1
|
Mahapatra B, Singh A, Banerjee A, Sirohi S, Singh S, Dubey VK, Singh RK. A squalene oil emulsified MPL-A and anti-CD200/CD300a antibodies adjuvanted whole-killed Leishmania vaccine provides durable immunity against L. donovani parasites. Vaccine 2024; 42:126373. [PMID: 39288578 DOI: 10.1016/j.vaccine.2024.126373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Antigenic inefficacy to induce robust immune responses and durable memory are major causes of constantly failing prophylactic approaches in leishmaniasis. Here, we determine the potential of a standardized whole-killed Leishmania vaccine (Leishvacc) adjuvanted with anti-CD200 and anti-CD300a antibodies, either alone or with monophosphoryl lipid A (MPL-SE) emulsified in squalene oil, in restoring the compromised antigen presenting abilities of dendritic cells (DCs), effector properties of CD4+T cells and providing protection against Leishmania donovani parasites. In animals vaccinated with antibodies adjuvanted vaccines, either alone or with MPL-SE, the antigen presenting abilities of CD11c+ DCs against Leishmania antigens, measured in terms of CD80, CD86, MHC-I, and MHC-II surface receptors and intracellular IL-12 were found enhanced than non-adjuvanted vaccine. We observed more proliferative and pro-inflammatory cytokines i.e. IL-2, IFN-γ, IL-23, and IL-12 producing CD4+T cells in antibodies/MPL-SE adjuvanted vaccinated animals further suggesting that this approach helps antigen activated CD4+T cells to acquire pro-inflammatory cytokines producing abilities. In antibodies, either alone or with MPL-SE, vaccinated animals, the number of CD4+ central memory T cells and their longevity were found significantly enhanced that further evidenced the impact of this vaccination approach in inducing long term protective immunity. The animals, receiving antibodies adjuvanted vaccines, either alone or with MPL-SE, exhibited excellent protection against virulent parasites by restricting their growth, which correlated with the significantly reduced parasitemia, splenomegaly, and hepatomegaly, along with fewer numbers of liver granulomas. Our findings provide an insight to a new immunoprophylactic approach against visceral leishmaniasis, which not only satisfies the safety criteria, but also provides a robust immunogenic response with remarkable potential for parasites control. However, further in-depth investigations are needed to ascertain its ability in inducing long-lasting immunity.
Collapse
Affiliation(s)
- Baishakhi Mahapatra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Abhishek Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Arpita Banerjee
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shruti Sirohi
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Samer Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, India
| | - Vikash K Dubey
- Department of Biochemical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi 221005, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
2
|
Mohamed SM, Abou-Ghadir OMF, El-Mokhtar MA, Aboraia AS, Abdel-Moty SG, Abdel-Aal ABM. Design, Synthesis and Pro-Inflammatory Activity of Palmitoylated Derivatives of Thioglycolic Acid as New Immunomodulators. Chem Biol Drug Des 2024; 104:e70029. [PMID: 39702898 DOI: 10.1111/cbdd.70029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024]
Abstract
The immune system is essential for the defense against infections and is critically implicated in various disorders, including immunodeficiency, autoimmunity, inflammation and cancer. The current study includes a new design of palmitoylated derivatives of thioglycolic acids (PTGAs) capable of triggering innate immune responses. The new series were accessible through a three-step synthetic route, including N-palmitoylation, Claisen-Schmidt condensation and thia-Michael addition. Their structures were elucidated using different 1D and 2D NMR spectroscopic techniques and their purity was confirmed by elemental analysis. The most active PTGAs induced a 12-26-fold increase in the expression of TNF-α and IL-1β mRNA and triggered a marked release of NO in isolated macrophages. These levels were comparable to the responses elicited by heat-killed E. coli and S. aureus. The position of the palmitamide chain and aryl substitution had a significant effect on the TNF-α and IL-1β mRNA expression and NO release. Simulations of molecular dockings showed that the new PTGA derivatives occupy the same TLR2/TLR6 heterodimer active binding site of the microbial diacylated lipoproteins. The new immunomodulators may have a profound impact on various clinical disorders associated with dysfunctional innate immunity.
