory response in the heart, and can progress into dilated cardiomyopathy and irreversible heart failure in all possibility. However, effective clinical therapeutics are limited due to its complex inflammatory reactions. Empagliflozin (EMPA) has been previously demonstrated to possess anti-inflammatory properties. This study aimed to determine the improvement effects of EMPA on cardiac dysfunction under the condition of autoimmune myocarditis, and to further investigate the potential mechanisms. In vivo, all male Balb/c mice were randomly divided into four groups: control, experimental autoimmune myocarditis (EAM), EAM+EMPA and EMPA. In vitro, the effects of EMPA on IL-18-stimulated H9C2 cells were explored and the underlying molecular mechanisms were further determined. EMPA treatment significantly inhibited the development of autoimmune myocarditis, and mice treated with EMPA exhibited improved cardiac function compared with that in the EAM group, potentially through modulating pyroptosis of myocardium. Specifically, the NF-κB pathway was activated in the hearts of the EAM mice, which further activated NLRP3 inflammasome-dependent pyroptosis. EMPA treatment significantly inhibited such activation, thus alleviating inflammatory reactions in the context of EAM. Moreover, in vitro, we also observed that EMPA significantly inhibited pyroptosis of IL-18-stimulated H9C2 cells, and reduced nuclear translocation of NF-κB and degradation of activated IκBα. This work provides the first direct evidence that EMPA can inhibit myocardial inflammation and improve cardiac function in EAM mice, partly attributed to the drug-induced suppression of cardiomyocyte pyroptosis via disrupting the NF-κB pathway.
Collapse
Affiliation(s)
- Chao Lv
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chongqing Hu
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chuanmeng Zhu
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Xiaoning Wan
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Chen Chen
- Department of Cardiology, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuhan 430071, China
| | - Xinyun Ji
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China
| | - Yating Qin
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
| | - Xiaomei Guo
- Department of Cardiology, Tongji Hospital, Tongji Medical college, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan 430030, China.
| |
Collapse
|
7
|
Sisto M, Lisi S. Interleukin-23 Involved in Fibrotic Autoimmune Diseases: New Discoveries. J Clin Med 2023; 12:5699. [PMID: 37685766 PMCID: PMC10489062 DOI: 10.3390/jcm12175699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Interleukin (IL)-23 is a central pro-inflammatory cytokine with a broad range of effects on immune responses. IL-23 is pathologically linked to the induction of the production of the pro-inflammatory cytokines IL-17 and IL-22, which stimulate the differentiation and proliferation of T helper type 17 (Th17) cells. Recent discoveries suggest a potential pro-fibrotic role for IL-23 in the development of chronic inflammatory autoimmune diseases characterized by intense fibrosis. In this review, we summarized the biological features of IL-23 and gathered recent research on the role of IL-23 in fibrotic autoimmune conditions, which could provide a theoretical basis for clinical targeting and drug development.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70123 Bari, Italy;
| | | |
Collapse
|
8
|
Gopinath A, Mackie PM, Phan LT, Mirabel R, Smith AR, Miller E, Franks S, Syed O, Riaz T, Law BK, Urs N, Khoshbouei H. Who Knew? Dopamine Transporter Activity Is Critical in Innate and Adaptive Immune Responses. Cells 2023; 12:cells12020269. [PMID: 36672204 PMCID: PMC9857305 DOI: 10.3390/cells12020269] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The dopamine transporter (DAT) regulates the dimension and duration of dopamine transmission. DAT expression, its trafficking, protein-protein interactions, and its activity are conventionally studied in the CNS and within the context of neurological diseases such as Parkinson's Diseases and neuropsychiatric diseases such as drug addiction, attention deficit hyperactivity and autism. However, DAT is also expressed at the plasma membrane of peripheral immune cells such as monocytes, macrophages, T-cells, and B-cells. DAT activity via an autocrine/paracrine signaling loop regulates macrophage responses to immune stimulation. In a recent study, we identified an immunosuppressive function for DAT, where blockade of DAT activity enhanced LPS-mediated production of IL-6, TNF-α, and mitochondrial superoxide levels, demonstrating that DAT activity regulates macrophage immune responses. In the current study, we tested the hypothesis that in the DAT knockout mice, innate and adaptive immunity are perturbed. We found that genetic deletion of DAT (DAT-/-) results in an exaggerated baseline inflammatory phenotype in peripheral circulating myeloid cells. In peritoneal macrophages obtained from DAT-/- mice, we identified increased MHC-II expression and exaggerated phagocytic response to LPS-induced immune stimulation, suppressed T-cell populations at baseline and following systemic endotoxemia and exaggerated memory B cell expansion. In DAT-/- mice, norepinephrine and dopamine levels are increased in spleen and thymus, but not in circulating serum. These findings in conjunction with spleen hypoplasia, increased splenic myeloid cells, and elevated MHC-II expression, in DAT-/- mice further support a critical role for DAT activity in peripheral immunity. While the current study is only focused on identifying the role of DAT in peripheral immunity, our data point to a much broader implication of DAT activity than previously thought. This study is dedicated to the memory of Dr. Marc Caron who has left an indelible mark in the dopamine transporter field.
Collapse
Affiliation(s)
- Adithya Gopinath
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (A.G.); (H.K.)
| | - Phillip M. Mackie
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Leah T. Phan
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Rosa Mirabel
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Aidan R. Smith
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Emily Miller
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Stephen Franks
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Ohee Syed
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Tabish Riaz
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
| | - Brian K. Law
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Nikhil Urs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL 32611, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (A.G.); (H.K.)
