1
|
Burmistrova DA, Pomortseva NP, Voronina YK, Kiskin MA, Dolgushin FM, Berberova NT, Eremenko IL, Poddel’sky AI, Smolyaninov IV. Synthesis, Structure, Electrochemical Properties, and Antioxidant Activity of Organogermanium(IV) Catecholate Complexes. Int J Mol Sci 2024; 25:9011. [PMID: 39201696 PMCID: PMC11354772 DOI: 10.3390/ijms25169011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
A series of novel organogermanium(IV) catecholates 1-9 of the general formula R'2Ge(Cat), where R' = Ph, Et, have been synthesized. Compounds were characterized by 1H, 13C NMR, IR spectroscopy, and elemental analysis. The molecular structures of 1-3, 6, and 8 in crystal state were established using single-crystal X-ray analysis. The complexes are tetracoordinate germanium(IV) compounds containing a dioxolene ligand in a dianion (catecholato) form. Electrochemical transformations of target germanium(IV) complexes have been studied by cyclic voltammetry. The electro-oxidation mechanism of complexes 1-5, 7, and 10 (the related complex Ph2Ge(3,5-Cat) where 3,5-Cat is 3,5-di-tert-butylcatecholate) involves the consecutive formation of mono- and dicationic derivatives containing the oxidized forms of redox-active ligands. The stability of the generated monocations depends both on the hydrocarbon groups at the germanium atom and on the substituents in the catecholate ring. Compounds 6, 8, and 9 are oxidized irreversibly under the electrochemical conditions with the formation of unstable complexes. The radical scavenging activity and antioxidant properties of new complexes were estimated in the reaction with DPPH radical, ABTS radical cation, and CUPRACTEAC assay. It has been found that compounds 8 and 9 with benzothiazole or phenol fragments are more active in DPPH test. The presence of electron-rich moieties in the catecholate ligand makes complexes 5 and 7-9 more reactive to ABTS radical cation. The value of CUPRACTEAC for organogermanium(IV) catecholates varies from 0.23 to 1.45. The effect of compounds 1-9 in the process of lipid peroxidation of rat liver (Wistar) homogenate was determined in vitro. It was found that most compounds are characterized by pronounced antioxidant activity. A feature of complexes 1, 3, and 5-9 is the intensification of the antioxidant action with the incubation time. In the presence of additives of complexes 3, 5, 6, and 8, an induction period was observed during the process of lipid peroxidation.
Collapse
Affiliation(s)
- Daria A. Burmistrova
- Chemistry Department, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| | - Nadezhda P. Pomortseva
- Chemistry Department, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| | - Yulia K. Voronina
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.V.); (M.A.K.); (F.M.D.); (I.L.E.)
| | - Mikhail A. Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.V.); (M.A.K.); (F.M.D.); (I.L.E.)
| | - Fedor M. Dolgushin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.V.); (M.A.K.); (F.M.D.); (I.L.E.)
| | - Nadezhda T. Berberova
- Chemistry Department, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| | - Igor L. Eremenko
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.K.V.); (M.A.K.); (F.M.D.); (I.L.E.)
| | - Andrey I. Poddel’sky
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Ivan V. Smolyaninov
- Chemistry Department, Astrakhan State Technical University, 16 Tatisheva Str., 414056 Astrakhan, Russia; (D.A.B.); (N.P.P.); (N.T.B.)
| |
Collapse
|
2
|
Zheng Y, Karimi-Maleh H, Fu L. Evaluation of Antioxidants Using Electrochemical Sensors: A Bibliometric Analysis. SENSORS 2022; 22:s22093238. [PMID: 35590927 PMCID: PMC9103690 DOI: 10.3390/s22093238] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023]
Abstract
The imbalance of oxidation and antioxidant systems in the biological system can lead to oxidative stress, which is closely related to the pathogenesis of many diseases. Substances with antioxidant capacity can effectively resist the harmful damage of oxidative stress. How to measure the antioxidant capacity of antioxidants has essential application value in medicine and food. Techniques such as DPPH radical scavenging have been developed to measure antioxidant capacity. However, these traditional analytical techniques take time and require large instruments. It is a more convenient method to evaluate the antioxidant capacity of antioxidants based on their electrochemical oxidation and reduction behaviors. This review summarizes the evaluation of antioxidants using electrochemical sensors by bibliometrics. The development of this topic was described, and the research priorities at different stages were discussed. The topic was investigated in 1999 and became popular after 2010 and has remained popular ever since. A total of 758 papers were published during this period. In the early stages, electrochemical techniques were used only as quantitative techniques and other analytical techniques. Subsequently, cyclic voltammetry was used to directly study the electrochemical behavior of different antioxidants and evaluate antioxidant capacity. With methodological innovations and assistance from materials science, advanced electrochemical sensors have been fabricated to serve this purpose. In this review, we also cluster the keywords to analyze different investigation directions under the topic. Through co-citation of papers, important papers were analyzed as were how they have influenced the topic. In addition, the author’s country distribution and category distribution were also interpreted in detail. In the end, we also proposed perspectives for the future development of this topic.
