1
|
Balde A, Benjakul S, Nazeer RA. A review on NLRP3 inflammasome modulation by animal venom proteins/peptides: mechanisms and therapeutic insights. Inflammopharmacology 2025; 33:1013-1031. [PMID: 39934538 DOI: 10.1007/s10787-025-01656-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
The venom peptides from terrestrial as well as aquatic species have demonstrated potential in regulating the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a sophisticated assemblage present in immune cells responsible for detecting and responding to external mediators. The NLRP3 inflammasome plays a role in several pathological conditions such as type 2 diabetes, hyperglycemia, Alzheimer's disease, obesity, autoimmune disorders, and cardiovascular disorders. Venom peptides derived from animal venoms have been discovered to selectively induce certain signalling pathways, such as the NLRP3 inflammasome, mitogen-activated protein kinase (MAPK), and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Experimental evidence has demonstrated that venom peptides can regulate the expression and activation of the NLRP3 inflammasome, resulting in the secretion of pro-inflammatory cytokines including interleukin (IL)-1β and IL-18. Furthermore, these peptides have been discovered to impede the activation of the NLRP3 inflammasome, therefore diminishing inflammation and tissue injury. The functional properties of venom proteins and peptides obtained from snakes, bees, wasps, and scorpions have been thoroughly investigated, specifically targeting the NLRP3 inflammasome pathway, venom proteins and peptides have shown promise as therapeutic agents for the treatment of certain inflammatory disorders. This review discusses the pathophysiology of NLRP3 inflammasome in the onset of various diseases, role of venom as therapeutics. Further, various venom components and their role in the modulation of NLRP3 inflammasome are discoursed. A substantial number of venomous animals and their toxins are yet unexplored, and to comprehensively grasp the mechanisms of action of them and their potential as therapeutic agents, additional research is required which can lead to the development of novel therapeutics.
Collapse
Affiliation(s)
- Akshad Balde
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro Industry, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand
- Department of Food and Nutrition, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Rasool Abdul Nazeer
- Biopharmaceuticals Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu, 603 203, India.
| |
Collapse
|
2
|
Li H, Zhang P, Lin M, Li K, Zhang C, He X, Gao K. Pyroptosis: candidate key targets for mesenchymal stem cell-derived exosomes for the treatment of bone-related diseases. Stem Cell Res Ther 2025; 16:68. [PMID: 39940049 DOI: 10.1186/s13287-025-04167-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
Bone-related diseases impact a large portion of the global population and, due to their high disability rates and limited treatment options, pose significant medical and economic challenges. Mesenchymal stem cells (MSCs) can differentiate into multiple cell types and offer strong regenerative potential, making them promising for treating various diseases. However, issues with the immune response and cell survival limit the effectiveness of cell transplantation. This has led to increased interest in cell-free stem cell therapy, particularly the use of exosomes, which is the most studied form of this approach. Exosomes are extracellular vesicles that contain proteins, lipids, and nucleic acids and play a key role in cell communication and material exchange. Pyroptosis, a form of cell death involved in innate immunity, is also associated with many diseases. Studies have shown that MSC-derived exosomes have therapeutic potential for treating a range of conditions by regulating inflammation and pyroptosis. This study explored the role of MSC-derived exosomes in modulating pyroptosis to improve the treatment of bone-related diseases.
Collapse
Affiliation(s)
- Haiming Li
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China
| | - Peng Zhang
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China
| | - Minghui Lin
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China
| | - Kang Li
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China
| | - Cunxin Zhang
- Department of Spine Surgery, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| | - Xiao He
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| | - Kai Gao
- Shandong University of Traditional Chinese Medicine, Jinan, CN, China.
- Department of Orthopaedics, Jining No. 1 People's Hospital, Jining, 272011, People's Republic of China.
| |
Collapse
|
3
|
Lu HF, Zhou YC, Hu TY, Yang DH, Wang XJ, Luo DD, Qiu SQ, Cheng BH, Zeng XH. Unraveling the role of NLRP3 inflammasome in allergic inflammation: implications for novel therapies. Front Immunol 2024; 15:1435892. [PMID: 39131161 PMCID: PMC11310156 DOI: 10.3389/fimmu.2024.1435892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Allergic diseases like asthma, allergic rhinitis and dermatitis pose a significant global health burden, driving the search for novel therapies. The NLRP3 inflammasome, a key component of the innate immune system, is implicated in various inflammatory diseases. Upon exposure to allergens, NLRP3 undergoes a two-step activation process (priming and assembly) to form active inflammasomes. These inflammasomes trigger caspase-1 activation, leading to the cleavage of pro-inflammatory cytokines (IL-1β and IL-18) and GSDMD. This process induces pyroptosis and amplifies inflammation. Recent studies in humans and mice strongly suggest a link between the NLRP3 inflammasome, IL-1β, and IL-18, and the development of allergic diseases. However, further research is needed to fully understand NLRP3's specific mechanisms in allergies. This review aims to summarize the latest advances in NLRP3 activation and regulation. We will discuss small molecule drugs and natural products targeting NLRP3 as potential therapeutic strategies for allergic diseases.
Collapse
Affiliation(s)
- Hui-Fei Lu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Yi-Chi Zhou
- Department of Gastroenterology, Beijing University of Chinese Medicine Shenzhen Hospital (Longgang), Shenzhen, China
| | - Tian-Yong Hu
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Dun-Hui Yang
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Xi-Jia Wang
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Dan-Dan Luo
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Shu-Qi Qiu
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Bao-Hui Cheng
- Zhuhai Campus of Zunyi Medical University, Zhuhai, China
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| | - Xian-Hai Zeng
- Department of Otolaryngology, Longgang Otolaryngology Hospital & Shenzhen Otolaryngology Research, Shenzhen, China
| |
Collapse
|
4
|
Yu J, Fu Y, Zhang N, Gao J, Zhang Z, Jiang X, Chen C, Wen Z. Extracellular histones promote TWIK2-dependent potassium efflux and associated NLRP3 activation in alveolar macrophages during sepsis-induced lung injury. Inflamm Res 2024; 73:1137-1155. [PMID: 38733398 DOI: 10.1007/s00011-024-01888-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/15/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND AND AIM Sepsis-induced acute lung injury (ALI) is a complex and life-threatening condition lacking specific and efficient clinical treatments. Extracellular histones, identified as a novel type of damage-associated molecular patterns, have been implicated in the inflammatory process of ALI. However, further elucidation is needed regarding the precise mechanism through which extracellular histones induce inflammation. The aim of this study was to investigate whether extracellular histones can activate NLRP3 inflammasome-mediated inflammation in alveolar macrophages (AMs) by affecting TWIK2-dependent potassium efflux. METHODS AND RESULTS We conducted experiments using cecal ligation and puncture (CLP) C57BL/6 mice and extracellular histone-stimulated LPS-primed MH-S cells. The results demonstrated a significant increase in the levels of extracellular histones in the plasma and bronchoalveolar lavage fluid (BALF) of CLP mice. Furthermore, neutralizing extracellular histone mitigated lung injury and inflammation in CLP-induced ALI mice. In vitro studies confirmed that extracellular histones upregulated the expression of NLRP3 inflammasome activation-related proteins in MH-S cells, and this effect was dependent on increased potassium efflux mediated by the TWIK2 channel on the plasma membrane. Moreover, extracellular histones directly triggered a substantial influx of calcium, leading to increased Rab11 activity and facilitating the trafficking and location of TWIK2 to the plasma membrane. CONCLUSION These findings underscore the critical role of extracellular histone-induced upregulation of TWIK2 expression on the plasma membrane of alveolar macrophages (AMs). This upregulation leads to potassium efflux and subsequent activation of the NLRP3 inflammasome, ultimately exacerbating lung inflammation and injury during sepsis.
Collapse
Affiliation(s)
- Jing Yu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yu Fu
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Nan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiameng Gao
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiyuan Zhang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xuemei Jiang
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Zongmei Wen
- Department of Anesthesiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
5
|
Ji F, Shi C, Shu Z, Li Z. Nanomaterials Enhance Pyroptosis-Based Tumor Immunotherapy. Int J Nanomedicine 2024; 19:5545-5579. [PMID: 38882539 PMCID: PMC11178094 DOI: 10.2147/ijn.s457309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/22/2024] [Indexed: 06/18/2024] Open
Abstract
Pyroptosis, a pro-inflammatory and lytic programmed cell death pathway, possesses great potential for antitumor immunotherapy. By releasing cellular contents and a large number of pro-inflammatory factors, tumor cell pyroptosis can promote dendritic cell maturation, increase the intratumoral infiltration of cytotoxic T cells and natural killer cells, and reduce the number of immunosuppressive cells within the tumor. However, the efficient induction of pyroptosis and prevention of damage to normal tissues or cells is an urgent concern to be addressed. Recently, a wide variety of nanoplatforms have been designed to precisely trigger pyroptosis and activate the antitumor immune responses. This review provides an update on the progress in nanotechnology for enhancing pyroptosis-based tumor immunotherapy. Nanomaterials have shown great advantages in triggering pyroptosis by delivering pyroptosis initiators to tumors, increasing oxidative stress in tumor cells, and inducing intracellular osmotic pressure changes or ion imbalances. In addition, the challenges and future perspectives in this field are proposed to advance the clinical translation of pyroptosis-inducing nanomedicines.
Collapse
Affiliation(s)
- Fujian Ji
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Chunyu Shi
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhenbo Shu
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| | - Zhongmin Li
- Department of Gastrointestinal and Colorectal Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, People’s Republic of China
| |
Collapse
|
6
|
Liao W, Li Y, Liu J, Mou Y, Zhao M, Liu J, Zhang T, Sun Q, Tang J, Wang Z. Homotherapy for heteropathy: therapeutic effect of Butein in NLRP3-driven diseases. Cell Commun Signal 2024; 22:315. [PMID: 38849890 PMCID: PMC11158000 DOI: 10.1186/s12964-024-01695-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/02/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Aberrant inflammatory responses drive the initiation and progression of various diseases, and hyperactivation of NLRP3 inflammasome is a key pathogenetic mechanism. Pharmacological inhibitors of NLRP3 represent a potential therapy for treating these diseases but are not yet clinically available. The natural product butein has excellent anti-inflammatory activity, but its potential mechanisms remain to be investigated. In this study, we aimed to evaluate the ability of butein to block NLRP3 inflammasome activation and the ameliorative effects of butein on NLRP3-driven diseases. METHODS Lipopolysaccharide (LPS)-primed bone-marrow-derived macrophages were pretreated with butein and various inflammasome stimuli. Intracellular potassium levels, ASC oligomerization and reactive oxygen species production were also detected to evaluate the regulatory mechanisms of butein. Moreover, mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis were used to test whether butein has protective effects on these NLRP3-driven diseases. RESULTS Butein blocks NLRP3 inflammasome activation in mouse macrophages by inhibiting ASC oligomerization, suppressing reactive oxygen species production, and upregulating the expression of the antioxidant pathway nuclear factor erythroid 2-related factor 2 (Nrf2). Importantly, in vivo experiments demonstrated that butein administration has a significant protective effect on the mouse models of LPS-induced peritonitis, dextran sodium sulfate-induced colitis, and high-fat diet-induced non-alcoholic steatohepatitis. CONCLUSION Our study illustrates the connotation of homotherapy for heteropathy, i.e., the application of butein to broaden therapeutic approaches and treat multiple inflammatory diseases driven by NLRP3.