Collapse
Affiliation(s)
- Samia M Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Ola M F Abou-Ghadir
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Ahmed S Aboraia
- Department of Therapeutic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Samia G Abdel-Moty
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Abu-Baker M Abdel-Aal
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
- Department of Chemistry, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, Tanjong Malim, Perak, Malaysia
| |
Collapse
|
3
|
Verpalen ECJM, Brouwer AJ, Wolfert MA, Boons GJ. Structure-Based Design and Synthesis of Lipid A Derivatives to Modulate Cytokine Responses. Chemistry 2024:e202400429. [PMID: 38587187 DOI: 10.1002/chem.202400429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/09/2024]
Abstract
Agonists of Toll like receptors (TLRs) have attracted interest as adjuvants and immune modulators. A crystal structure of TLR4/MD2 with E. coli LPS indicates that the fatty acid at C-2 of the lipid A component of LPS induces dimerization of two TLR4-MD2 complexes, which in turn initiates cell signaling leading to the production of (pro)inflammatory cytokines. To probe the importance of the (R)-3-hydroxymyristate at C-2 of lipid A, a range of bis- and mono-phosphoryl lipid A derivatives with different modifications at C-2 were prepared by a strategy in which 2-methylnaphthyl ethers were employed as permanent protecting group that could be readily removed by catalytic hydrogenation. The C-2 amine was protected as 9-fluorenylmethyloxycarbamate, which at a later stage could be removed to give a free amine that was modified by different fatty acids. LPS and the synthetic lipid As induced the same cytokines, however, large differences in activity were observed. A compound having a hexanoyl moiety at C-2 still showed agonistic properties, but further shortening to a butanoyl abolished activity. The modifications had a larger influence on monophosphoryl lipid As. The lipid As having a butanoyl moiety at C-2 could selectively antagonize TRIF associated cytokines induced by LPS or lipid A.
Collapse
Affiliation(s)
- Enrico C J M Verpalen
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Arwin J Brouwer
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
| | - Margreet A Wolfert
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG, Utrecht, The Netherlands
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
- Chemistry Department, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Zhou C, Xu Z, Li G, Gao Q, Sui Q, Li T. Efficient synthesis of monophosphoryl lipid A mimetic RC-529. J Carbohydr Chem 2021. [DOI: 10.1080/07328303.2021.2016793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Chengkai Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai University of Engineering Science, Shanghai, China
| | - Zhuojia Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Gen Li
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Qi Gao
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Qiang Sui
- Shanghai University of Engineering Science, Shanghai, China
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Tiehai Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
5
|
Froning M, Helmer PO, Hayen H. Identification and structural characterization of lipid A from Escherichia coli, Pseudomonas putida and Pseudomonas taiwanensis using liquid chromatography coupled to high-resolution tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8897. [PMID: 32673427 DOI: 10.1002/rcm.8897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
RATIONALE Lipid A is a part of the lipopolysaccharide layer, which is a main component of the outer membrane from Gram-negative bacteria. It can be sensed by mammalians to identify the presence of Gram-negative bacteria in their tissues and plays a key role in the pathogenesis of bacterial infections. Lipid A is also used as an adjuvant in human vaccines, emphasizing the importance of its structural analysis. METHODS In order to distinguish and characterize various lipid A species, a liquid chromatography coupled to tandem mass spectrometry (LC/MS/MS) method was developed. Isolation of lipid A from different bacteria was carried out using a modified Bligh and Dyer extraction following a mild acid hydrolysis. Chromatography was performed using a bifunctional reversed-phase-based stationary phase. High-resolution MS using negative electrospray ionization was applied and MS/MS experiments utilizing high-energy collisional dissociation generated diagnostic product ions, which allowed the assignment of the side chains to distinct positions of the lipid A backbone. RESULTS The method was applied to lipid A isolations of Escherichia coli (E. coli), Pseudomonas putida (P. putida) and Pseudomonas taiwanensis (P. taiwanensis). Various lipid A species were identified by their accurate masses and their structures were characterized using MS/MS experiments. Previously described lipid A structures from E. coli were identified and their structures confirmed by MS/MS. For the biotechnologically relevant strains P. putida and P. taiwanensis, we confirmed species by MS/MS, which have previously only been analyzed using MS. In addition, several lipid A species were discovered that have not been previously described in the literature. CONCLUSIONS The combination of LC and MS/MS enabled the selective and sensitive identification and structural characterization of various lipid A species from Gram-negative bacteria. These species varied in their substituted side chains, speaking of fatty acids and phosphate groups. Characteristic product ions facilitated the assignment of side chains to distinct positions of the lipid A backbone.