| |
Collapse
|
9
|
Won T, Kalinoski HM, Wood MK, Hughes DM, Jaime CM, Delgado P, Talor MV, Lasrado N, Reddy J, Čiháková D. Cardiac myosin-specific autoimmune T cells contribute to immune-checkpoint-inhibitor-associated myocarditis. Cell Rep 2022; 41:111611. [PMID: 36351411 PMCID: PMC11108585 DOI: 10.1016/j.celrep.2022.111611] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are an effective therapy for various cancers; however, they can induce immune-related adverse events (irAEs) as a side effect. Myocarditis is an uncommon, but fatal, irAE caused after ICI treatments. Currently, the mechanism of ICI-associated myocarditis is unclear. Here, we show the development of myocarditis in A/J mice induced by anti-PD-1 monoclonal antibody (mAb) administration alone without tumor cell inoculation, immunization, or viral infection. Mice with myocarditis have increased cardiac infiltration, elevated cardiac troponin levels, and arrhythmia. Anti-PD-1 mAb treatment also causes irAEs in other organs. Autoimmune T cells recognizing cardiac myosin are activated and increased in mice with myocarditis. Notably, cardiac myosin-specific T cells are present in naive mice, showing a phenotype of antigen-experienced T cells. Collectively, we establish a clinically relevant mouse model for ICI-associated myocarditis and find a contribution of cardiac myosin-specific T cells to ICI-associated myocarditis development and pathogenesis.
Collapse
Affiliation(s)
- Taejoon Won
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hannah M Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Megan K Wood
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - David M Hughes
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Camille M Jaime
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul Delgado
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Monica V Talor
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
10
|
Meeting the Challenges of Myocarditis: New Opportunities for Prevention, Detection, and Intervention—A Report from the 2021 National Heart, Lung, and Blood Institute Workshop. J Clin Med 2022; 11:jcm11195721. [PMID: 36233593 PMCID: PMC9571285 DOI: 10.3390/jcm11195721] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/05/2022] Open
Abstract
The National Heart, Lung, and Blood Institute (NHLBI) convened a workshop of international experts to discuss new research opportunities for the prevention, detection, and intervention of myocarditis in May 2021. These experts reviewed the current state of science and identified key gaps and opportunities in basic, diagnostic, translational, and therapeutic frontiers to guide future research in myocarditis. In addition to addressing community-acquired myocarditis, the workshop also focused on emerging causes of myocarditis including immune checkpoint inhibitors and SARS-CoV-2 related myocardial injuries and considered the use of systems biology and artificial intelligence methodologies to define workflows to identify novel mechanisms of disease and new therapeutic targets. A new priority is the investigation of the relationship between social determinants of health (SDoH), including race and economic status, and inflammatory response and outcomes in myocarditis. The result is a proposal for the reclassification of myocarditis that integrates the latest knowledge of immunological pathogenesis to refine estimates of prognosis and target pathway-specific treatments.
Collapse
|
11
|
Singh K, Fang H, Davies G, Wright B, Lockstone H, Williams RO, Ciháková D, Knight JC, Bhattacharya S. Transcriptomic Analysis of Inflammatory Cardiomyopathy Identifies Molecular Signatures of Disease and Informs in silico Prediction of a Network-Based Rationale for Therapy. Front Immunol 2021; 12:640837. [PMID: 33746983 PMCID: PMC7973371 DOI: 10.3389/fimmu.2021.640837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/12/2021] [Indexed: 11/13/2022] Open
Abstract
Inflammatory cardiomyopathy covers a group of diseases characterized by inflammation and dysfunction of the heart muscle. The immunosuppressive agents such as prednisolone, azathioprine and cyclosporine are modestly effective treatments, but a molecular rationale underpinning such therapy or the development of new therapeutic strategies is lacking. We aimed to develop a network-based approach to identify therapeutic targets for inflammatory cardiomyopathy from the evolving myocardial transcriptome in a mouse model of the disease. We performed bulk RNA sequencing of hearts at early, mid and late time points from mice with experimental autoimmune myocarditis. We identified a cascade of pathway-level events involving early activation of cytokine and chemokine-signaling pathways that precede leucocyte infiltration and are followed by innate immune, antigen-presentation, complement and cell-adhesion pathway activation. We integrated these pathway events into a network-like representation from which we further identified a 50-gene subnetwork that is predominantly induced during the course of autoimmune myocardial inflammation. We developed a combinatorial attack strategy where we quantify network tolerance to combinatorial node removal to determine target-specific therapeutic potential. We find that combinatorial attack of Traf2, Nfkb1, Rac1, and Vav1 disconnects 80% of nodes from the largest network component. Two of these nodes, Nfkb1 and Rac1, are directly targeted by prednisolone and azathioprine respectively, supporting the idea that the methodology developed here can identify valid therapeutic targets. Whereas Nfkb1 and Rac1 removal disconnects 56% of nodes, we show that additional removal of Btk and Pik3cd causes 72% node disconnection. In conclusion, transcriptome profiling, pathway integration, and network identification of autoimmune myocardial inflammation provide a molecular signature applicable to the diagnosis of inflammatory cardiomyopathy. Combinatorial attack provides a rationale for immunosuppressive therapy of inflammatory cardiomyopathy and provides an in silico prediction that the approved therapeutics, ibrutinib and idelalisib targeting Btk and Pik3cd respectively, could potentially be re-purposed as adjuncts to immunosuppression.
Collapse
Affiliation(s)
- Kamayani Singh
- RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Hai Fang
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Graham Davies
- RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Benjamin Wright
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Helen Lockstone
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Richard O. Williams
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Daniela Ciháková
- Division of Immunology, Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Julian C. Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Shoumo Bhattacharya
- RDM Cardiovascular Medicine, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Abstract
Inflammatory cardiomyopathy, characterized by inflammatory cell infiltration into the myocardium and a high risk of deteriorating cardiac function, has a heterogeneous aetiology. Inflammatory cardiomyopathy is predominantly mediated by viral infection, but can also be induced by bacterial, protozoal or fungal infections as well as a wide variety of toxic substances and drugs and systemic immune-mediated diseases. Despite extensive research, inflammatory cardiomyopathy complicated by left ventricular dysfunction, heart failure or arrhythmia is associated with a poor prognosis. At present, the reason why some patients recover without residual myocardial injury whereas others develop dilated cardiomyopathy is unclear. The relative roles of the pathogen, host genomics and environmental factors in disease progression and healing are still under discussion, including which viruses are active inducers and which are only bystanders. As a consequence, treatment strategies are not well established. In this Review, we summarize and evaluate the available evidence on the pathogenesis, diagnosis and treatment of myocarditis and inflammatory cardiomyopathy, with a special focus on virus-induced and virus-associated myocarditis. Furthermore, we identify knowledge gaps, appraise the available experimental models and propose future directions for the field. The current knowledge and open questions regarding the cardiovascular effects associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection are also discussed. This Review is the result of scientific cooperation of members of the Heart Failure Association of the ESC, the Heart Failure Society of America and the Japanese Heart Failure Society.