Collapse
Affiliation(s)
- Wenhao Liao
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yuchen Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Jingwen Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Yu Mou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Mei Zhao
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Tianxin Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China
| | - Qin Sun
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine, Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Jianyuan Tang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| | - Zhilei Wang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.
| |
Collapse
|
7
|
Lee C, Park M, Wijesinghe WCB, Na S, Lee CG, Hwang E, Yoon G, Lee JK, Roh DH, Kwon YH, Yang J, Hughes SA, Vince JE, Seo JK, Min D, Kwon TH. Oxidative photocatalysis on membranes triggers non-canonical pyroptosis. Nat Commun 2024; 15:4025. [PMID: 38740804 DOI: 10.1038/s41467-024-47634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 04/08/2024] [Indexed: 05/16/2024] Open
Abstract
Intracellular membranes composing organelles of eukaryotes include membrane proteins playing crucial roles in physiological functions. However, a comprehensive understanding of the cellular responses triggered by intracellular membrane-focused oxidative stress remains elusive. Herein, we report an amphiphilic photocatalyst localised in intracellular membranes to damage membrane proteins oxidatively, resulting in non-canonical pyroptosis. Our developed photocatalysis generates hydroxyl radicals and hydrogen peroxides via water oxidation, which is accelerated under hypoxia. Single-molecule magnetic tweezers reveal that photocatalysis-induced oxidation markedly destabilised membrane protein folding. In cell environment, label-free quantification reveals that oxidative damage occurs primarily in membrane proteins related to protein quality control, thereby aggravating mitochondrial and endoplasmic reticulum stress and inducing lytic cell death. Notably, the photocatalysis activates non-canonical inflammasome caspases, resulting in gasdermin D cleavage to its pore-forming fragment and subsequent pyroptosis. These findings suggest that the oxidation of intracellular membrane proteins triggers non-canonical pyroptosis.
Collapse
Affiliation(s)
- Chaiheon Lee
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
- Research Center, O2MEDi inc., Ulsan, Republic of Korea
| | - Mingyu Park
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - W C Bhashini Wijesinghe
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Seungjin Na
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Chae Gyu Lee
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - Eunhye Hwang
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
- Research Center, O2MEDi inc., Ulsan, Republic of Korea
| | - Gwangsu Yoon
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - Jeong Kyeong Lee
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - Deok-Ho Roh
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea
| | - Yoon Hee Kwon
- Research Center, O2MEDi inc., Ulsan, Republic of Korea
| | - Jihyeon Yang
- Research Center, O2MEDi inc., Ulsan, Republic of Korea
| | - Sebastian A Hughes
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jeong Kon Seo
- Research Center, O2MEDi inc., Ulsan, Republic of Korea.
- UNIST Central Research Facility, UNIST, Ulsan, Republic of Korea.
| | - Duyoung Min
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea.
| | - Tae-Hyuk Kwon
- Department of Chemistry, School of Natural Science, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea.
- X-Dynamic Research Center, UNIST, Ulsan, Republic of Korea.
- Research Center, O2MEDi inc., Ulsan, Republic of Korea.
- Graduate School of Carbon Neutrality, UNIST, Ulsan, Republic of Korea.
- Graduate School of Semiconductor Materials and Device Engineering, UNIST, Ulsan, Republic of Korea.
| |
Collapse
|
8
|
Immanuel CN, Teng B, Dong BE, Gordon EM, Luellen C, Lopez B, Harding J, Cormier SA, Fitzpatrick EA, Schwingshackl A, Waters CM. Two-pore potassium channel TREK-1 (K2P2.1) regulates NLRP3 inflammasome activity in macrophages. Am J Physiol Lung Cell Mol Physiol 2024; 326:L367-L376. [PMID: 38252657 PMCID: PMC11281793 DOI: 10.1152/ajplung.00313.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/08/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages (AMs) and bone marrow-derived macrophages (BMDMs) from wild-type (wt) and TREK-1-/- mice, we measured responses to inflammasome priming [using lipopolysaccharide (LPS)] and activation (LPS + ATP). We measured IL-1β, caspase-1, and NLRP3 via ELISA and Western blot. A membrane-permeable potassium indicator was used to measure potassium efflux during ATP exposure, and a fluorescence-based assay was used to assess changes in membrane potential. Inflammasome activation induced by LPS + ATP increased IL-1β secretion in wt AMs, whereas activation was significantly reduced in TREK-1-/- AMs. Priming of BMDMs using LPS was not affected by either genetic deficiency or pharmacological inhibition of TREK-1 with Spadin. Cleavage of caspase-1 following LPS + ATP treatment was significantly reduced in TREK-1-/- BMDMs. The intracellular potassium concentration in LPS-primed wt BMDMs was significantly lower compared with TREK-1-/- BMDMs or wt BMDMs treated with Spadin. Conversely, activation of TREK-1 with BL1249 caused a decrease in intracellular potassium in wt BMDMs. Treatment of LPS-primed BMDMs with ATP caused a rapid reduction in intracellular potassium levels, with the largest change observed in TREK-1-/- BMDMs. Intracellular K+ changes were associated with changes in the plasma membrane potential (Em), as evidenced by a more depolarized Em in TREK-1-/- BMDMs compared with wt, and Em hyperpolarization upon TREK-1 channel opening with BL1249. These results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.NEW & NOTEWORTHY Because of the importance of potassium efflux in inflammasome activation, we investigated the role of the two-pore potassium (K2P) channel TREK-1 in macrophage inflammasome activity. Using primary alveolar macrophages and bone marrow-derived macrophages from wild-type and TREK-1-/- mice, we measured responses to inflammasome priming (using LPS) and activation (LPS + ATP). Our results suggest that TREK-1 is an important regulator of NLRP3 inflammasome activation in macrophages.
Collapse
Grants
- HL131526 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- Le Bonheur Children's Hospital
- 20TPA35490010 American Heart Association (AHA)
- R01 HL131526 NHLBI NIH HHS
- HL151419 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- IA-678511 American Lung Association (ALA)
- R01 HL146821 NHLBI NIH HHS
- HL146821 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- HL123540 HHS | NIH | National Heart, Lung, and Blood Institute (NHLBI)
- R01 HL151419 NHLBI NIH HHS
- R01 HL123540 NHLBI NIH HHS
- HHS | NIH | National Heart, Lung, and Blood Institute (NHBLI)
Collapse
Affiliation(s)
- Camille N Immanuel
- Division of Pediatric Critical Care, Department of Pediatrics, Le Bonheur Children's Hospital, University of Tennessee Health Science Center, Memphis, Tennessee, United States
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Bin Teng
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Brittany E Dong
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Elizabeth M Gordon
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| | - Charlean Luellen
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Benjamin Lopez
- Department of Pediatrics, University of California, Los Angeles, California, United States
| | - Jeffrey Harding
- Department of Biological Sciences, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Stephania A Cormier
- Department of Biological Sciences, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, Louisiana, United States
| | - Elizabeth A Fitzpatrick
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, United States
| | - Andreas Schwingshackl
- Department of Pediatrics, University of California, Los Angeles, California, United States
| | - Christopher M Waters
- Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
9
|
Rifat A, Ossola B, Bürli RW, Dawson LA, Brice NL, Rowland A, Lizio M, Xu X, Page K, Fidzinski P, Onken J, Holtkamp M, Heppner FL, Geiger JRP, Madry C. Differential contribution of THIK-1 K + channels and P2X7 receptors to ATP-mediated neuroinflammation by human microglia. J Neuroinflammation 2024; 21:58. [PMID: 38409076 PMCID: PMC10895799 DOI: 10.1186/s12974-024-03042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/12/2024] [Indexed: 02/28/2024] Open
Abstract
Neuroinflammation is highly influenced by microglia, particularly through activation of the NLRP3 inflammasome and subsequent release of IL-1β. Extracellular ATP is a strong activator of NLRP3 by inducing K+ efflux as a key signaling event, suggesting that K+-permeable ion channels could have high therapeutic potential. In microglia, these include ATP-gated THIK-1 K+ channels and P2X7 receptors, but their interactions and potential therapeutic role in the human brain are unknown. Using a novel specific inhibitor of THIK-1 in combination with patch-clamp electrophysiology in slices of human neocortex, we found that THIK-1 generated the main tonic K+ conductance in microglia that sets the resting membrane potential. Extracellular ATP stimulated K+ efflux in a concentration-dependent manner only via P2X7 and metabotropic potentiation of THIK-1. We further demonstrated that activation of P2X7 was mandatory for ATP-evoked IL-1β release, which was strongly suppressed by blocking THIK-1. Surprisingly, THIK-1 contributed only marginally to the total K+ conductance in the presence of ATP, which was dominated by P2X7. This suggests a previously unknown, K+-independent mechanism of THIK-1 for NLRP3 activation. Nuclear sequencing revealed almost selective expression of THIK-1 in human brain microglia, while P2X7 had a much broader expression. Thus, inhibition of THIK-1 could be an effective and, in contrast to P2X7, microglia-specific therapeutic strategy to contain neuroinflammation.