Collapse
Affiliation(s)
- Matti Froning
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster, 48149, Germany
| | - Patrick O Helmer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster, 48149, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 30, Münster, 48149, Germany
| |
Collapse
|
6
|
Verpalen ECJM, Brouwer AJ, Boons GJ. Synthesis of monophosphoryl lipid A using 2-naphtylmethyl ethers as permanent protecting groups. Carbohydr Res 2020; 498:108152. [PMID: 33032087 DOI: 10.1016/j.carres.2020.108152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 11/18/2022]
Abstract
Lipid A, which is a conserved component of lipopolysaccharides of gram-negative bacteria, has attracted considerable interest for the development of immuno-adjuvants. Most approaches for lipid A synthesis rely on the use of benzyl ethers as permanent protecting groups. Due to the amphiphilic character of lipid A, these compounds aggregate during the hydrogenation step to remove benzyl ethers, resulting in a sluggish reaction and by-product formation. To address this problem, we have developed a synthetic approach based on the use of 2-naphtylmethyl ether (Nap) ethers as permanent protecting group for hydroxyls. At the end of a synthetic sequence, multiple of these protecting groups can readily be removed by oxidation with 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ). Di-allyl N,N-diisopropylphosphoramidite was employed to install the phosphate ester and the resulting allyl esters were cleaved using palladium tetrakistriphenylphosphine. The synthetic strategy allows late stage introduction of different fatty acids at the amines of the target compound, which is facilitated by Troc and Fmoc as orthogonal amino-protecting groups.
Collapse
Affiliation(s)
- Enrico C J M Verpalen
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Arwin J Brouwer
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands
| | - Geert-Jan Boons
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, and Bijvoet Center for Biomolecular Research, Utrecht University, Universiteitsweg 99, Utrecht 3584 CG, the Netherlands; Complex Carbohydrate Research Center and Department of Chemistry, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Xue J, Han Z, Li G, Emmanuel KA, McManus CL, Sui Q, Ge D, Gao Q, Cai L. Synthesis of monophosphorylated lipid A precursors using 2-naphthylmethyl ether as a protecting group. Beilstein J Org Chem 2020; 16:1955-1962. [PMID: 32831952 PMCID: PMC7431767 DOI: 10.3762/bjoc.16.162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
Lipid A, the hydrophobic domain of lipopolysaccharide (LPS), is a strong immunostimulator and therefore a valuable target for the development of novel immunomodulators. Various lipid A derivatives have been chemically synthesized in order to reduce toxicity while retaining the immunostimulatory activity. In this work, we describe a novel approach to the frequently problematic synthesis of monophosphorylated mono- and disaccharide lipid X using a combination of established chemistry and a novel 2-naphthylmethyl ether (Nap) protecting group for “permanent” protection of hydroxy groups. Of particular note is the fact that the key Nap protecting group is able to remain in the molecule until the final global deprotection step. Our synthetic strategy is not only efficient in regards to the yield of the various chemical transformations, but also robust in regards to the potential application of this route to the production of other lipid A analogs.