Collapse
|
13
|
Hamilton JA. GM-CSF in inflammation. J Exp Med 2020; 217:jem.20190945. [PMID: 31611249 PMCID: PMC7037240 DOI: 10.1084/jem.20190945] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
GM-CSF is a potential therapeutic target in inflammation and autoimmunity. This study reviews the literature on the biology of GM-CSF, in particular that describing the research leading to clinical trials targeting GM-CSF and its receptor in numerous inflammatory/autoimmune conditions, such as rheumatoid arthritis. Granulocyte–macrophage colony-stimulating factor (GM-CSF) has many more functions than its original in vitro identification as an inducer of granulocyte and macrophage development from progenitor cells. Key features of GM-CSF biology need to be defined better, such as the responding and producing cell types, its links with other mediators, its prosurvival versus activation/differentiation functions, and when it is relevant in pathology. Significant preclinical data have emerged from GM-CSF deletion/depletion approaches indicating that GM-CSF is a potential target in many inflammatory/autoimmune conditions. Clinical trials targeting GM-CSF or its receptor have shown encouraging efficacy and safety profiles, particularly in rheumatoid arthritis. This review provides an update on the above topics and current issues/questions surrounding GM-CSF biology.
Collapse
Affiliation(s)
- John A Hamilton
- The University of Melbourne, Department of Medicine, Royal Melbourne Hospital, Parkville, Victoria, Australia.,Australian Institute for Musculoskeletal Science, The University of Melbourne and Western Health, St Albans, Victoria, Australia
| |
Collapse
|
14
|
Corral de la Fuente E, Barquín Garcia A, Saavedra Serrano C, Serrano Domingo JJ, Martín Huertas R, Fernández Abad M, Martínez Jáñez N. Myocarditis and carotidynia caused by Granulocyte-Colony stimulating factor administration. Mod Rheumatol Case Rep 2020; 4:318-323. [PMID: 33087005 DOI: 10.1080/24725625.2020.1754552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/03/2020] [Indexed: 10/24/2022]
Abstract
A 59 year-old woman was treated with adjuvant chemotherapy for triple negative breast cancer (TNBC) stage IB. She received pegfilgrastrim as secondary prophylaxis of neutropenia. After administration of pegfilgrastrim on day 11, she was hospitalised because of carotidynia and myocarditis that improved with antibiotics and steroids as an infection was suspected. Once she was recovered, another cycle of chemotherapy with pegfilgrastrim was administrated. At this time, the patient presented to our hospital with fever, odynophagia and chest pain, with diagnosis of myocarditis coupled with cardiogenic shock. She received antibiotics and steroids, advanced life support and also a pericardial window was done, with recovery of her condition. After a complete evaluation and exclusion of other possible aetiologies, we concluded that pegfilgrastrim was responsible for inducing carotidynia and myocarditis. Few cases have been published about Granulocyte-Colony stimulating factor (G-CSF) induced carotidynia and aortitis. However, this is the first reported case about G-CSF induced myocarditis and carotidynia.
Collapse
Affiliation(s)
| | | | | | | | | | - María Fernández Abad
- Department of Medical Oncology, Ramón y Cajal University Hospital, Madrid, Spain
| | | |
Collapse
|
15
|
Lee KMC, Zhang Z, Achuthan A, Fleetwood AJ, Smith JE, Hamilton JA, Cook AD. IL-23 in arthritic and inflammatory pain development in mice. Arthritis Res Ther 2020; 22:123. [PMID: 32471485 PMCID: PMC7345543 DOI: 10.1186/s13075-020-02212-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/06/2020] [Indexed: 12/12/2022] Open
Abstract
Background The cytokine, interleukin-23 (IL-23), can be critical for the progression of inflammatory diseases, including arthritis, and is often associated with T lymphocyte biology. We previously showed that certain lymphocyte-independent, inflammatory arthritis and pain models have a similar requirement for tumour necrosis factor (TNF), granulocyte macrophage-colony stimulating factor (GM-CSF), and C-C motif ligand 17 (CCL17). Given this correlation in cytokine requirements, we explored whether IL-23 might interact with this cytokine cluster in the control of arthritic and inflammatory pain. Methods The role of IL-23 in the development of pain-like behaviour was investigated using mouse arthritis models (zymosan-induced arthritis and GM-CSF-, TNF-, and CCL17-driven monoarticular arthritis) and inflammatory pain models (intraplantar zymosan, GM-CSF, TNF, and CCL17). Additionally, IL-23-induced inflammatory pain was measured in GM-CSF−/−, Tnf−/−, and Ccl17E/E mice and in the presence of indomethacin. Pain-like behaviour and arthritis were assessed by relative weight distribution in hindlimbs and histology, respectively. Cytokine mRNA expression in knees and paw skin was analysed by quantitative PCR. Blood and synovial cell populations were analysed by flow cytometry. Results We report, using Il23p19−/− mice, that innate immune (zymosan)-driven arthritic pain-like behaviour (herein referred to as pain) was completely dependent upon IL-23; optimal arthritic disease development required IL-23 (P < 0.05). Zymosan-induced inflammatory pain was also completely dependent on IL-23. In addition, we found that exogenous TNF-, GM-CSF-, and CCL17-driven arthritic pain, as well as inflammatory pain driven by each of these cytokines, were absent in Il23p19−/− mice; optimal disease in these mBSA-primed models was dependent on IL-23 (P < 0.05). Supporting this cytokine connection, it was found conversely that IL-23 (200 ng) can induce inflammatory pain at 4 h (P < 0.0001) with a requirement for each of the other cytokines as well as cyclooxygenase activity. Conclusions These findings indicate a role for IL-23 in innate immune-mediated arthritic and inflammatory pain with potential links to TNF, GM-CSF, CCL17, and eicosanoid function.