Collapse
Affiliation(s)
- Ali Rifat
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Bernardino Ossola
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Roland W Bürli
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Lee A Dawson
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Nicola L Brice
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Anna Rowland
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Marina Lizio
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Xiao Xu
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Keith Page
- Cerevance Ltd, 418 Cambridge Science Park, Milton Road, Cambridge, CB4 0PZ, UK
| | - Pawel Fidzinski
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Neurocure Cluster of Excellence, Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Julia Onken
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Martin Holtkamp
- Department of Neurology, Epilepsy-Center Berlin-Brandenburg, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Frank L Heppner
- Neurocure Cluster of Excellence, Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
| | - Jörg R P Geiger
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Christian Madry
- Institute of Neurophysiology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
10
|
Wang H, Tian Y, Fu Y, Ma S, Xu X, Wang W, Lu F, Li X, Feng P, Han S, Chen H, Hou H, Hu Q, Liu C. Testicular tissue response following a 90-day subchronic exposure to HTP aerosols and cigarette smoke in rats. Toxicol Res (Camb) 2023; 12:902-912. [PMID: 37915495 PMCID: PMC10615803 DOI: 10.1093/toxres/tfad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 11/03/2023] Open
Abstract
Background Researches have shown that chronic inhalation of cigarette smoke (CS) disrupts male reproductive system, but it is unclear about the mechanisms behind reproductive damages by tobacco toxicants in male rats. This study was designed to explore the effects of heated tobacco products (HTP) aerosols and CS exposure on the testicular health of rats. Materials and Methods Experiments were performed on male SD rats exposed to filtered air, HTP aerosols at 10 μg/L, 23 μg/L, and 50 μg/L nicotine-equivalent contents, and also CS at 23 μg/L nicotine-equivalent content for 90 days in five exposure groups (coded as sham, HTP_10, HTP_23, HTP_50 and Cig_23). The expression of serum testosterone, testicular tissue inflammatory cytokines (IL-1β, IL-6, IL-10, TNF-α), reactive oxygen species (ROS), superoxide dismutase (SOD) and malondialdehyde (MDA), NLRP3 inflammasome-related mRNAs and proteins (NLRP3, ASC, and Caspase-1), the degree of pyroptosis and histopathology were investigated. Results The results demonstrated that HTP_50 and Cig_23 caused varying degrees of oxidative damage to rat testis, resulting in a decrease of sperm quantity and serum testosterone contents, an increase in the deformity rate, expression levels of proinflammatory cytokines, and NLRP3 inflammasome-related mRNA, and an increase in the NLRP3, ASC, and Caspase-1-immunopositive cells, pyroptosis cell indices, and histopathological damage in the testes of rats. Responses from the HTP_10 and HTP_23 groups were less than those found in the above two exposure groups. Conclusion These findings indicate that HTP_50 and Cig_23 induced oxidative stress in rat testes, induced inflammation and pyroptosis through the ROS/NLRP3/Caspase-1 pathway, and destroyed the integrity of thetesticular tissue structure.
Collapse
Affiliation(s)
- Hongjuan Wang
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Yushan Tian
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Yaning Fu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Shuhao Ma
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Xiaoxiao Xu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Wenming Wang
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Fengjun Lu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Xianmei Li
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Pengxia Feng
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Shulei Han
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Huan Chen
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Hongwei Hou
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Qingyuan Hu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| | - Chuan Liu
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Beijing Life Science Academy, Yingcai South 1st Street, Beijing 102209, PR China
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision and Test Center, No. 2 Fengyang Street, Zhengzhou 450001, PR China
| |
Collapse
|
11
|
Privitera G, Rana N, Armuzzi A, Pizarro TT. The gasdermin protein family: emerging roles in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol 2023; 20:366-387. [PMID: 36781958 PMCID: PMC10238632 DOI: 10.1038/s41575-023-00743-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Since the identification and characterization of gasdermin (GSDM) D as the main effector of inflammatory regulated cell death (or pyroptosis), literature on the GSDM family of pore-forming proteins is rapidly expanding, revealing novel mechanisms regulating their expression and functions that go beyond pyroptosis. Indeed, a growing body of evidence corroborates the importance of GSDMs within the gastrointestinal system, underscoring their critical contributions to the pathophysiology of gastrointestinal cancers, enteric infections and gut mucosal inflammation, such as inflammatory bowel disease. However, with this increase in knowledge, several important and controversial issues have arisen regarding basic GSDM biology and its role(s) during health and disease states. These include critical questions centred around GSDM-dependent lytic versus non-lytic functions, the biological activities of cleaved versus full-length proteins, the differential roles of GSDM-expressing mucosal immune versus epithelial cells, and whether GSDMs promote pathogenic or protective effects during specific disease settings. This Review provides a comprehensive summary and interpretation of the current literature on GSDM biology, specifically focusing on the gastrointestinal tract, highlighting the main controversial issues and their clinical implications, and addressing future areas of research to unravel the specific role(s) of this intriguing, yet enigmatic, family of proteins.
Collapse
Affiliation(s)
- Giuseppe Privitera
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Dipartimento Universitario di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Nitish Rana
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Physiology & Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Alessandro Armuzzi
- IBD Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Theresa T Pizarro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| |
Collapse
|
12
|
Stojkov D, Claus MJ, Kozlowski E, Oberson K, Schären OP, Benarafa C, Yousefi S, Simon HU. NET formation is independent of gasdermin D and pyroptotic cell death. Sci Signal 2023; 16:eabm0517. [PMID: 36693132 DOI: 10.1126/scisignal.abm0517] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Neutrophil extracellular traps (NETs) are DNA scaffolds coated with granule proteins that are released by neutrophils to ensnare and kill bacteria. NET formation occurs in response to many stimuli through independent molecular pathways. Although NET release has been equated to a form of lytic cell death, live neutrophils can rapidly release antimicrobial NETs. Gasdermin D (GSDMD), which causes pyroptotic death in macrophages, is thought to be required for NET formation by neutrophils. Through experiments with known physiological activators of NET formation and ligands that activate canonical and noncanonical inflammasome signaling pathways, we demonstrated that Gsdmd-deficient mouse neutrophils were as competent as wild-type mouse neutrophils in producing NETs. Furthermore, GSDMD was not cleaved in wild-type neutrophils during NET release in response to inflammatory mediators. We found that activation of both canonical and noncanonical inflammasome signaling pathways resulted in GSDMD cleavage in wild-type neutrophils but was not associated with cell death. Moreover, NET formation as a result of either pathway of inflammasome activation did not require GSDMD. Together, these data suggest that NETs can be formed by viable neutrophils after inflammasome activation and that this function does not require GSDMD.
Collapse
Affiliation(s)
- Darko Stojkov
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Meike J Claus
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | | | - Kevin Oberson
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Olivier P Schären
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Charaf Benarafa
- Institute of Virology and Immunology, Mittelhäusern, Switzerland.,Department of Infectious Diseases and Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Shida Yousefi
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, Bern, Switzerland.,Department of Clinical Immunology and Allergology, Sechenov University, Moscow, Russia.,Laboratory of Molecular Immunology, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Institute of Biochemistry, Medical School Brandenburg, Neuruppin, Germany
| |
Collapse
|
13
|
The Therapeutic Potential of Pyroptosis in Melanoma. Int J Mol Sci 2023; 24:ijms24021285. [PMID: 36674798 PMCID: PMC9861152 DOI: 10.3390/ijms24021285] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Pyroptosis is a programmed cell death characterized by the rupture of the plasma membranes and release of cellular content leading to inflammatory reaction. Four cellular mechanisms inducing pyroptosis have been reported thus far, including the (i) caspase 1-mediated canonical, (ii) caspase 4/5/11-mediated non-canonical, (iii) caspase 3/8-mediated and (iv) caspase-independent pathways. Although discovered as a defense mechanism protecting cells from infections of intracellular pathogens, pyroptosis plays roles in tumor initiation, progression and metastasis of tumors, as well as in treatment response to antitumor drugs and, consequently, patient outcome. Pyroptosis induction following antitumor therapies has been reported in several tumor types, including lung, colorectal and gastric cancer, hepatocellular carcinoma and melanoma. This review provides an overview of the cellular pathways of pyroptosis and discusses the therapeutic potential of pyroptosis induction in cancer, particularly in melanoma.
Collapse
|
14
|
Wang S, Moreau F, Chadee K. Gasdermins in Innate Host Defense Against Entamoeba histolytica and Other Protozoan Parasites. Front Immunol 2022; 13:900553. [PMID: 35795683 PMCID: PMC9251357 DOI: 10.3389/fimmu.2022.900553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Gasdermins (GSDMs) are a group of proteins that are cleaved by inflammatory caspases to induce pore formation in the plasma membrane to cause membrane permeabilization and lytic cell death or pyroptosis. All GSDMs share a conserved structure, containing a cytotoxic N-terminal (NT) pore-forming domain and a C-terminal (CT) repressor domain. Entamoeba histolytica (Eh) in contact with macrophages, triggers outside-in signaling to activate inflammatory caspase-4/1 via the noncanonical and canonical pathway to promote cleavage of gasdermin D (GSDMD). Cleavage of GSDMD removes the auto-inhibition that masks the active pore-forming NT domain in the full-length protein by interactions with GSDM-CT. The cleaved NT-GSDMD monomers then oligomerize to form pores in the plasma membrane to facilitate the release of IL-1β and IL-18 with a measured amount of pyroptosis. Pyroptosis is an effective way to counteract intracellular parasites, which exploit replicative niche to avoid killing. To date, most GSDMs have been verified to perform pore-forming activity and GSDMD-induced pyroptosis is rapidly emerging as a mechanism of anti-microbial host defence. Here, we review our comprehensive and current knowledge on the expression, activation, biological functions, and regulation of GSDMD cleavage with emphases on physiological scenario and related dysfunctions of each GSDM member as executioner of cell death, cytokine secretion and inflammation against Eh and other protozoan parasitic infections.
Collapse
Affiliation(s)
| | | | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
15
|
Peng L, Lu Y, Tian H, Jia K, Tao Q, Li G, Wan C, Ye C, Veldhuizen EJA, Chen H, Fang R. Chicken cathelicidin-2 promotes IL-1β secretion via the NLRP3 inflammasome pathway and serine proteases activity in LPS-primed murine neutrophils. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 131:104377. [PMID: 35189160 DOI: 10.1016/j.dci.2022.104377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Cathelicidins have antimicrobial and immunomodulatory activities. Previous studies have shown that chicken cathelicidin-2 (CATH-2) exerts strong anti-inflammatory activity through LPS neutralization. However, it is still unclear whether other intracellular signaling pathways are involved in CATH-2 immunomodulation. Therefore, the CATH-2-meadiated immune response was investigated in LPS-primed neutrophils. Firstly, inflammatory cytokines release was determined in LPS-primed neutrophils. The results showed that CATH-2 significantly promoted secretion of IL-1β and IL-1α while IL-6 and TNF-α were not affected. IL-1β is the key indicator of inflammasome activation. Next, NLRP3 inflammasome signaling pathway was explored using neutrophils of Nlrp3-/-, Asc-/- and Casp1-/- mice and the results showed that the CATH-2-enhanced IL-1β release was completely abrogated, indicating it is NLRP3-dependent. Moreover, CATH-2 significantly induced activation of caspase-1 and gasdermin D (GSDMD) but did not affect LPS-induced mRNA expression of IL-1β and NLRP3, demonstrating that CATH-2 serves as the second signal activating the NLRP3 inflammasome. Furthermore, CATH-2-mediated IL-1β secretion and caspase-1 activation is dependent on potassium efflux but independent of P2X7R. In addition, other signaling pathways including JNK, ERK and SyK were investigated using different inhibitors and the results showed that these signaling pathway inhibitors partially attenuated CATH-2-enhanced IL-1β secretion, especially the JNK inhibitor. Finally, the role of serine protease in CATH-2-mediated NLRP3 inflammasome activation was investigated in neutrophils and the results showed that serine protease activity is involved in CATH-2-enhanced IL-1β secretion and caspase-1 activation. In conclusion, after LPS priming in neutrophils, CATH-2 can be an agonist of the NLRP3 inflammasome. Our study increases the understanding on immunomodulatory effects of chicken cathelicidins and provides new insight on chicken cathelicidins-mediated immune response.