Collapse
Affiliation(s)
- Yuhong Zheng
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China;
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Xiyuan Ave, Chengdu 610056, China;
- Laboratory of Nanotechnology, Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan 9477177870, Iran
- Department of Chemical Sciences, Doornfontein Campus, University of Johannesburg, P.O. Box 17011, Johannesburg 17011, South Africa
| | - Li Fu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
- Correspondence:
| |
Collapse
|
3
|
Akyeva AY, Kansuzyan AV, Vukich KS, Kuhn L, Saverina EA, Minyaev ME, Pechennikov VM, Egorov MP, Alabugin IV, Vorobyev SV, Syroeshkin MA. Remote Stereoelectronic Effects in Pyrrolidone- and Caprolactam-Substituted Phenols: Discrepancies in Antioxidant Properties Evaluated by Electrochemical Oxidation and H-Atom Transfer Reactivity. J Org Chem 2022; 87:5371-5384. [PMID: 35363496 DOI: 10.1021/acs.joc.2c00207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
New antioxidants are commonly evaluated via two main approaches, i.e., the ability to donate an electron and the ability to intercept free radicals. We compared these approaches by evaluating the properties of 11 compounds containing both antioxidant moieties (mono- and polyphenols) and auxiliary pharmacophores (pyrrolidone and caprolactam). Several common antioxidants, such as butylated hydroxytoluene (BHT), 2,3,5-trimethylphenol (TMP), quercetin, and dihydroquercetin, were added for comparison. The antioxidant properties of these compounds were determined by their rates of reaction with 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical and their oxidation potentials from cyclic voltammetry. Although these methods test different chemical properties, their results correlate reasonably well. However, several exceptions exist where the two methods give opposite predictions! One of them is the different behavior of mono- and polyphenols: polyphenols can react with DPPH more than an order of magnitude faster than monophenols of a similar oxidation potential. The second exception stems from the size of a "bystander" lactam ring at the benzylic position. Although the phenols with a seven-membered lactam ring are harder to oxidize, the sterically nonhindered compounds react with DPPH about 2× faster than the analogous five-membered lactams. The limitations of computational methods, especially those based on a single parameter, are also evaluated and discussed.
Collapse
Affiliation(s)
- Anna Ya Akyeva
- N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow Russia
| | | | - Katarina S Vukich
- N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow Russia.,I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | | | | | | | - Mikhail P Egorov
- N.D. Zelinsky Institute of Organic Chemistry, 119991 Moscow Russia
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Stepan V Vorobyev
- Gubkin Russian State University of Oil and Gas, 65 Leninsky Prospect, 119991 Moscow, Russia
| | | |
Collapse
|
4
|
Kansuzyan AV, Farafonova SD, Saverina EA, Krylova IV, Balycheva VA, Ya. Akyeva A, Medvedev AG, Nikolaevskaya EN, Egorov MP, Prikhodchenko PV, Syroeshkin MA. Highly soluble germanium dioxide as a new source of germanium for derivatization with organic compounds. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Shangin PG, Krylova IV, Lalov AV, Kozmenkova AY, Saverina EA, Buikin PA, Korlyukov AA, Starikova AA, Nikolaevskaya EN, Egorov MP, Syroeshkin MA. Supramolecular D⋯A-layered structures based on germanium complexes with 2,3-dihydroxynaphthalene and N, N'-bidentate ligands. RSC Adv 2021; 11:21527-21536. [PMID: 35478811 PMCID: PMC9034134 DOI: 10.1039/d1ra02691g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/12/2021] [Indexed: 11/25/2022] Open
Abstract