Collapse
Affiliation(s)
- Jundi Xue
- Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, China
| | - Ziyi Han
- China State Institute of Pharmaceutical Industry, 285 Gebaini Rd, Shanghai 201203, China
| | - Gen Li
- China State Institute of Pharmaceutical Industry, 285 Gebaini Rd, Shanghai 201203, China
| | - Khalisha A Emmanuel
- Department of Chemistry, University of South Carolina Lancaster, 476 Hubbard Drive, Lancaster, South Carolina 29720, USA
| | - Cynthia L McManus
- Department of Chemistry, University of South Carolina Lancaster, 476 Hubbard Drive, Lancaster, South Carolina 29720, USA
| | - Qiang Sui
- Shanghai University of Engineering Science, 333 Long Teng Road, Shanghai 201620, China.,China State Institute of Pharmaceutical Industry, 285 Gebaini Rd, Shanghai 201203, China
| | - Dongmian Ge
- Suzhou Jingye Medicine & Chemical Co., Ltd, 88 Sanlian Street, Suzhou, Jiangsu Province, 215129, China
| | - Qi Gao
- China State Institute of Pharmaceutical Industry, 285 Gebaini Rd, Shanghai 201203, China
| | - Li Cai
- Department of Chemistry, University of South Carolina Lancaster, 476 Hubbard Drive, Lancaster, South Carolina 29720, USA
| |
Collapse
|
8
|
Casillo A, Parrilli E, Tutino ML, Corsaro MM. The outer membrane glycolipids of bacteria from cold environments: isolation, characterization, and biological activity. FEMS Microbiol Ecol 2019; 95:5519854. [DOI: 10.1093/femsec/fiz094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/14/2019] [Indexed: 01/18/2023] Open
Abstract
ABSTRACTLipopolysaccharides (LPSs) are the main components of the external leaflet of the outer membrane of Gram-negative bacteria. Microorganisms that colonize permanently or transiently cold habitats have evolved an array of structural adaptations, some of which involve components of bacterial membranes. These adaptations assure the perfect functionality of the membrane even at freezing or sub-freezing growth temperatures. This review summarizes the state-of-the-art information concerning the structural features of the LPSs produced by cold-adapted bacteria. The LPS structure has recently been elucidated from species mainly belonging to Gammaproteobacteria and Flavobacteriaceae. Although the reported structural heterogeneity may arise from the phylogenetic diversity of the analyzed source strains, some generalized trends can be deduced. For instance, it is clear that only a small portion of LPSs displays the O-chain. In addition, the biological activity of the lipid A portion from several cold-adapted strains is reported.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Maria Luisa Tutino
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| | - Maria Michela Corsaro
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Complesso Universitario Monte S. Angelo, via Cintia, 80126 Naples, Italy
| |
Collapse
|
9
|
Gao J, Guo Z. Progress in the synthesis and biological evaluation of lipid A and its derivatives. Med Res Rev 2018; 38:556-601. [PMID: 28621828 PMCID: PMC5732894 DOI: 10.1002/med.21447] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/09/2017] [Accepted: 04/20/2017] [Indexed: 12/31/2022]
Abstract
Lipid A is one of the core structures of bacterial lipopolysaccharides (LPSs), and it is mainly responsible for the strong immunostimulatory activities of LPS through interactions with the Toll-like receptors and other molecules in the human immune system. To obtain structurally homogeneous and well-defined lipid As and its derivatives in quantities meaningful for various biological studies and applications, their chemical synthesis has become a focal point. This review has provided a survey of significant progresses made in the synthesis of lipid A, and its derivatives that carry diverse saturated and unsaturated lipids, have the phosphate group at its reducing end replaced with a more stable phosphate or carboxyl group, or lack the reducing end phosphate or both phosphate groups, as well as progresses in the synthesis of LPS analogs and other lipid A conjugates. These synthetic molecules have facilitated the elucidation of the structure-activity relationships of lipid A useful for the design and development of lipid A based therapeutics, such as those utilized to treat sepsis, and other medical applications, for example the use of monophosphoryl lipid A as a carrier molecule for the study of fully synthetic self-adjuvanting conjugate vaccines. These topics are also briefly covered in the current review.