Collapse
Affiliation(s)
- Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Yi Lu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Hongliang Tian
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Kaixiang Jia
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Qi Tao
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Gang Li
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Chao Wan
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China
| | - Edwin J A Veldhuizen
- Department of Biomolecular Health Sciences, Division Infectious Diseases & Immunology, Section Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Hongwei Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China.
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, 400715, China; Immunology Research Center, Institute of Medical Research, Southwest University, Chongqing, 402460, China.
| |
Collapse
|
16
|
Roles and Mechanisms of Regulated Necrosis in Corneal Diseases: Progress and Perspectives. J Ophthalmol 2022; 2022:2695212. [PMID: 35655803 PMCID: PMC9152437 DOI: 10.1155/2022/2695212] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/24/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Regulated necrosis is defined as cell death characterized by loss of the cell membrane integrity and release of the cytoplasmic content. It contributes to the development and progression of some diseases, including ischemic stroke injury, liver diseases, hypertension, and cancer. Various forms of regulated necrosis, particularly pyroptosis, necroptosis, and ferroptosis, have been implicated in the pathogenesis of corneal disease. Regulated necrosis of corneal cells enhances inflammatory reactions in the adjacent corneal tissues, leading to recurrence and aggravation of corneal disease. In this review, we summarize the molecular mechanisms of pyroptosis, necroptosis, and ferroptosis in corneal diseases and discuss the roles of regulated necrosis in inflammation regulation, tissue repair, and corneal disease outcomes.
Collapse
|
17
|
Wu XY, Lv JY, Zhang SQ, Yi X, Xu ZW, Zhi YX, Zhao BX, Pang JX, Yung KKL, Liu SW, Zhou PZ. ML365 inhibits TWIK2 channel to block ATP-induced NLRP3 inflammasome. Acta Pharmacol Sin 2022; 43:992-1000. [PMID: 34341510 DOI: 10.1038/s41401-021-00739-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023]
Abstract
Dysregulation of NLRP3 inflammasome results in uncontrolled inflammation, which participates in various chronic diseases. TWIK2 potassium channel mediates potassium efflux that has been reported to be an essential upstream mechanism for ATP-induced NLRP3 inflammasome activation. Thus, TWIK2 potassium channel could be a potential drug target for NLRP3-related inflammatory diseases. In the present study we investigated the effects of known K2P channel modulators on TWIK2 channel expressed in a heterologous system. In order to increase plasma membrane expression and thus TWIK2 currents, a mutant channel with three mutations (TWIK2I289A/L290A/Y308A) in the C-terminus was expressed in COS-7 cells. TWIK2 currents were assessed using whole-cell voltage-clamp recording. Among 6 known K2P channel modulators tested (DCPIB, quinine, fluoxetine, ML365, ML335, and TKDC), ML365 was the most potent TWIK2 channel blocker with an IC50 value of 4.07 ± 1.5 μM. Furthermore, ML365 selectively inhibited TWIK2 without affecting TWIK1 or THIK1 channels. We showed that ML365 (1, 5 μM) concentration-dependently inhibited ATP-induced NLRP3 inflammasome activation in LPS-primed murine BMDMs, whereas it did not affect nigericin-induced NLRP3, or non-canonical, AIM2 and NLRC4 inflammasomes activation. Knockdown of TWIK2 significantly impaired the inhibitory effect of ML365 on ATP-induced NLRP3 inflammasome activation. Moreover, we demonstrated that pre-administration of ML365 (1, 10, 25 mg/kg, ip) dose-dependently ameliorated LPS-induced endotoxic shock in mice. In a preliminary pharmacokinetic study conducted in rats, ML365 showed good absolute oral bioavailability with F value of 22.49%. In conclusion, ML365 provides a structural reference for future design of selective TWIK2 channel inhibitors in treating related inflammatory diseases.
Collapse
|
18
|
Liu J, Fan G, Tao N, Sun T. Role of Pyroptosis in Respiratory Diseases and its Therapeutic Potential. J Inflamm Res 2022; 15:2033-2050. [PMID: 35370413 PMCID: PMC8974246 DOI: 10.2147/jir.s352563] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/16/2022] [Indexed: 11/23/2022] Open
Abstract
Pyroptosis is an inflammatory type of regulated cell death that is dependent on inflammasome activation and downstream proteases such as caspase-1 or caspase 4/5/11. The main executors are gasdermins, which have an inherent pore-forming function on the membrane and release inflammatory cytokines, such as interleukin (IL)-1β, IL-18 and high mobility group box 1. Emerging evidence demonstrates that pyroptosis is involved in the pathogenesis of various pulmonary diseases. In this review, we mainly discuss the biological mechanisms of pyroptosis, explore the relationship between pyroptosis and respiratory diseases, and discuss emerging therapeutic strategies for respiratory diseases.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Guoqing Fan
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- The MOH Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, People’s Republic of China
| | - Ningning Tao
- Department of Respiratory Medicine and Critical Care, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People’s Republic of China
| | - Tieying Sun
- Department of Respiratory Medicine and Critical Care, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Graduate School of Peking Union Medical College, Beijing, People’s Republic of China
- Correspondence: Tieying Sun, Department of Respiratory Medicine and Critical Care, Beijing Hospital, Dongcheng District, Beijing, 100730, People’s Republic of China, Tel +86 15153169108, Email
| |
Collapse
|
19
|
Huang FR, Fang WT, Cheng ZP, Shen Y, Wang DJ, Wang YQ, Sun LN. Imatinib-induced hepatotoxicity via oxidative stress and activation of NLRP3 inflammasome: an in vitro and in vivo study. Arch Toxicol 2022; 96:1075-1087. [PMID: 35190838 DOI: 10.1007/s00204-022-03245-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/02/2022] [Indexed: 12/14/2022]
Abstract
Imatinib (IM), a milestone drug used in the field of molecular targeted therapy, has been reported to cause serious adverse liver effects, including liver failure and even death. Immune-mediated injury and mitochondrial dysfunction are involved in drug-induced liver injury. However, the mechanism of IM-induced hepatotoxicity remains unclear and warrants further study. In our study, Sprague Dawley rats were administered IM by gavage with 50 mg/kg body weight (BW) once daily for 10 days. Drug-induced liver injury accompanied by inflammatory infiltration was observed in rats following IM exposure, and the expression of NOD-like receptor protein 3 (NLRP3) inflammasome-related proteins was significantly increased compared with that of the control. HepG2 cells were exposed to 0-100 μM IM for 24 h. The results showed that IM decreased cell viability in a dose-dependent manner. Moreover, IM induced a state of obvious oxidative stress and activation of nuclear factor kappa B (NF-κB) in cells, which resulted in the activation of NLRP3 inflammasomes, including caspase 1 cleavage and IL-1β release. These results were significantly reduced after the use of the antioxidants N-acetyl-l-cysteine or the NF-κB inhibitor pyrrolidine di-thio-carbamate. Furthermore, NLRP3 knockdown significantly reduced the release of inflammatory cytokines and improved cell viability. In summary, our data demonstrated that oxidative stress and NLRP3 inflammasome activation are involved in the process of IM-induced hepatotoxicity. The results of this study provide a reference for the prevention and treatment of IM-induced hepatotoxicity.
Collapse
Affiliation(s)
- Feng-Ru Huang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China.,School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Wen-Tong Fang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China
| | - Zi-Ping Cheng
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China
| | - Ye Shen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China
| | - Dun-Jian Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China. .,School of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210009, China. .,School of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
20
|
Eiberg S, Ancker L, Javed S, Haag F. Visualizing P2X7-Dependent Inflammasome Formation in Human Monocytes by Fluorescence Microscopy and Flow Cytometry. Methods Mol Biol 2022; 2510:265-278. [PMID: 35776330 DOI: 10.1007/978-1-0716-2384-8_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
One of the most prominent effects of P2X7 activation in myeloid cells is the induction of the assembly of the NLRP3 inflammasome, a central process controlling the secretion of pro-inflammatory cytokines of the IL-1 family such as IL-1β and IL-18. The ability to visualize inflammasome formation greatly facilitates research into the role of P2X7 in inflammation. In this chapter, a method to monitor the formation of the NLPR3 inflammasome in monocytes and other myeloid cells could be demonstrated. Following priming by lipopolysaccharide (LPS), P2X7 was stimulated by ATP to mediate inflammasome assembly. This causes cytosolically disperse ASC, a central component of the inflammasome, to aggregate into microscopically visible specks due to its recruitment to the inflammasome. Methods to monitor this change in the spatial distribution of ASC in human peripheral blood monocytes by flow cytometry and fluorescence microscopy are presented.
Collapse
Affiliation(s)
- Samantha Eiberg
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Leif Ancker
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sana Javed
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute of Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
21
|
Functional Interplay between Methyltransferases and Inflammasomes in Inflammatory Responses and Diseases. Int J Mol Sci 2021; 22:ijms22147580. [PMID: 34299198 PMCID: PMC8306412 DOI: 10.3390/ijms22147580] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 02/08/2023] Open
Abstract
An inflammasome is an intracellular protein complex that is activated in response to a pathogenic infection and cellular damage. It triggers inflammatory responses by promoting inflammatory cell death (called pyroptosis) and the secretion of pro-inflammatory cytokines, interleukin (IL)-1β and IL-18. Many types of inflammasomes have been identified and demonstrated to play a central role in inducing inflammatory responses, leading to the onset and progression of numerous inflammatory diseases. Methylation is a biological process by which methyl groups are transferred from methyl donors to proteins, nucleic acids, and other cellular molecules. Methylation plays critical roles in various biological functions by modulating gene expression, protein activity, protein localization, and molecular stability, and aberrant regulation of methylation causes deleterious outcomes in various human diseases. Methylation is a key determinant of inflammatory responses and diseases. This review highlights the current understanding of the functional relationship between inflammasome regulation and methylation of cellular molecules in inflammatory responses and diseases.