The concept of using redox-active ligands, which has become extremely widespread in organometallic chemistry, is often considered from 'their effect on the metal center properties' point of view and 'how to modify the ligands'. In this paper, we present the reverse side of this effective approach - a dramatic change of redox properties of ligands under the influence of a redox-inert metal. Germanium derivatives based on 2,3-dihydroxynaphthalene (1) and N,N'-bidentate ligands, namely 2,2'-bipyridine (2) and 1,10-phenanthroline (3), were obtained and characterized by CV, UV-vis spectroscopy, DFT calculations and in the case of 3 X-ray diffraction. It was shown that the HOMO of the complexes is almost completely located on the naphthalene fragment while the LUMO is on the N,N-ligands. At the same time, there are no boundary molecular orbitals on the germanium atom, but it forms the axial part of the molecule holding two opposite motifs together. Moreover, it sharply affects the level of HOMO and LUMO. Derivatives 2 and 3 are more easily oxidized compared to 2,3-dihydroxynaphthalene by 0.31-0.34 V (7-8 kcal mol-1) and are more easily reduced compared to N,N-donors by 1.08-1.15 V (25-26.5 kcal mol-1). All this together makes it possible to form a system with a narrow HOMO/LUMO gap (∼2 eV). The crystal structure of 3 consists of alternating monomolecular easily oxidizing and easily reducing layers formed due to intermolecular interactions, in particular π-stacking. In addition, in contrast to 1 that starts to decompose noticeably at the temperatures from 200 °C, 2 and 3 have an extremely high thermal stability. They remain stable with no signs of decomposition and melting up to 400 °С. We believe that this approach to the formation of the supramolecular structure may present prospects for obtaining new functional materials.
Collapse
Affiliation(s)
- Pavel G Shangin
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Russia
| | - Irina V Krylova
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Russia
| | - Andrey V Lalov
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Russia
| | | | | | - Petr A Buikin
- A. N. Nesmeyanov Institute of Organoelement Compounds 119991 Moscow Russia
| | | | - Alyona A Starikova
- Institute of Physical and Organic Chemistry, Southern Federal University 344090 Rostov-on-Don Russia
| | | | - Mikhail P Egorov
- N. D. Zelinsky Institute of Organic Chemistry 119991 Moscow Russia
| | | |
Collapse
|
6
|
Krylova IV, Saverina EA, Rynin SS, Lalov AV, Minyaev ME, Nikolaevskaya EN, Syroeshkin MA, Egorov MP. Synthesis, characterization and redox properties of Ar–C=N→Ge←N=C–Ar containing system. MENDELEEV COMMUNICATIONS 2020. [DOI: 10.1016/j.mencom.2020.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Wang Y, Tang P, Xiao Y, Liu J, Chen Y, Yang Y. Alterations in Rumen Bacterial Community and Metabolome Characteristics of Cashmere Goats in Response to Dietary Nutrient Density. Animals (Basel) 2020; 10:E1193. [PMID: 32674381 PMCID: PMC7401628 DOI: 10.3390/ani10071193] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/01/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022] Open
Abstract
This study was conducted to investigate the impacts of dietary energy and protein on rumen bacterial composition and ruminal metabolites. A total of 12 ruminal samples were collected from Shaanbei white cashmere goats which were divided into two groups, including high-energy and high-protein (Group H; crude protein, CP: 9.37% in dry matter; metabolic energy, ME: 9.24 MJ/kg) and control (Group C; CP: 8.73%; ME: 8.60 MJ/kg) groups. Thereby, 16S rRNA gene sequencing and a quantitative polymerase chain reaction were performed to identify the rumen bacterial community. Metabolomics analysis was done to investigate the rumen metabolites and the related metabolic pathways in Groups C and H. The high-energy and high-protein diets increased the relative abundance of phylum Bacteroidetes and genera Prevotella_1 and Succiniclasticum, while decreasing the number of Proteobacteria (p < 0.05). The dominant differential metabolites were amino acids, peptides, and analogs. Tyrosine metabolism played an important role among the nine main metabolic pathways. Correlation analysis revealed that both Prevotella_1 (r = 0.608, p < 0.05) and Ruminococcus_2 (r = 0.613, p < 0.05) showed a positive correlation with catechol. Our findings revealed that the diets with high energy and protein levels in Group H significantly altered the composition of ruminal bacteria and metabolites, which can help to improve the dietary energy and protein use efficiency in goats.