Collapse
Affiliation(s)
- Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, 3050, Australia.
| | - Zihao Zhang
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, 3050, Australia
| | - Adrian Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, 3050, Australia
| | - Andrew J Fleetwood
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, 3050, Australia
| | - Julia E Smith
- Adaptive Immunity, GSK Medicines Research Centre, Stevenage, Hertfordshire, UK
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, 3050, Australia.,Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St. Albans, Victoria, Australia
| | - Andrew D Cook
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
16
|
Rajesh A, Stuart G, Real N, Ahn J, Tschirley A, Wise L, Hibma M. Depletion of langerin + cells enhances cutaneous wound healing. Immunology 2020; 160:366-381. [PMID: 32307696 DOI: 10.1111/imm.13202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/05/2020] [Accepted: 04/10/2020] [Indexed: 12/14/2022] Open
Abstract
Langerin is a C-type lectin receptor that is expressed on Langerhans cells and langerin-positive dermal dendritic cells in the skin. Little is known about the function of langerin+ cells in wound healing. In this study, the effects of ablation of langerin+ cells on healing of a full-thickness excision wound were investigated using the langerin-DTR depletable mouse. Strikingly, depletion of langerin+ cells resulted in more rapid reduction in wound area. Accelerated wound healing in the langerin+ -cell-depleted group was characterized by enhanced neo-epidermis and granulation tissue formation, and increased cellular proliferation within the newly formed tissues. Accelerated healing in the absence of langerin+ cells was associated with increased levels of granulocyte-macrophage colony-stimulating factor, F4/80+ cells and blood vessels within the granulation tissue. These data support an inhibitory role for langerin+ cells during wound healing. Therapies that suppress langerin+ cells or their function may therefore have utility in progressing the healing of wounds in humans.
Collapse
Affiliation(s)
- Aarthi Rajesh
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Gabriella Stuart
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Nicola Real
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Jenny Ahn
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | - Lyn Wise
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Merilyn Hibma
- Department of Pathology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
17
|
Sepah YJ, Velez G, Tang PH, Yang J, Chemudupati T, Li AS, Nguyen QD, Bassuk AG, Mahajan VB. Proteomic analysis of intermediate uveitis suggests myeloid cell recruitment and implicates IL-23 as a therapeutic target. Am J Ophthalmol Case Rep 2020; 18:100646. [PMID: 32274442 PMCID: PMC7132169 DOI: 10.1016/j.ajoc.2020.100646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 10/07/2019] [Accepted: 03/02/2020] [Indexed: 02/06/2023] Open
Abstract
Purpose To profile vitreous protein expression of intermediate uveitis (IU) patients. Observations We identified a mean of 363 ± 41 unique proteins (mean ± SD) in IU vitreous and 393 ± 69 unique proteins in control samples using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of liquid vitreous biopsies collected during pars plana vitrectomy. A total of 233 proteins were differentially expressed among control and IU samples, suggesting a protein signature that could distinguish the two groups. Pathway analysis identified 22 inflammatory mediators of the interleukin-12 (IL-12) signaling pathway in IU vitreous. Upstream regulator analysis identified downstream mediators of IL-23 and myeloid differentiation primary response protein (MYD88), both of which are involved in the recruitment and differentiation of myeloid cells. Taken together, our results suggest the recruitment of myeloid cells as an upstream pathway in the pathogenesis of IU. Conclusions This study provides insights into proteins that will serve as biomarkers and therapeutic targets for IU. These biomarkers will help design future clinical trials using rational molecular therapeutics.
Collapse
Affiliation(s)
- Yasir J Sepah
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Gabriel Velez
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA.,Medical Scientist Training Program, University of Iowa, Iowa City, IA, USA
| | - Peter H Tang
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Jing Yang
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Teja Chemudupati
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Angela S Li
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | - Quan D Nguyen
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA
| | | | - Vinit B Mahajan
- Omics Laboratory, Stanford University, Palo Alto, CA, USA.,Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
18
|
Ye J, Wang Y, Wang Z, Liu L, Yang Z, Wang M, Xu Y, Ye D, Zhang J, Lin Y, Ji Q, Wan J. Roles and Mechanisms of Interleukin-12 Family Members in Cardiovascular Diseases: Opportunities and Challenges. Front Pharmacol 2020; 11:129. [PMID: 32194399 PMCID: PMC7064549 DOI: 10.3389/fphar.2020.00129] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/30/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases represent a complex group of clinical syndromes caused by a variety of interacting pathological factors. They include the most extensive disease population and rank first in all-cause mortality worldwide. Accumulating evidence demonstrates that cytokines play critical roles in the presence and development of cardiovascular diseases. Interleukin-12 family members, including IL-12, IL-23, IL-27 and IL-35, are a class of cytokines that regulate a variety of biological effects; they are closely related to the progression of various cardiovascular diseases, including atherosclerosis, hypertension, aortic dissection, cardiac hypertrophy, myocardial infarction, and acute cardiac injury. This paper mainly discusses the role of IL-12 family members in cardiovascular diseases, and the molecular and cellular mechanisms potentially involved in their action in order to identify possible intervention targets for the prevention and clinical treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jing Ye
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yuan Wang
- Department of Thyroid Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhen Wang
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Ling Liu
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zicong Yang
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Menglong Wang
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yao Xu
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Di Ye
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Jishou Zhang
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| | - Yingzhong Lin
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qingwei Ji
- Department of Cardiology, the People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jun Wan
- Hubei Key Laboratory of Cardiology, Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Wuhan, China
| |
Collapse
|
19
|
Yan K, Yang J, Qian Q, Xu D, Liu H, Wei L, Li M, Xu W. Pathogenic Role of an IL-23/γδT17/Neutrophil Axis in Coxsackievirus B3-Induced Pancreatitis. THE JOURNAL OF IMMUNOLOGY 2019; 203:3301-3312. [PMID: 31748346 DOI: 10.4049/jimmunol.1900787] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/12/2019] [Indexed: 12/16/2022]
Abstract
Coxsackievirus B is a common cause of viral myocarditis and pancreatitis. IL-17A is intensively involved in the pathogenesis of viral myocarditis. Whether IL-17A plays a role in Coxsackievirus B-induced pancreatitis, characterized by acinar cell destruction and immune infiltration, remains largely unknown. We found a significant, but transient, increase of IL-17A expression and γδT influx in the pancreas of C57BL/6J mice within 3 d following CVB3 infection. The pancreatic IL-17A was mainly produced by Vγ4 γδ T cells, to a lesser extent by CD4+ Th17 cells. IL-17A-/- and TCRδ-/- mice both reduced their susceptibility to CVB3 infection and pancreatitis severity when compared with the wild-type mice, without altering viral load. mAb depletion of Vγ4γδ T cells significantly improved mice survival and pancreatic pathology via decreasing Th17 expansion and neutrophil influx into the pancreas compared with isotype-treated mice. Transfer of Vγ4γδ T cells from wild-type, but not IL-17-/-, mice reconstituted TCRδ-/- mice to produce IL-17 and develop pancreatitis to the level of wild-type mice during CVB3 infection, indicating γδ T IL-17A is required for the onset of viral pancreatitis. IL-23 was robustly induced in the pancreas within the first day of infection. Administration of exogenous rIL-23 to mice increased CVB3 pancreatitis through in vivo expansion of IL-17+γδT17 cells at 12 h postinfection. Our findings reveal a key pathogenic role for early-activated γδT17 cells in viral pancreatitis via promoting neutrophil infiltration and Th17 induction. This IL-23/γδT17/neutrophil axis is critically involved in the onset of CVB3 pancreatitis and represents a potential treating target for the disease.