Collapse
|
22
|
Bresch IP, Machtens DA, Reubold TF, Eschenburg S. Development of an in vitro assay for the detection of polymerization of the pyrin domain of ASC. Biotechniques 2021; 70:350-354. [PMID: 34114503 DOI: 10.2144/btn-2021-0011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Multicomponent protein complexes called inflammasomes play a major role in the innate immune system by activating proinflammatory cytokines and promoting a highly inflammatory form of programmed cell death, called pyroptosis. A hallmark of the function of the nucleotide-binding domain, leucine-rich repeat and NLRP3-mediated inflammasome assembly is the polymerization of ASC into large filaments. The ASC filaments recruit and activate procaspase-1 by induced proximity. We developed an in vitro assay for monitoring the polymerization of the pyrin domain of ASC by microscale thermophoresis. We have validated the assay by analyzing the effects of buffer conditions, mutations of ASC and the use of seeds on the polymerization behavior of ASC.
Collapse
Affiliation(s)
- Ian P Bresch
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Dominik A Machtens
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Thomas F Reubold
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Susanne Eschenburg
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| |
Collapse
|
23
|
Hou F, Peng L, Jiang J, Chen T, Xu D, Huang Q, Ye C, Peng Y, Hu DL, Fang R. ATP Facilitates Staphylococcal Enterotoxin O Induced Neutrophil IL-1β Secretion via NLRP3 Inflammasome Dependent Pathways. Front Immunol 2021; 12:649235. [PMID: 34017331 PMCID: PMC8129502 DOI: 10.3389/fimmu.2021.649235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is an important zoonotic food-borne pathogen causing severe invasive infections, such as sepsis, pneumonia, food poisoning, toxic shock syndrome and autoimmune diseases. Staphylococcal enterotoxin O (SEO) is a new type of enterotoxins of S. aureus with superantigenic and emetic activity. However, it is still unclear about SEO-induced host inflammatory response. Therefore, the mechanism of SEO-induced interleukin-1β (IL-1β) secretion in mouse neutrophils was investigated in this study. Our results showed that recombinant SEO had superantigenic activity with high level of gamma interferon (IFN-γ) production in mouse spleen cells and induced inflammatory cytokines expression including IL-1α, IL-1β, IL-6 and TNF-α in neutrophils under the action of ATP. In addition, SEO-induced IL-1β secretion was dependent on activation of Toll like receptor 4 (TLR4), nuclear factor kappa B (NF-κB) and c-jun N-terminal kinase (JNK) signaling pathways. However, SEO-induced IL-1β secretion was abolished in the neutrophils of NLRP3-/- mice compared with those of wild type mice, indicating that activation of NLRP3 inflammasome mediated IL-1β secretion during neutrophils stimulation with SEO under the action of ATP. Moreover, this process of SEO+ATP-induced IL-1β secretion was dependent on potassium (K+) efflux. Taken together, our study suggests that activation of TLR4/JNK/NLRP3 inflammasome signaling pathway mediate maturation and secretion of IL-1β and provides a new insight on S. aureus virulence factor-induced host immune response.
Collapse
Affiliation(s)
- Fengqing Hou
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Lianci Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Jiali Jiang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China.,Chongqing Animal Disease Prevention and Control Center, Chongqing, China
| | - Tingting Chen
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Dongyi Xu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Qingyuan Huang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Chao Ye
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Yuanyi Peng
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China
| | - Dong-Liang Hu
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China.,Department of Zoonoses, School of Veterinary Medicine, Kitasato University, Towada, Japan
| | - Rendong Fang
- Joint International Research Laboratory of Animal Health and Animal Food Safety, College of Veterinary Medicine, Southwest University, Chongqing, China.,Immunology Research Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
24
|
Tsuchiya K, Hosojima S, Hara H, Kushiyama H, Mahib MR, Kinoshita T, Suda T. Gasdermin D mediates the maturation and release of IL-1α downstream of inflammasomes. Cell Rep 2021; 34:108887. [PMID: 33761363 DOI: 10.1016/j.celrep.2021.108887] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 12/05/2020] [Accepted: 02/27/2021] [Indexed: 01/13/2023] Open
Abstract
IL-1α serves as a pro-inflammatory cytokine. Although pro-IL-1α has cytokine activity, proteolytic maturation increases its potency and release from cells. IL-1α maturation occurs in a caspase-1-dependent manner following inflammasome activation. However, pro-IL-1α is not a substrate of caspase-1, and it remains unclear what mediates the maturation of this cytokine downstream of inflammasomes. Here, we show that gasdermin D (GSDMD), an executor of pyroptosis, is required for the rapid induction of IL-1α maturation by non-particulate inflammasome activators. Ablation of GSDMD abrogates the maturation of IL-1α, but not of IL-1β. Inflammasome-induced maturation of IL-1α relies on extracellular Ca2+ and calpains. Ca2+ influx and calpain activation are induced in a GSDMD-dependent manner. Glycine, which inhibits cell lysis, but not GSDMD pore formation, does not affect IL-1α maturation. These results suggest that during inflammasome activation, GSDMD processed by caspase-1 forms plasma membrane pores that mediate Ca2+ influx, resulting in the calpain-dependent maturation of IL-1α.
Collapse
Affiliation(s)
- Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| | - Shoko Hosojima
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hideki Hara
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hiroko Kushiyama
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Mamunur Rashid Mahib
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; Department of Biochemistry and Molecular Biology, University of Chittagong, Chittagong-4331, Bangladesh
| | - Takeshi Kinoshita
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Takashi Suda
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
25
|
Tsuchiya K. Switching from Apoptosis to Pyroptosis: Gasdermin-Elicited Inflammation and Antitumor Immunity. Int J Mol Sci 2021; 22:E426. [PMID: 33406603 PMCID: PMC7794676 DOI: 10.3390/ijms22010426] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022] Open
Abstract
Pyroptosis is a necrotic form of regulated cell death. Gasdermines (GSDMs) are a family of intracellular proteins that execute pyroptosis. While GSDMs are expressed as inactive forms, certain proteases proteolytically activate them. The N-terminal fragments of GSDMs form pores in the plasma membrane, leading to osmotic cell lysis. Pyroptotic cells release pro-inflammatory molecules into the extracellular milieu, thereby eliciting inflammation and immune responses. Recent studies have significantly advanced our knowledge of the mechanisms and physiological roles of pyroptosis. GSDMs are activated by caspases and granzymes, most of which can also induce apoptosis in different situations, for example where the expression of GSDMs is too low to cause pyroptosis; that is, caspase/granzyme-induced apoptosis can be switched to pyroptosis by the expression of GSDMs. Pyroptosis appears to facilitate the killing of tumor cells by cytotoxic lymphocytes, and it may also reprogram the tumor microenvironment to an immunostimulatory state. Understanding pyroptosis may help the development of cancer immunotherapy. In this review article, recent findings on the mechanisms and roles of pyroptosis are introduced. The effectiveness and limitations of pyroptosis in inducing antitumor immunity are also discussed.
Collapse
Affiliation(s)
- Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research Institute, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan; ; Tel.: +81-76-264-6721
- Institute for Frontier Science Initiative (InFiniti), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| |
Collapse
|
26
|
Xu Z, Chen ZM, Wu X, Zhang L, Cao Y, Zhou P. Distinct Molecular Mechanisms Underlying Potassium Efflux for NLRP3 Inflammasome Activation. Front Immunol 2020; 11:609441. [PMID: 33424864 PMCID: PMC7793832 DOI: 10.3389/fimmu.2020.609441] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022] Open
Abstract
The NLRP3 inflammasome is a core component of innate immunity, and dysregulation of NLRP3 inflammasome involves developing autoimmune, metabolic, and neurodegenerative diseases. Potassium efflux has been reported to be essential for NLRP3 inflammasome activation by structurally diverse pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs). Thus, the molecular mechanisms underlying potassium efflux to activate NLRP3 inflammasome are under extensive investigation. Here, we review current knowledge about the distinction channels or pore-forming proteins underlying potassium efflux for NLRP3 inflammasome activation with canonical/non-canonical signaling or following caspase-8 induced pyroptosis. Ion channels and pore-forming proteins, including P2X7 receptor, Gasdermin D, pannexin-1, and K2P channels involved present viable therapeutic targets for NLRP3 inflammasome related diseases.
Collapse
Affiliation(s)
- Ziwei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Zi-Mo Chen
- 19th grade, Pharmacy Major, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaoyan Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Linjie Zhang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Cao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Pingzheng Zhou
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
27
|
Pereira LMN, Assis PA, de Araújo NM, Durso DF, Junqueira C, Ataíde MA, Pereira DB, Lien E, Fitzgerald KA, Zamboni DS, Golenbock DT, Gazzinelli RT. Caspase-8 mediates inflammation and disease in rodent malaria. Nat Commun 2020; 11:4596. [PMID: 32929083 PMCID: PMC7490701 DOI: 10.1038/s41467-020-18295-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/08/2020] [Indexed: 12/18/2022] Open
Abstract
Earlier studies indicate that either the canonical or non-canonical pathways of inflammasome activation have a limited role on malaria pathogenesis. Here, we report that caspase-8 is a central mediator of systemic inflammation, septic shock in the Plasmodium chabaudi-infected mice and the P. berghei-induced experimental cerebral malaria (ECM). Importantly, our results indicate that the combined deficiencies of caspases-8/1/11 or caspase-8/gasdermin-D (GSDM-D) renders mice impaired to produce both TNFα and IL-1β and highly resistant to lethality in these models, disclosing a complementary, but independent role of caspase-8 and caspases-1/11/GSDM-D in the pathogenesis of malaria. Further, we find that monocytes from malaria patients express active caspases-1, -4 and -8 suggesting that these inflammatory caspases may also play a role in the pathogenesis of human disease. Inflammasome activation plays a role in malaria pathogenesis, but details aren’t well understood. Here, the authors show that caspase-8 is a central mediator of systemic inflammation in rodent malaria and that monocytes from malaria patients express active caspases-1, -4 and -8.