Collapse
Affiliation(s)
| | | | | | | | - Yulin Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.W.); (P.T.); (Y.X.); (J.L.)
| | - Yuxin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.W.); (P.T.); (Y.X.); (J.L.)
| |
Collapse
|
8
|
Saverina EA, Kapaev RR, Stishenko PV, Galushko AS, Balycheva VA, Ananikov VP, Egorov MP, Jouikov VV, Troshin PA, Syroeshkin MA. 2-Carboxyethylgermanium Sesquioxide as A Promising Anode Material for Li-Ion Batteries. CHEMSUSCHEM 2020; 13:3137-3146. [PMID: 32329561 DOI: 10.1002/cssc.202000852] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Indexed: 06/11/2023]
Abstract
Various forms of germanium and germanium-containing compounds and materials are actively investigated as energy-intensive alternatives to graphite as the anode of lithium-ion batteries. The most accessible form-germanium dioxide-has the structure of a 3D polymer, which accounts for its rapid destruction during cycling, and requires the development of further approaches to the production of nanomaterials and various composites based on it. For the first time, we propose here the strategy of using 2-carboxyethylgermanium sesquioxide ([O1.5 GeCH2 CH2 CO2 H]n , 2-CEGS), in lieu of GeO2 , as a promising, energy-intensive, and stable new source system for building lithium-ion anodes. Due to the presence of the organic substituent, the formed polymer has a 1D or a 2D space organization, which facilitates the reversible penetration of lithium into its structure. 2-CEGS is common and commercially available, completely safe and non-toxic, insoluble in organic solvents (which is important for battery use) but soluble in water (which is convenient for manufacturing diverse materials from it). This paper reports the preparation of micro- (flower-shaped agglomerates of ≈1 μm thick plates) and nanoformed (needle-shaped nanoparticles of ≈500×(50-80) nm) 2-CEGS using methods commonly available in laboratories and industry such as vacuum and freeze-drying of aqueous solutions of 2-CEGS. Lithium half-cell anodes based on 2-CEGS show a capacity of ≈400 mAh g-1 for microforms and up to ≈700 mAh g-1 for nanoforms, which is almost two times higher than the maximal theoretical capacity of graphite. These anodes are stable during the cycling at various rates. The results of DFT simulations suggest that Li atoms form the stable Li2 O with the oxygen atoms of 2-CEGS, and actual charge-discharge cycles involve deoxygenated GeC3 H5 molecules. Thus, C3 chains loosen the anode structure compared to pure Ge, improving its ability to accommodate Li ions.
Collapse
Affiliation(s)
- Evgeniya A Saverina
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russia
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University of Rennes, UMR 6226, 35000, Rennes, France
| | - Roman R Kapaev
- Skolkovo Institute of Science and Technology, st. Nobel, 3, 121205, Moscow, Russia
- Institute for Problems of Chemical Physics RAS, Academician Semenov avenue 1, 142432, Chernogolovka, Russia
| | - Pavel V Stishenko
- Department of Chemical Engineering, Omsk State Technical University, Mira prosp. 11, 644050, Omsk, Russia
| | - Alexey S Galushko
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russia
| | - Victoriya A Balycheva
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russia
- Dmitry Mendeleev University of Chemical Technology of Russia, Miusskaya sq., 9, 125047, Moscow, Russia
| | - Valentine P Ananikov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russia
| | - Mikhail P Egorov
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russia
| | - Viatcheslav V Jouikov
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University of Rennes, UMR 6226, 35000, Rennes, France
| | - Pavel A Troshin
- Skolkovo Institute of Science and Technology, st. Nobel, 3, 121205, Moscow, Russia
- Institute for Problems of Chemical Physics RAS, Academician Semenov avenue 1, 142432, Chernogolovka, Russia
| | - Mikhail A Syroeshkin
- N. D. Zelinsky Institute of Organic Chemistry, Leninsky prosp. 47, 119991, Moscow, Russia
| |
Collapse
|
9
|
Easily electroreducible halogen-free germanium complexes with biologically active pyridines. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.119007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
10
|
Filonova GE, Nikolaevskaya EN, Kansuzyan AV, Krylova IV, Egorov MP, Jouikov VV, Syroeshkin MA. Antioxidant Properties of Adrenaline in the Presence of Ge-132. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Galina E. Filonova