Collapse
Affiliation(s)
- Kepeng Yan
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jie Yang
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Qian Qian
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Dan Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Hui Liu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Lin Wei
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Min Li
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Wei Xu
- Jiangsu Provincial Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
20
|
Mindur JE, Swirski FK. Growth Factors as Immunotherapeutic Targets in Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2019; 39:1275-1287. [PMID: 31092009 DOI: 10.1161/atvbaha.119.311994] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Growth factors, such as CSFs (colony-stimulating factors), EGFs (epidermal growth factors), and FGFs (fibroblast growth factors), are signaling proteins that control a wide range of cellular functions. Although growth factor networks are critical for intercellular communication and tissue homeostasis, their abnormal production or regulation occurs in various pathologies. Clinical strategies that target growth factors or their receptors are used to treat a variety of conditions but have yet to be adopted for cardiovascular disease. In this review, we focus on M-CSF (macrophage-CSF), GM-CSF (granulocyte-M-CSF), IL (interleukin)-3, EGFR (epidermal growth factor receptor), and FGF21 (fibroblast growth factor 21). We first discuss the efficacy of targeting these growth factors in other disease contexts (ie, inflammatory/autoimmune diseases, cancer, or metabolic disorders) and then consider arguments for or against targeting them to treat cardiovascular disease. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- John E Mindur
- From the Graduate Program in Immunology (J.E.M.), Massachusetts General Hospital and Harvard Medical School, Boston.,Center for Systems Biology (J.E.M., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| | - Filip K Swirski
- Center for Systems Biology (J.E.M., F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston.,Department of Radiology (F.K.S.), Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
21
|
Błyszczuk P. Myocarditis in Humans and in Experimental Animal Models. Front Cardiovasc Med 2019; 6:64. [PMID: 31157241 PMCID: PMC6532015 DOI: 10.3389/fcvm.2019.00064] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
Myocarditis is defined as an inflammation of the cardiac muscle. In humans, various infectious and non-infectious triggers induce myocarditis with a broad spectrum of histological presentations and clinical symptoms of the disease. Myocarditis often resolves spontaneously, but some patients develop heart failure and require organ transplantation. The need to understand cellular and molecular mechanisms of inflammatory heart diseases led to the development of mouse models for experimental myocarditis. It has been shown that pathogenic agents inducing myocarditis in humans can often trigger the disease in mice. Due to multiple etiologies of inflammatory heart diseases in humans, a number of different experimental approaches have been developed to induce myocarditis in mice. Accordingly, experimental myocarditis in mice can be induced by infection with cardiotropic agents, such as coxsackievirus B3 and protozoan parasite Trypanosoma cruzi or by activating autoimmune responses against heart-specific antigens. In certain models, myocarditis is followed by the phenotype of dilated cardiomyopathy and the end stage of heart failure. This review describes the most commonly used mouse models of experimental myocarditis with a focus on the role of the innate and adaptive immune systems in induction and progression of the disease. The review discusses also advantages and limitations of individual mouse models in the context of the clinical manifestation and the course of the disease in humans. Finally, animal-free alternatives in myocarditis research are outlined.
Collapse
Affiliation(s)
- Przemysław Błyszczuk
- Department of Clinical Immunology, Jagiellonian University Medical College, Cracow, Poland.,Department of Rheumatology, Center of Experimental Rheumatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Medina BD, Liu M, Vitiello GA, Seifert AM, Zeng S, Bowler T, Zhang JQ, Cavnar MJ, Loo JK, Param NJ, Maltbaek JH, Rossi F, Balachandran V, DeMatteo RP. Oncogenic kinase inhibition limits Batf3-dependent dendritic cell development and antitumor immunity. J Exp Med 2019; 216:1359-1376. [PMID: 31000683 PMCID: PMC6547861 DOI: 10.1084/jem.20180660] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 02/22/2019] [Accepted: 04/03/2019] [Indexed: 12/12/2022] Open
Abstract
Medina et al. demonstrate that Kit oncogene activity in gastrointestinal stromal tumor modulates the CD103+CD11b− dendritic cell (DC) lineage. The antitumor efficacy of oncogene inhibition initially depends on preexisting immunity orchestrated by CD103+CD11b− DCs, but subsequently is limited by a decrease in DC lineage maturation. Gastrointestinal stromal tumor (GIST) is driven by an activating mutation in the KIT proto-oncogene. Using a mouse model of GIST and human specimens, we show that intratumoral murine CD103+CD11b− dendritic cells (DCs) and human CD141+ DCs are associated with CD8+ T cell infiltration and differentiation. In mice, the antitumor effect of the Kit inhibitor imatinib is partially mediated by CD103+CD11b− DCs, and effector CD8+ T cells initially proliferate. However, in both mice and humans, chronic imatinib therapy decreases intratumoral DCs and effector CD8+ T cells. The mechanism in our mouse model depends on Kit inhibition, which reduces intratumoral GM-CSF, leading to the accumulation of Batf3-lineage DC progenitors. GM-CSF is produced by γδ T cells via macrophage IL-1β. Stimulants that expand and mature DCs during imatinib treatment improve antitumor immunity. Our findings identify the importance of tumor cell oncogene activity in modulating the Batf3-dependent DC lineage and reveal therapeutic limitations for combined checkpoint blockade and tyrosine kinase inhibition.