Collapse
Affiliation(s)
- Larissa M N Pereira
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil.,Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Patrícia A Assis
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Natalia M de Araújo
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil.,Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Danielle F Durso
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Caroline Junqueira
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil
| | - Marco Antônio Ataíde
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil.,Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Dhelio B Pereira
- Centro de Pesquisas em Medicina Tropical, FIOCRUZ-RO, Porto Velho, RO, 76812-329, Brazil
| | - Egil Lien
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Katherine A Fitzgerald
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Dario S Zamboni
- Departamento de Biologia Celular Molecular e Bioagentes Patogenicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Douglas T Golenbock
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil.,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Ricardo T Gazzinelli
- Instituto Rene Rachou, FIOCRUZ-MG, Belo Horizonte, MG, 30190-002, Brazil. .,Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil. .,Department of Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA. .,Plataforma de Medicina Translacional, Fundação Oswaldo Cruz/Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto, SP, 14049-900, Brazil.
| |
Collapse
|
28
|
Watanabe S, Usui-Kawanishi F, Karasawa T, Kimura H, Kamata R, Komada T, Inoue Y, Mise N, Kasahara T, Takahashi M. Glucose regulates hypoxia-induced NLRP3 inflammasome activation in macrophages. J Cell Physiol 2020; 235:7554-7566. [PMID: 32115713 DOI: 10.1002/jcp.29659] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 02/13/2020] [Indexed: 12/20/2022]
Abstract
Although the intimate linkage between hypoxia and inflammation is well known, the mechanism underlying this linkage has not been fully understood. Nucleotide-binding oligomerization domain-like receptor (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is an intracellular multiprotein complex that regulates interleukin-1β (IL-1β) secretion and pyroptosis, and is implicated in the pathogenesis of sterile inflammatory diseases. Here, we investigated the regulatory mechanism of NLRP3 inflammasome activation in response to hypoxia in macrophages. Severe hypoxia (0.1% O2 ) induced the processing of pro-IL-1β, pro-caspase-1, and gasdermin D, as well as the release of IL-1β and lactate dehydrogenase in lipopolysaccharide (LPS)-primed murine macrophages, indicating that hypoxia induces NLRP3 inflammasome-driven inflammation and pyroptosis. NLRP3 deficiency and a specific caspase-1 blockade inhibited hypoxia-induced IL-1β release. Hypoxia-induced IL-1β release and cell death were augmented under glucose deprivation, and an addition of glucose in the media negatively regulated hypoxia-induced IL-1β release. Under hypoxia and glucose deprivation, hypoxia-induced glycolysis was not driven and subsequently, the intracellular adenosine triphosphates (ATPs) were depleted. Atomic absorption spectrometry analysis showed a reduction of intracellular K+ concentrations, indicating the K+ efflux occurring under hypoxia and glucose deprivation. Furthermore, hypoxia and glucose deprivation-induced IL-1β release was significantly prevented by inhibition of K+ efflux and KATP channel blockers. In vivo experiments further revealed that IL-1β production was increased in LPS-primed mice exposed to hypoxia (9.5% O2 ), which was prevented by a deficiency of NLRP3, an apoptosis-associated speck-like protein containing a caspase recruitment domain, and caspase-1. Our results demonstrate that NLRP3 inflammasome can sense intracellular energy crisis as a danger signal induced by hypoxia and glucose deprivation, and provide new insights into the mechanism underlying hypoxia-induced inflammation.
Collapse
Affiliation(s)
- Sachiko Watanabe
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Fumitake Usui-Kawanishi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan.,Department of Pharmaceutical Engineering, Toyama Prefectural University, Imizu, Toyama, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Hiroaki Kimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Ryo Kamata
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Takanori Komada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yoshiyuki Inoue
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Nathan Mise
- Department of Environmental and Preventive Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Tadashi Kasahara
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi, Japan
| |
Collapse
|
29
|
Yi Y. Functional crosstalk between non-canonical caspase-11 and canonical NLRP3 inflammasomes during infection-mediated inflammation. Immunology 2020; 159:142-155. [PMID: 31630388 PMCID: PMC6954705 DOI: 10.1111/imm.13134] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/25/2019] [Accepted: 10/15/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammation is a part of the body's immune response for protection against pathogenic infections and other cellular damages; however, chronic inflammation is a major cause of various diseases. One key step in the inflammatory response is the activation of inflammasomes, intracellular protein complexes comprising pattern recognition receptors and other inflammatory molecules. The role of the NLRP3 inflammasome in inflammatory responses has been extensively investigated; however, the caspase-11 inflammasome has been recently identified and has been classified as a 'non-canonical' inflammasome, and emerging studies have highlighted its role in inflammatory responses. Because the ligands and the mechanisms for the activation of these two inflammasomes are different, studies to date have separately described their roles, although recent studies have reported the functional cooperation between these two inflammasomes during an inflammatory response. This review discusses the studies investigating the functional crosstalk between non-canonical caspase-11 and canonical NLRP3 inflammasomes in the context of inflammatory responses; moreover, it provides insight for the development of novel anti-inflammatory therapeutics to prevent and treat infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Young‐Su Yi
- Department of Pharmaceutical and Biomedical EngineeringCheongju UniversityCheongjuKorea
| |
Collapse
|
30
|
Tsuchiya K. Inflammasome‐associated cell death: Pyroptosis, apoptosis, and physiological implications. Microbiol Immunol 2020; 64:252-269. [DOI: 10.1111/1348-0421.12771] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Kohsuke Tsuchiya
- Division of Immunology and Molecular Biology, Cancer Research InstituteKanazawa UniversityKanazawa Japan
- Institute for Frontier Science Initiative (InFiniti)Kanazawa UniversityKanazawa Japan
| |
Collapse
|
31
|
Yang Q, Liu Q, Lv H, Wang F, Liu R, Zeng N. Effect of pulegone on the NLPR3 inflammasome during inflammatory activation of THP-1 cells. Exp Ther Med 2019; 19:1304-1312. [PMID: 32010303 PMCID: PMC6966169 DOI: 10.3892/etm.2019.8327] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023] Open
Abstract
Pulegone is a key active component of Schizonepeta essential oil and has been determined to have anti-inflammatory properties. However, the underlying molecular mechanisms with regard to the NLR family pyrin domain containing 3 (NLRP3) inflammasome, also known as the NALP3 inflammasome, have remained to be elucidated. NLRP3 represents a potential link between inflammation and immunity and may play possible key role in various pathologies. In the present study, the modulatory effects of pulegone on the NLRP3 inflammasome were investigated. THP-1 cells induced with phorbol myristate acetate were divided into various groups, including the Normal (control), lipopolysaccharide (LPS), LPS + ATP/nigericin, LPS + ATP/nigericin + 0.2% DMSO and pulegone (0.2, 0.1 and 0.05 mg/ml) groups. ELISA was used to detect the levels of interleukin (IL)-1β and IL-18 in the cell supernatants and the influence of potassium ions was assessed. PCR was used to determine the expression levels of NLRP3, caspase-1, IL-1β and IL-1α in the cell lysates. Furthermore, NLRP3 and apoptosis-associated speck-like protein (ASC) were detected via immunofluorescence assays and fluorescence microscopy was employed to determine the reactive oxygen species (ROS) levels in the THP-1 cells. The results indicated reduced levels of IL-18 and IL-1β in the supernatant of the cells of the pulegone groups when compared with those in the LPS + ATP/nigericin group. In addition, reduced mRNA production of inflammasome-associated genes was detected in the cell lysates after pulegone treatment. The immunofluorescence analyses indicated significantly reduced protein expression levels of NLRP3 and ASC in the pulegone groups, as well as co-localization of the NLRP3 and ASC proteins. The pulegone groups also exhibited significantly reduced ROS levels. Furthermore, a high concentration of potassium ions significantly reduced the secretion of IL-1β after induction/stimulation. In conclusion, the present study suggested that pulegone exerts its anti-inflammatory effects on LPS + ATP/nigericin-induced THP-1 cells via inhibition of NLRP3 expression, and its regulatory mechanism is associated with potassium channel and ROS pathways. It was hypothesized that pulegone first inhibits ROS signaling, to then inhibit NLRP3 expression as a downstream event. It appeared that NLRP3 may be situated further downstream and represented the link between inflammation and immunity.
Collapse
Affiliation(s)
- Qingxin Yang
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan 611137, P.R. China.,Department of Pharmacology, Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan 621000, P.R. China
| | - Qi Liu
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan 611137, P.R. China
| | - Hongjun Lv
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan 611137, P.R. China
| | - Feng Wang
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan 611137, P.R. China
| | - Rong Liu
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan 611137, P.R. China
| | - Nan Zeng
- Department of Pharmacology, College of Pharmacy, Chengdu University of TCM, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
32
|
Dengue virus envelope protein domain III induces pro-inflammatory signature and triggers activation of inflammasome. Cytokine 2019; 123:154780. [DOI: 10.1016/j.cyto.2019.154780] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 01/03/2023]
|
33
|
Scambler T, Jarosz-Griffiths HH, Lara-Reyna S, Pathak S, Wong C, Holbrook J, Martinon F, Savic S, Peckham D, McDermott MF. ENaC-mediated sodium influx exacerbates NLRP3-dependent inflammation in cystic fibrosis. eLife 2019; 8:49248. [PMID: 31532390 PMCID: PMC6764826 DOI: 10.7554/elife.49248] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
Cystic Fibrosis (CF) is a monogenic disease caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene, resulting in defective CFTR-mediated chloride and bicarbonate transport, with dysregulation of epithelial sodium channels (ENaC). These changes alter fluid and electrolyte homeostasis and result in an exaggerated proinflammatory response driven, in part, by infection. We tested the hypothesis that NLRP3 inflammasome activation and ENaC upregulation drives exaggerated innate-immune responses in this multisystem disease. We identify an enhanced proinflammatory signature, as evidenced by increased levels of IL-18, IL-1β, caspase-1 activity and ASC-speck release in monocytes, epithelia and serum with CF-associated mutations; these differences were reversed by pretreatment with NLRP3 inflammasome inhibitors and notably, inhibition of amiloride-sensitive sodium (Na+) channels. Overexpression of β-ENaC, in the absence of CFTR dysfunction, increased NLRP3-mediated inflammation, indicating that dysregulated, ENaC-dependent signalling may drive exaggerated inflammatory responses in CF. These data support a role for sodium in modulating NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Thomas Scambler
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Heledd H Jarosz-Griffiths
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom.,Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| | - Samuel Lara-Reyna
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom
| | - Shelly Pathak
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom
| | - Chi Wong
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom.,Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| | - Jonathan Holbrook
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom.,Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| | - Fabio Martinon
- Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom.,Department of Biochemistry, University of Lausanne, Lausanne, Switzerland
| | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom.,Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - Daniel Peckham
- Leeds Institute of Medical Research, University of Leeds, Leeds, United Kingdom.,Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom.,Adult Cystic Fibrosis Unit, St James' University Hospital, Leeds, United Kingdom
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom.,Leeds Cystic Fibrosis Trust Strategic Research Centre, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
34
|
NLRP3/ASC/Caspase-1 axis and serine protease activity are involved in neutrophil IL-1β processing during Streptococcus pneumoniae infection. Biochem Biophys Res Commun 2019; 513:675-680. [PMID: 30982580 DOI: 10.1016/j.bbrc.2019.04.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/01/2019] [Indexed: 01/03/2023]
Abstract
Streptococcus pneumoniae is a pathogenic bacterium that can cause severe invasive diseases, such as pneumonia, otitis media and meningitis. The pro-inflammatory cytokine, IL-1β, has been reported to play important role in host defense against S. pneumoniae. The mechanism of IL-1β maturation and secretion in macrophages has been well studied. However, the precise mechanism of IL-1β processing within neutrophils upon S. pneumoniae infection remains unclear. In this study, mouse peritoneal neutrophils from C57BL/6 WT and inflammasome components knockout mice were infected by S. pneumoniae in vitro. The results showed that NLRP3 inflammasome is critically involved in neutrophil IL-1β secretion, while the AIM2 and NLRC4 inflammasomes were dispensable. Moreover, the upstream kinase, JNK, modulates ASC oligomerization and consequent caspase-1 activation and IL-1β secretion. Additionally, neutrophil serine proteases also participate in IL-1β secretion by mediating ASC oligomerization and caspase-1 activation. Taken together, these findings indicated that both the NLRP3 inflammasome-related pathway and neutrophil serine protease mediate IL-1β processing upon S. pneumoniae infection.