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russian Federation
- I.M. Sechenov First Moscow State Medical University; Bolshaya Pirogovskaya 2 119435 Moscow Russian Federation
| | - Elena N. Nikolaevskaya
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russian Federation
| | - Artem V. Kansuzyan
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russian Federation
- UMR CNRS 6226 ISCR; University of Rennes 1; 35042 Rennes France
| | - Irina V. Krylova
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russian Federation
| | - Mikhail P. Egorov
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russian Federation
| | | | - Mikhail A. Syroeshkin
- N.D. Zelinsky Institute of Organic Chemistry; Russian Academy of Sciences; Leninsky Prospect, 47 119991 Moscow Russian Federation
| |
Collapse
|
11
|
Smolyaninov IV, Pitikova OV, Korchagina EO, Poddel'sky AI, Fukin GK, Luzhnova SA, Tichkomirov AM, Ponomareva EN, Berberova NT. Catechol thioethers with physiologically active fragments: Electrochemistry, antioxidant and cryoprotective activities. Bioorg Chem 2019; 89:103003. [PMID: 31132599 DOI: 10.1016/j.bioorg.2019.103003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/15/2019] [Accepted: 05/19/2019] [Indexed: 12/16/2022]
Abstract
A number of asymmetrical thioethers based on 3,5-di-tert-butylcatechol containing sulfur atom bonding with physiologically active groups in the sixth position of aromatic ring have been synthesized and the electrochemical properties, antioxidant, cryoprotective activities of new thioethers have been evaluated. Cyclic voltammetry was used to estimate the oxidation potentials of thioethers in acetonitrile. The electrooxidation of compounds at the first stage leads to the formation of o-benzoquinones. The antioxidant activities of the compounds were determined using 2,2'-diphenyl-1-picrylhydrazyl radical (DPPH) assay, experiments on the oxidative damage of the DNA, the reaction of 2,2'-azobis(2-amidinopropane hydrochloride) (AAPH) induced glutathione depletion (GSH), the process of lipid peroxidation of rat liver (Wistar) homogenates in vitro, and iron(II) chelation test. Compounds 1-9 have greater antioxidant effectiveness than 3,5-di-tert-butylcatechol (CatH2) in all assays. The variation of physiologically active groups at sulfur atom allows to regulate lipophilic properties and antioxidant activity of compounds. Thioethers 3, 4 and 7 demonstrate the combination of radical scavenging, antioxidant activity and iron(II) binding properties. The researched compounds 1-9 were studied as possible cryoprotectants of the media for cryopreservation of the Russian sturgeon sperm. Novel cryoprotective additives in cryomedium reduce significantly the content of membrane-permeating agent (DMSO). A cryoprotective effect of an addition of the catechol thioethers depends on the structure of groups at sulfur atom. The cryoprotective properties of compounds 3, 4 and 7 are caused by combination of catechol fragment, bonded by a thioether linker with a long hydrocarbon chain and a terminal ionizable group or with a biologically relevant acetylcysteine residue.
Collapse
Affiliation(s)
- Ivan V Smolyaninov
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia; Toxicology Research Group of Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., Rostov-on-Don 344006, Russia.
| | - Olga V Pitikova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| | - Eugenia O Korchagina
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| | - Andrey I Poddel'sky
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Georgy K Fukin
- G.A. Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences, 49 Tropinina str., 603137 Nizhny Novgorod, Russia
| | - Svetlana A Luzhnova
- Department of Microbiology and Immunology, Pyatigorsk Medicinal and Pharmaceutical Institute, 11 Kalinina str., Pyatigorsk 357500, Russia
| | - Andrey M Tichkomirov
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| | - Elena N Ponomareva
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia; Toxicology Research Group of Southern Scientific Centre of Russian Academy of Science, 41 Chekhova str., Rostov-on-Don 344006, Russia
| | - Nadezhda T Berberova
- Department of Chemistry, Astrakhan State Technical University, 16 Tatisheva str., Astrakhan 414056, Russia
| |
Collapse
|