Collapse
Affiliation(s)
- Benjamin D Medina
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Mengyuan Liu
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY.,Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Gerardo A Vitiello
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Adrian M Seifert
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Shan Zeng
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Timothy Bowler
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jennifer Q Zhang
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Michael J Cavnar
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jennifer K Loo
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Nesteene J Param
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Joanna H Maltbaek
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ferdinand Rossi
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Vinod Balachandran
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Ronald P DeMatteo
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, NY .,Department of Surgery, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
23
|
Bracamonte-Baran W, Chen G, Hou X, Talor MV, Choi HS, Davogustto G, Taegtmeyer H, Sung J, Hackam DJ, Nauen D, Čiháková D. Non-cytotoxic Cardiac Innate Lymphoid Cells Are a Resident and Quiescent Type 2-Commited Population. Front Immunol 2019; 10:634. [PMID: 30984196 PMCID: PMC6450181 DOI: 10.3389/fimmu.2019.00634] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 03/08/2019] [Indexed: 12/13/2022] Open
Abstract
Innate lymphoid cells (ILC) are a subset of leukocytes with lymphoid properties that lack antigen specific receptors. They can be stimulated by and exert their effect via specific cytokine axes, whereas Natural Killers (NK) cells are the only known cytotoxic member of this family. ILCs are considered key in linking the innate and adaptive response in physiologic and pathologic environments. In this study, we investigated the properties of non-cytotoxic cardiac ILCs in physiologic, inflammatory, and ischemic conditions. We found that in healthy humans and mice, non-cytotoxic cardiac ILCs are predominantly a type 2-committed population with progenitor-like features, such as an absence of type-specific immunophenotype, intermediate GATA3 expression, and capacity to transiently express Pro-myelocytic Leukemia Zinc Finger protein (PLZF) upon activation. During myocarditis and ischemia, in both human and mice, cardiac ILCs differentiated into conventional ILC2s. We found that cardiac ILCs lack IL-25 receptor and cannot become inflammatory ILC2s. We found a strong correlation between IL-33 production in the heart and the ability of cardiac ILCs to become conventional ILC2s. The main producer of IL-33 was a subset of CD29+Sca-1+ cardiac fibroblasts. ILC2 expansion and fibroblast-derived IL-33 production were significantly increased in the heart in mouse models of infarction and myocarditis. Despite its progenitor-like status in healthy hearts, cardiac ILCs were unable to become ILC1 or ILC3 in vivo and in vitro. Using adoptive transfer and parabiosis, we demonstrated that the heart, unlike other organs such as lung, cannot be infiltrated by circulating ILCs in adulthood even during cardiac inflammation or ischemia. Thus, the ILC2s present during inflammatory conditions are derived from the heart-resident and quiescent steady-state population. Non-cytotoxic cardiac ILCs are a resident population of ILC2-commited cells, with undifferentiated progenitor-like features in steady-state conditions and an ability to expand and develop pro-inflammatory type 2 features during inflammation or ischemia.
Collapse
Affiliation(s)
- William Bracamonte-Baran
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Guobao Chen
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Xuezhou Hou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| | - Monica V. Talor
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Hee Sun Choi
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Giovanni Davogustto
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, United States
| | - Heinrich Taegtmeyer
- Division of Cardiology, Department of Internal Medicine, University of Texas Medical School at Houston, Houston, TX, United States
| | - Jungeun Sung
- School of Medicine, Institute of Genetic Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - David Joel Hackam
- Division of General Pediatric Surgery, Johns Hopkins University and Bloomberg Children's Center, Johns Hopkins Hospital, Baltimore, MD, United States
| | - David Nauen
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Daniela Čiháková
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
24
|
Innate Immune Modulation by GM-CSF and IL-3 in Health and Disease. Int J Mol Sci 2019; 20:ijms20040834. [PMID: 30769926 PMCID: PMC6412223 DOI: 10.3390/ijms20040834] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/31/2019] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) and inteleukin-3 (IL-3) have long been known as mediators of emergency myelopoiesis, but recent evidence has highlighted their critical role in modulating innate immune effector functions in mice and humans. This new wealth of knowledge has uncovered novel aspects of the pathogenesis of a range of disorders, including infectious, neoplastic, autoimmune, allergic and cardiovascular diseases. Consequently, GM-CSF and IL-3 are now being investigated as therapeutic targets for some of these disorders, and some phase I/II clinical trials are already showing promising results. There is also pre-clinical and clinical evidence that GM-CSF can be an effective immunostimulatory agent when being combined with anti-cytotoxic T lymphocyte-associated protein 4 (anti-CTLA-4) in patients with metastatic melanoma as well as in novel cancer immunotherapy approaches. Finally, GM-CSF and to a lesser extent IL-3 play a critical role in experimental models of trained immunity by acting not only on bone marrow precursors but also directly on mature myeloid cells. Altogether, characterizing GM-CSF and IL-3 as central mediators of innate immune activation is poised to open new therapeutic avenues for several immune-mediated disorders and define their potential in the context of immunotherapies.