Collapse
|
35
|
Pfalzgraff A, Weindl G. Intracellular Lipopolysaccharide Sensing as a Potential Therapeutic Target for Sepsis. Trends Pharmacol Sci 2019; 40:187-197. [DOI: 10.1016/j.tips.2019.01.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/20/2018] [Accepted: 01/07/2019] [Indexed: 12/22/2022]
|
36
|
Bertinaria M, Gastaldi S, Marini E, Giorgis M. Development of covalent NLRP3 inflammasome inhibitors: Chemistry and biological activity. Arch Biochem Biophys 2018; 670:116-139. [PMID: 30448387 DOI: 10.1016/j.abb.2018.11.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/12/2022]
Abstract
The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammasome is the best recognized and most widely implicated regulator of caspase-1 activation. It is a key regulator of innate immune response and is involved in many pathophysiological processes. Recent evidences for its inappropriate activation in autoinflammatory, autoimmune, as well as in neurodegenerative diseases attract a growing interest toward the development of small molecules NLRP3 inhibitors. Based on the knowledge of biochemical and structural aspects of NLRP3 activation, one successful strategy in the identification of NLRP3 inhibitors relies on the development of covalent irreversible inhibitors. Covalent inhibitors are reactive electrophilic molecules able to alkylate nucleophiles in the target protein. These inhibitors could ensure good efficacy and prolonged duration of action both in vitro and in vivo. In spite of these advantages, effects on other signalling pathways, prone to alkylation, may occur. In this review, we will illustrate the chemistry and the biological action of the most studied covalent NLRP3 inhibitors developed so far. A description of what we know about their mechanism of action will address the reader toward a critical understanding of NLRP3 inhibition by electrophilic compounds.
Collapse
Affiliation(s)
- Massimo Bertinaria
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125, Torino, Italy.
| | - Simone Gastaldi
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125, Torino, Italy
| | - Elisabetta Marini
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125, Torino, Italy
| | - Marta Giorgis
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, Via P. Giuria 9, 10125, Torino, Italy
| |
Collapse
|
37
|
Scott L, Li N, Dobrev D. Role of inflammatory signaling in atrial fibrillation. Int J Cardiol 2018; 287:195-200. [PMID: 30316645 DOI: 10.1016/j.ijcard.2018.10.020] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/03/2018] [Indexed: 01/09/2023]
Abstract
Atrial fibrillation (AF), the most prevalent arrhythmia, is often associated with enhanced inflammatory response. Emerging evidence points to a causal role of inflammatory signaling pathways in the evolution of atrial electrical, calcium handling and structural remodeling, which create the substrate of AF development. In this review, we discuss the clinical evidence supporting the association between inflammatory indices and AF development, the molecular and cellular mechanisms of AF, which appear to involve multiple canonical inflammatory pathways, and the potential of anti-inflammatory therapeutic approaches in AF prevention/treatment.
Collapse
Affiliation(s)
- Larry Scott
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Na Li
- Department of Medicine (Section of Cardiovascular Research), Baylor College of Medicine, Houston, TX, USA; Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA; Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany.
| |
Collapse
|
38
|
Leso V, Fontana L, Iavicoli I. Nanomaterial exposure and sterile inflammatory reactions. Toxicol Appl Pharmacol 2018; 355:80-92. [DOI: 10.1016/j.taap.2018.06.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/24/2018] [Accepted: 06/25/2018] [Indexed: 12/20/2022]
|
39
|
Wang Y, Tang M. Dysfunction of various organelles provokes multiple cell death after quantum dot exposure. Int J Nanomedicine 2018; 13:2729-2742. [PMID: 29765216 PMCID: PMC5944465 DOI: 10.2147/ijn.s157135] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Quantum dots (QDs) are different from the materials with the micrometer scale. Owing to the superiority in fluorescence and optical stability, QDs act as possible diagnostic and therapeutic tools for application in biomedical field. However, potential threats of QDs to human health hamper their wide utilization in life sciences. It has been reported that oxidative stress and inflammation are involved in toxicity caused by QDs. Recently, accumulating research unveiled that disturbance of subcellular structures plays a magnificent role in cytotoxicity of QDs. Diverse organelles would collapse during QD treatment, including DNA damage, endoplasmic reticulum stress, mitochondrial dysfunction and lysosomal rupture. Different forms of cellular end points on the basis of recent research have been concluded. Apart from apoptosis and autophagy, a new form of cell death termed pyroptosis, which is finely orchestrated by inflammasome complex and gasdermin family with secretion of interleukin-1 beta and interleukin-18, was also summarized. Finally, several potential cellular signaling pathways were also listed. Activation of Toll-like receptor-4/myeloid differentiation primary response 88, nuclear factor kappa-light-chain-enhancer of activated B cells and NACHT, LRR and PYD domains-containing protein 3 inflammasome pathways by QD exposure is associated with regulation of cellular processes. With the development of QDs, toxicity evaluation is far behind its development, where specific mechanisms of toxic effects are not clearly defined. Further studies concerned with this promising area are urgently required.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China
| | - Meng Tang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, School of Public Health & Collaborative Innovation Center of Suzhou Nano Science and Technology, Southeast University, Nanjing, Jiangsu, People's Republic of China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
40
|
Redefining the ancestral origins of the interleukin-1 superfamily. Nat Commun 2018; 9:1156. [PMID: 29559685 PMCID: PMC5861070 DOI: 10.1038/s41467-018-03362-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
The interleukin-1 (IL-1) receptor and ligand families are components of the immune system. Knowledge of their evolutionary history is essential to understand their function. Using chromosomal anatomy and sequence similarity, we show that IL-1 receptor family members are related and nine members are likely formed from duplication and modification of a proto-IL-1R1 receptor. The IL-1 ligands have a different evolutionary history. The first proto-IL-1β gene coincided with proto-IL-1R1 and duplication events resulted in the majority of IL-1 ligand family members. However, large evolutionary distances are observed for IL-1α, IL-18 and IL-33 proteins. Further analysis show that IL-33 and IL-18 have poor sequence similarity and no chromosomal evidence of common ancestry with the IL-1β cluster and therefore should not be included in the IL-1 ligand ancestral family. IL-1α formed from the duplication of IL-1β, and moonlighting functions of pro-IL-1α acted as divergent selection pressures for the observed sequence dissimilarity.
Collapse
|
41
|
White CS, Lawrence CB, Brough D, Rivers-Auty J. Inflammasomes as therapeutic targets for Alzheimer's disease. Brain Pathol 2018; 27:223-234. [PMID: 28009077 DOI: 10.1111/bpa.12478] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/14/2016] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease is the most common form of progressive dementia, typified initially by short term memory deficits which develop into a dramatic global cognitive decline. The classical hall marks of Alzheimer's disease include the accumulation of amyloid oligomers and fibrils, and the intracellular formation of neurofibrillary tangles of hyperphosphorylated tau. It is now clear that inflammation also plays a central role in the pathogenesis of the disease through a number of neurotoxic mechanisms. Microglia are the key immune regulators of the CNS which detect amyloidopathy through cell surface and cytosolic pattern recognition receptors (PRRs) and respond by initiating inflammation through the secretion of cytokines such as interleukin-1β (IL-1β). Inflammasomes, which regulate IL-1β release, are formed following activation of cytosolic PRRs, and using genetic and pharmacological approaches, NLRP3 and NLRP1 inflammasomes have been found to be integral in pathogenic neuroinflammation in animal models of Alzheimer's disease. Therefore, the inflammasomes are very promising novel pharmacological targets which merit further research in the continued endeavor for efficacious therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- Claire S White
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Catherine B Lawrence
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - David Brough
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Jack Rivers-Auty
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| |
Collapse
|
42
|
Zielinski MR, Gerashchenko D, Karpova SA, Konanki V, McCarley RW, Sutterwala FS, Strecker RE, Basheer R. The NLRP3 inflammasome modulates sleep and NREM sleep delta power induced by spontaneous wakefulness, sleep deprivation and lipopolysaccharide. Brain Behav Immun 2017; 62:137-150. [PMID: 28109896 PMCID: PMC5373953 DOI: 10.1016/j.bbi.2017.01.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/20/2016] [Accepted: 01/17/2017] [Indexed: 11/28/2022] Open
Abstract
Both sleep loss and pathogens can enhance brain inflammation, sleep, and sleep intensity as indicated by electroencephalogram delta (δ) power. The pro-inflammatory cytokine interleukin-1 beta (IL-1β) is increased in the cortex after sleep deprivation (SD) and in response to the Gram-negative bacterial cell-wall component lipopolysaccharide (LPS), although the exact mechanisms governing these effects are unknown. The nucleotide-binding domain and leucine-rich repeat protein-3 (NLRP3) inflammasome protein complex forms in response to changes in the local environment and, in turn, activates caspase-1 to convert IL-1β into its active form. SD enhances the cortical expression of the somnogenic cytokine IL-1β, although the underlying mechanism is, as yet, unidentified. Using NLRP3-gene knockout (KO) mice, we provide evidence that NLRP3 inflammasome activation is a crucial mechanism for the downstream pathway leading to increased IL-1β-enhanced sleep. NLRP3 KO mice exhibited reduced non-rapid eye movement (NREM) sleep during the light period. We also found that sleep amount and intensity (δ activity) were drastically attenuated in NLRP3 KO mice following SD (homeostatic sleep response), as well as after LPS administration, although they were enhanced by central administration of IL-1β. NLRP3, ASC, and IL1β mRNA, IL-1β protein, and caspase-1 activity were greater in the somatosensory cortex at the end of the wake-active period when sleep propensity was high and after SD in wild-type but not NLRP3 KO mice. Thus, our novel and converging findings suggest that the activation of the NLRP3 inflammasome can modulate sleep induced by both increased wakefulness and a bacterial component in the brain.