Collapse
|
25
|
Mouton AJ, Ma Y, Rivera Gonzalez OJ, Daseke MJ, Flynn ER, Freeman TC, Garrett MR, DeLeon-Pennell KY, Lindsey ML. Fibroblast polarization over the myocardial infarction time continuum shifts roles from inflammation to angiogenesis. Basic Res Cardiol 2019; 114:6. [PMID: 30635789 PMCID: PMC6329742 DOI: 10.1007/s00395-019-0715-4] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/04/2019] [Indexed: 12/11/2022]
Abstract
Cardiac fibroblasts are the major producers of extracellular matrix (ECM) to form infarct scar. We hypothesized that fibroblasts undergo a spectrum of phenotype states over the course of myocardial infarction (MI) from early onset to scar formation. Fibroblasts were isolated from the infarct region of C57BL/6J male mice (3-6 months old, n = 60) at days 0 (no MI control) and 1, 3, or 7 after MI. Whole transcriptome analysis was performed by RNA-sequencing. Of the genes sequenced, 3371 were differentially expressed after MI. Enrichment analysis revealed that MI day 1 fibroblasts displayed pro-inflammatory, leukocyte-recruiting, pro-survival, and anti-migratory phenotype through Tnfrsf9 and CD137 signaling. MI day 3 fibroblasts had a proliferative, pro-fibrotic, and pro-angiogenic profile with elevated Il4ra signaling. MI day 7 fibroblasts showed an anti-angiogenic homeostatic-like myofibroblast profile and with a step-wise increase in Acta2 expression. MI day 7 fibroblasts relied on Pik3r3 signaling to mediate Tgfb1 effects and Fgfr2 to regulate PI3K signaling. In vitro, the day 3 MI fibroblast secretome stimulated angiogenesis, while day 7 MI fibroblast secretome repressed angiogenesis through Thbs1 signaling. Our results reveal novel mechanisms for fibroblasts in expressing pro-inflammatory molecules and regulating angiogenesis following MI.
Collapse
Affiliation(s)
- Alan J Mouton
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216-4505, USA
| | - Yonggang Ma
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216-4505, USA
| | - Osvaldo J Rivera Gonzalez
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216-4505, USA
| | - Michael J Daseke
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216-4505, USA
| | - Elizabeth R Flynn
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216-4505, USA
| | - Tom C Freeman
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Michael R Garrett
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Kristine Y DeLeon-Pennell
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216-4505, USA
- Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, 39216, USA
| | - Merry L Lindsey
- Department of Physiology and Biophysics, Mississippi Center for Heart Research, University of Mississippi Medical Center, 2500 North State St, Jackson, MS, 39216-4505, USA.
- Research Service, G.V. (Sonny) Montgomery Veterans Affairs Medical Center, Jackson, MS, 39216, USA.
| |
Collapse
|
26
|
Yan J, Smyth MJ, Teng MWL. Interleukin (IL)-12 and IL-23 and Their Conflicting Roles in Cancer. Cold Spring Harb Perspect Biol 2018; 10:a028530. [PMID: 28716888 PMCID: PMC6028064 DOI: 10.1101/cshperspect.a028530] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The balance of proinflammatory cytokines interleukin (IL)-12 and IL-23 plays a key role in shaping the development of antitumor or protumor immunity. In this review, we discuss the role IL-12 and IL-23 plays in tumor biology from preclinical and clinical data. In particular, we discuss the mechanism by which IL-23 promotes tumor growth and metastases and how the IL-12/IL-23 axis of inflammation can be targeted for cancer therapy.
Collapse
Affiliation(s)
- Juming Yan
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston 4006, Queensland, Australia
- School of Medicine, University of Queensland, Herston 4006, Queensland, Australia
| | - Mark J Smyth
- School of Medicine, University of Queensland, Herston 4006, Queensland, Australia
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston 4006, Queensland, Australia
| | - Michele W L Teng
- Cancer Immunoregulation and Immunotherapy Laboratory, QIMR Berghofer Medical Research Institute, Herston 4006, Queensland, Australia
- School of Medicine, University of Queensland, Herston 4006, Queensland, Australia
| |
Collapse
|
27
|
Cook AD, Hamilton JA. Investigational therapies targeting the granulocyte macrophage colony-stimulating factor receptor-α in rheumatoid arthritis: focus on mavrilimumab. Ther Adv Musculoskelet Dis 2018; 10:29-38. [PMID: 29387176 PMCID: PMC5784476 DOI: 10.1177/1759720x17752036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022] Open
Abstract
Mavrilimumab (formerly CAM-3001) is a high-affinity, immunoglobulin G4 monoclonal antibody (mAb) against the granulocyte macrophage colony-stimulating factor (GM-CSF) receptor-α chain. Phase I and II trials in patients with rheumatoid arthritis (RA) treated with mavrilimumab have shown encouraging results with respect to both safety and efficacy. No significant adverse events have so far been noted. The trials have demonstrated significant clinical benefit, meeting primary endpoints. Furthermore, for RA patients treated with mavrilimumab, who were tumour necrosis factor (TNF) inhibitor-inadequate responders, there are encouraging preliminary data indicating benefit and identifying potential biomarkers predictive of patients likely to find benefit. Here, we review the clinical trial data for mavrilimumab and discuss its potential as a treatment for RA in light of the competitive landscape in which it resides.
Collapse
Affiliation(s)
- Andrew D. Cook
- Department of Medicine at The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| | - John A. Hamilton
- Department of Medicine at The Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria 3050, Australia
| |
Collapse
|
28
|
Barin JG, Talor MV, Diny NL, Ong S, Schaub JA, Gebremariam E, Bedja D, Chen G, Choi HS, Hou X, Wu L, Cardamone AB, Peterson DA, Rose NR, Čiháková D. Regulation of autoimmune myocarditis by host responses to the microbiome. Exp Mol Pathol 2017; 103:141-152. [PMID: 28822770 PMCID: PMC5721523 DOI: 10.1016/j.yexmp.2017.08.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/09/2017] [Indexed: 12/27/2022]
Abstract
The extensive, diverse communities that constitute the microbiome are increasingly appreciated as important regulators of human health and disease through inflammatory, immune, and metabolic pathways. We sought to elucidate pathways by which microbiota contribute to inflammatory, autoimmune cardiac disease. We employed an animal model of experimental autoimmune myocarditis (EAM), which results in inflammatory and autoimmune pathophysiology and subsequent maladaptive cardiac remodeling and heart failure. Antibiotic dysbiosis protected mice from EAM and fibrotic cardiac dysfunction. Additionally, mice derived from different sources with different microbiome colonization profiles demonstrated variable susceptibility to disease. Unexpectedly, it did not track with segmented filamentous bacteria (SFB)-driven Th17 programming of CD4+ T cells in the steady-state gut. Instead, we found disease susceptibility to track with presence of type 3 innate lymphoid cells (ILC3s). Ablating ILCs by antibody depletion or genetic tools in adoptive transfer variants of the EAM model demonstrated that ILCs and microbiome profiles contributed to the induction of CCL20/CCR6-mediated inflammatory chemotaxis to the diseased heart. From these data, we conclude that sensing of the microbiome by ILCs is an important checkpoint in the development of inflammatory cardiac disease processes through their ability to elicit cardiotropic chemotaxis.
Collapse
Affiliation(s)
- Jobert G Barin
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Monica V Talor
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Nicola L Diny
- The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States
| | - SuFey Ong
- The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States
| | - Julie A Schaub
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Elizabeth Gebremariam
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Djahida Bedja
- The Johns Hopkins University School of Medicine, Dept. of Cardiology, United States
| | - Guobao Chen
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Hee Sun Choi
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Xuezhou Hou
- The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States
| | - Lei Wu
- The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States
| | - Ashley B Cardamone
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Daniel A Peterson
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States
| | - Noel R Rose
- Brigham & Women's Hospital, Harvard Medical School, Dept. of Pathology, Boston, MA 02115, United States
| | - Daniela Čiháková
- The Johns Hopkins University School of Medicine, Dept. of Pathology, Div. of Immunology, Baltimore, MD 21205, United States; The Johns Hopkins Bloomberg School of Public Health, The W. Harry Feinstone Dept. of Molecular Microbiology & Immunology, United States.
| |
Collapse
|
29
|
Bracamonte-Baran W, Čiháková D. Cardiac Autoimmunity: Myocarditis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1003:187-221. [PMID: 28667560 DOI: 10.1007/978-3-319-57613-8_10] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Myocarditis is the inflammation of the muscle tissues of the heart (myocardium). After a pathologic cardiac-specific inflammatory process, it may progress to chronic damage and dilated cardiomyopathy. The latter is characterized by systolic dysfunction, whose clinical correlate is heart failure. Nevertheless, other acute complications may arise as consequence of tissue damage and electrophysiologic disturbances. Different etiologies are involved in triggering myocarditis. In some cases, such as giant cell myocarditis or eosinophilic necrotizing myocarditis, it is an autoimmune process. Several factors predispose the development of autoimmune myocarditis such as systemic/local primary autoimmunity, viral infection, HLA and gender bias, exposure of cryptic antigens, mimicry, and deficient thymic training/Treg induction. Once the anti-myocardium autoimmune process is triggered, several components of the immune response orchestrate a sustained attack toward myocardial tissues with particular timing and immunopathogenic features. Innate response mediated by monocytes/macrophages, neutrophils, and eosinophils parallels the adaptive response, playing a final effector role and not only a priming function. Stromal cells like fibroblast are also involved in the process through specific cytokines. Furthermore, adaptive T cell responses have anti-paradigmatic features, as Th17 response is dispensable for acute myocarditis but is the main driver of the process leading to dilated cardiomyopathy. Humoral response, thought to be a bystander, is important in the appearance of late-stage hemodynamic complications. The complexity of that process, as well as the unspecific and variable clinical presentation, had generated difficulties for diagnosis and treatment, which remain suboptimal. In this chapter, we will discuss the most relevant immunopathogenic findings from a basic science and clinical perspective.
Collapse
Affiliation(s)
- William Bracamonte-Baran
- Department of Pathology, Division of Immunology, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD, 21205, USA
| | - Daniela Čiháková
- Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, 720 Rutland Ave., Baltimore, MD, 21205, USA. .,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, 21205, USA.
| |
Collapse
|
30
|
Anti-colony-stimulating factor therapies for inflammatory and autoimmune diseases. Nat Rev Drug Discov 2016; 16:53-70. [PMID: 28031576 DOI: 10.1038/nrd.2016.231] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
Abstract
PURPOSE OF REVIEW The article traces the pathways leading from viral infection of the heart by coxsackievirus B3 to autoimmune myocarditis in its various manifestations. RECENT FINDINGS Myocarditis can be induced by a number of different infectious agents and represents a significant cause of death especially in young individuals. Following infection, patients may develop lymphocytic, eosinophilic, or giant cell/granulomatous myocardial inflammation. It can lead to infectious dilated cardiomyopathy, a disease frequently requiring cardiac transplantation. Although acute viral myocarditis is frequently subclinical and recovery may be spontaneous, treatment of chronic myocarditis is currently unsatisfactory. Ongoing disease may be because of persistent virus in the heart or to immunopathic attack. Depending on the cause, treatment may be antiviral or immunosuppressive. Endomyocardial biopsy is proving of value in determining cause and deciding future therapy. A great deal of information about the pathogenesis of myocarditis has been gained from experimental models in rodents using heart disease induced by infection using coxsackievirus B3 or by immunization with cardiac myosin. SUMMARY Treatment of myocarditis is still problematic and may depend on etiologic diagnosis to distinguish infectious from immune-mediated disease. Both pathogenic mechanisms may co-occur in individual patients. In the future, treatment may depend upon endomyocardial biopsy, immunohistologic testing, improved imaging, and molecular genetic analysis for providing more precise diagnoses.
Collapse
Affiliation(s)
- Noel R Rose
- Department of Pathology, Brigham and Women's Hospital Harvard Medical School, Boston, USA
| |
Collapse
|