Collapse
Affiliation(s)
- Mark R Zielinski
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA.
| | - Dmitry Gerashchenko
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Svetlana A Karpova
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Varun Konanki
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Robert W McCarley
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, Brockton, MA 02301, USA
| | - Fayyaz S Sutterwala
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Robert E Strecker
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| | - Radhika Basheer
- Department of Psychiatry, Harvard Medical School and Veterans Affairs Boston Healthcare System, West Roxbury, MA 02132, USA
| |
Collapse
|
43
|
Chen CY, Yang CH, Tsai YF, Liaw CC, Chang WY, Hwang TL. Ugonin U stimulates NLRP3 inflammasome activation and enhances inflammasome-mediated pathogen clearance. Redox Biol 2016; 11:263-274. [PMID: 28012441 PMCID: PMC5198739 DOI: 10.1016/j.redox.2016.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/10/2016] [Accepted: 12/17/2016] [Indexed: 12/12/2022] Open
Abstract
The NOD-like receptor pyrin domain 3 (NLRP3) inflammasome contains Nod-like receptors, a subclass of pattern recognition receptors, suggesting that this complex has a prominent role in host defenses. Various structurally diverse stimulators activate the NLRP3 inflammasome through different signaling pathways. We previously reported that ugonin U (UgU), a natural flavonoid isolated from Helminthostachys zeylanica (L) Hook, directly stimulates phospholipase C (PLC) and triggers superoxide release in human neutrophils. In the present study, we showed that UgU induced NLRP3 inflammasome assembly and subsequent caspase-1 and interleukin (IL)-1β processing in lipopolysaccharide-primed human monocytes. Moreover, UgU elicited mitochondrial superoxide generation in a dose-dependent manner, and a specific scavenger of mitochondrial reactive oxygen species (ROS) diminished UgU-induced IL-1β and caspase-1 activation. UgU induced Ca2+ mobilization, which was inhibited by treatment with inhibitors of PLC or inositol triphosphate receptor (IP3R). Blocking Ca2+ mobilization, PLC, or IP3R diminished UgU-induced IL-1β release, caspase-1 activation, and mitochondrial ROS generation. These data demonstrated that UgU activated the NLPR3 inflammasome activation through Ca2+ mobilization and the production of mitochondrial ROS. We also demonstrated that UgU-dependent NLRP3 inflammasome activation enhanced the bactericidal function of human monocytes. The ability of UgU to stimulate human neutrophils and monocytes, both of which are professional phagocytes, and its capacity to activate the NLRP3 inflammasome, which is a promising molecular target for developing anti-infective medicine, indicate that UgU treatment should be considered as a possible novel therapy for treating infectious diseases. The immuno-stimulatory effects UgU in human monocytes were evaluated. UgU induces Ca2+ mobilization and eventually activates the NLRP3 inflammasome. UgU facilitates the bactericidal function of human monocytes.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chuan-Hui Yang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chih-Chuang Liaw
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Wen-Yi Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Industry of Human Ecology, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
44
|
de Almeida RMC, Clendenon SG, Richards WG, Boedigheimer M, Damore M, Rossetti S, Harris PC, Herbert BS, Xu WM, Wandinger-Ness A, Ward HH, Glazier JA, Bacallao RL. Transcriptome analysis reveals manifold mechanisms of cyst development in ADPKD. Hum Genomics 2016; 10:37. [PMID: 27871310 PMCID: PMC5117508 DOI: 10.1186/s40246-016-0095-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022] Open
Abstract
Background Autosomal dominant polycystic kidney disease (ADPKD) causes progressive loss of renal function in adults as a consequence of the accumulation of cysts. ADPKD is the most common genetic cause of end-stage renal disease. Mutations in polycystin-1 occur in 87% of cases of ADPKD and mutations in polycystin-2 are found in 12% of ADPKD patients. The complexity of ADPKD has hampered efforts to identify the mechanisms underlying its pathogenesis. No current FDA (Federal Drug Administration)-approved therapies ameliorate ADPKD progression. Results We used the de Almeida laboratory’s sensitive new transcriptogram method for whole-genome gene expression data analysis to analyze microarray data from cell lines developed from cell isolates of normal kidney and of both non-cystic nephrons and cysts from the kidney of a patient with ADPKD. We compared results obtained using standard Ingenuity Volcano plot analysis, Gene Set Enrichment Analysis (GSEA) and transcriptogram analysis. Transcriptogram analysis confirmed the findings of Ingenuity, GSEA, and published analysis of ADPKD kidney data and also identified multiple new expression changes in KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways related to cell growth, cell death, genetic information processing, nucleotide metabolism, signal transduction, immune response, response to stimulus, cellular processes, ion homeostasis and transport and cofactors, vitamins, amino acids, energy, carbohydrates, drugs, lipids, and glycans. Transcriptogram analysis also provides significance metrics which allow us to prioritize further study of these pathways. Conclusions Transcriptogram analysis identifies novel pathways altered in ADPKD, providing new avenues to identify both ADPKD’s mechanisms of pathogenesis and pharmaceutical targets to ameliorate the progression of the disease. Electronic supplementary material The online version of this article (doi:10.1186/s40246-016-0095-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Rita M C de Almeida
- Biocomplexity Institute and Department of Physics, Indiana University, Bloomington, IN, 47405, USA.,Instituto de Física and Instituto Nacional de Ciência e Tecnologia, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, RS, Brazil
| | - Sherry G Clendenon
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | | | | | - Michael Damore
- AMGEN Inc., One Amgen Center Drive, Thousand Oaks, CA, 91320-1799, USA
| | - Sandro Rossetti
- Division of Nephrology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Peter C Harris
- Division of Nephrology, Mayo Clinic, 200 First Street SW, Rochester, MN, 55905, USA
| | - Britney-Shea Herbert
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Wei Min Xu
- Division of Nephrology, Department of Medicine, Richard Roudebush VAMC and Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Angela Wandinger-Ness
- Department of Pathology MSC08-4640 and Cancer Research and Treatment Center, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Heather H Ward
- Division of Nephrology, Department of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - James A Glazier
- Biocomplexity Institute and Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, 47405, USA
| | - Robert L Bacallao
- Division of Nephrology, Department of Medicine, Richard Roudebush VAMC and Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
45
|
Cao Z, Fang Y, Lu Y, Qian F, Ma Q, He M, Pi H, Yu Z, Zhou Z. Exposure to nickel oxide nanoparticles induces pulmonary inflammation through NLRP3 inflammasome activation in rats. Int J Nanomedicine 2016; 11:3331-46. [PMID: 27524893 PMCID: PMC4965228 DOI: 10.2147/ijn.s106912] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
With recent advances in the manufacture and application of nickel oxide nanoparticles (NiONPs), concerns about their adverse effects on the respiratory system are increasing. However, the underlying cellular and molecular mechanisms of NiONP-induced pulmonary toxicity remain unclear. In this study, we focused on the impacts of NiONPs on pulmonary inflammation and investigated whether the NLRP3 inflammasome is involved in NiONP-induced pulmonary inflammation and injury. NiONP suspensions were administered by single intratracheal instillation to rats, and inflammatory responses were evaluated at 3 days, 7 days, or 28 days after treatment. NiONP exposure resulted in sustained pulmonary inflammation accompanied by inflammatory cell infiltration, alveolar proteinosis, and cytokine secretion. Expression of Nlrp3 was markedly upregulated by the NiONPs, which was accompanied by overexpression of the active form of caspase-1 (p20) and interleukin (IL)-1β secretion in vivo. NiONP-induced IL-1β secretion was partially prevented by co-treatment with a caspase-1 inhibitor in macrophages. Moreover, siRNA-mediated Nlrp3 knockdown completely attenuated NiONP-induced cytokine release and caspase-1 activity in macrophages in vitro. In addition, NiONP-induced NLRP3 inflammasome activation requires particle uptake and reactive oxygen species production. Collectively, our findings suggest that the NLRP3 inflammasome participates in NiONP-induced pulmonary inflammation and offer new strategies to combat the pulmonary toxicity induced by NiONPs.
Collapse
Affiliation(s)
| | | | | | - Fenghua Qian
- Department of Haematology, Southwest Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
46
|
ROS-Mediated NLRP3 Inflammasome Activation in Brain, Heart, Kidney, and Testis Ischemia/Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2183026. [PMID: 27127546 PMCID: PMC4835650 DOI: 10.1155/2016/2183026] [Citation(s) in RCA: 383] [Impact Index Per Article: 42.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 12/27/2022]
Abstract
Ischemia and reperfusion (I/R) causes a reduction in arterial blood supply to tissues, followed by the restoration of perfusion and consequent reoxygenation. The reestablishment of blood flow triggers further damage to the ischemic tissue through reactive oxygen species (ROS) accumulation, interference with cellular ion homeostasis, and inflammatory responses to cell death. In normal conditions, ROS mediate important beneficial responses. When their production is prolonged or elevated, harmful events are observed with peculiar cellular changes. In particular, during I/R, ROS stimulate tissue inflammation and induce NLRP3 inflammasome activation. The mechanisms underlying the activation of NLRP3 are several and not completely elucidated. It was recently shown that NLRP3 might sense directly the presence of ROS produced by normal or malfunctioning mitochondria or indirectly by other activators of NLRP3. Aim of the present review is to describe the current knowledge on the role of NLRP3 in some organs (brain, heart, kidney, and testis) after I/R injury, with particular regard to the role played by ROS in its activation. Furthermore, as no specific therapy for the prevention or treatment of the high mortality and morbidity associated with I/R is available, the state of the art of the development of novel therapeutic approaches is illustrated.
Collapse
|
47
|
Guignot J, Tran Van Nhieu G. Bacterial Control of Pores Induced by the Type III Secretion System: Mind the Gap. Front Immunol 2016; 7:84. [PMID: 27014264 PMCID: PMC4783396 DOI: 10.3389/fimmu.2016.00084] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/22/2016] [Indexed: 12/27/2022] Open
Abstract
Type III secretion systems (T3SSs) are specialized secretion apparatus involved in the virulence of many Gram-negative pathogens, enabling the injection of bacterial type III effectors into host cells. The T3SS-dependent injection of effectors requires the insertion into host cell membranes of a pore-forming "translocon," whose effects on cell responses remain ill-defined. As opposed to pore-forming toxins that damage host cell plasma membranes and induce cell survival mechanisms, T3SS-dependent pore formation is transient, being regulated by cell membrane repair mechanisms or bacterial effectors. Here, we review host cell responses to pore formation induced by T3SSs associated with the loss of plasma membrane integrity and regulation of innate immunity. We will particularly focus on recent advances in mechanisms controlling pore formation and the activity of the T3SS linked to type III effectors or bacterial proteases. The implications of the regulation of the T3SS translocon activity during the infectious process will be discussed.
Collapse
Affiliation(s)
- Julie Guignot
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France; Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Centre National de la Recherche Scientifique UMR7241, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres, Paris, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France; Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Centre National de la Recherche Scientifique UMR7241, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Sciences et Lettres, Paris, France
| |
Collapse
|