Collapse
Affiliation(s)
- Jian Gao
- National Glycoengineering Research Center and Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 27 Shanda Nan Lu, Jinan 250100, China
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| |
Collapse
|
10
|
Zamyatina A. Aminosugar-based immunomodulator lipid A: synthetic approaches. Beilstein J Org Chem 2018; 14:25-53. [PMID: 29379577 PMCID: PMC5769089 DOI: 10.3762/bjoc.14.3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/23/2017] [Indexed: 12/11/2022] Open
Abstract
The immediate immune response to infection by Gram-negative bacteria depends on the structure of a lipopolysaccharide (LPS, also known as endotoxin), a complex glycolipid constituting the outer leaflet of the bacterial outer membrane. Recognition of picomolar quantities of pathogenic LPS by the germ-line encoded Toll-like Receptor 4 (TLR4) complex triggers the intracellular pro-inflammatory signaling cascade leading to the expression of cytokines, chemokines, prostaglandins and reactive oxygen species which manifest an acute inflammatory response to infection. The "endotoxic principle" of LPS resides in its amphiphilic membrane-bound fragment glycophospholipid lipid A which directly binds to the TLR4·MD-2 receptor complex. The lipid A content of LPS comprises a complex mixture of structural homologs varying in the acylation pattern, the length of the (R)-3-hydroxyacyl- and (R)-3-acyloxyacyl long-chain residues and in the phosphorylation status of the β(1→6)-linked diglucosamine backbone. The structural heterogeneity of the lipid A isolates obtained from bacterial cultures as well as possible contamination with other pro-inflammatory bacterial components makes it difficult to obtain unambiguous immunobiological data correlating specific structural features of lipid A with its endotoxic activity. Advanced understanding of the therapeutic significance of the TLR4-mediated modulation of the innate immune signaling and the central role of lipid A in the recognition of LPS by the innate immune system has led to a demand for well-defined materials for biological studies. Since effective synthetic chemistry is a prerequisite for the availability of homogeneous structurally distinct lipid A, the development of divergent and reproducible approaches for the synthesis of various types of lipid A has become a subject of considerable importance. This review focuses on recent advances in synthetic methodologies toward LPS substructures comprising lipid A and describes the synthesis and immunobiological properties of representative lipid A variants corresponding to different bacterial species. The main criteria for the choice of orthogonal protecting groups for hydroxyl and amino functions of synthetically assembled β(1→6)-linked diglucosamine backbone of lipid A which allows for a stepwise introduction of multiple functional groups into the molecule are discussed. Thorough consideration is also given to the synthesis of 1,1'-glycosyl phosphodiesters comprising partial structures of 4-amino-4-deoxy-β-L-arabinose modified Burkholderia lipid A and galactosamine-modified Francisella lipid A. Particular emphasis is put on the stereoselective construction of binary glycosyl phosphodiester fragments connecting the anomeric centers of two aminosugars as well as on the advanced P(III)-phosphorus chemistry behind the assembly of zwitterionic double glycosyl phosphodiesters.
Collapse
Affiliation(s)
- Alla Zamyatina
- Department of Chemistry, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
11
|
Sándor V, Dörnyei Á, Makszin L, Kilár F, Péterfi Z, Kocsis B, Kilár A. Characterization of complex, heterogeneous lipid A samples using HPLC-MS/MS technique I. Overall analysis with respect to acylation, phosphorylation and isobaric distribution. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:1043-1063. [PMID: 27506631 DOI: 10.1002/jms.3839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
We established a new reversed phase-high performance liquid chromatography method combined with electrospray ionization quadrupole time-of-flight tandem mass spectrometry for the simultaneous determination and structural characterization of different lipid A types in bacteria (Escherichia coli O111, Salmonella adelaide O35 and Proteus morganii O34) showing serological cross-reactivity. The complex lipid A mixtures (obtained by simple extraction and acid hydrolysis of the outer membrane lipopolysaccharides) were separated and detected without phosphate derivatization. Several previously unidentified ions were detected, which differed in the number and type of acyl chains and number of phosphate groups. In several cases, we observed the different retention of isobaric lipid A species, which had different secondary fatty acyl distribution at the C2' or the C3' sites. The fragmentation of the various, C4' monophosphorylated lipid A species in deprotonated forms provided structural assignment for each component. Fragmentation pathways of the tri-acylated, tetra-acylated, penta-acylated, hexa-acylated and hepta-acylated lipid A components and of the lipid A partial structures are suggested. As standards, the hexa-acylated ion at m/z 1716 with the E. coli-type acyl distribution and the hepta-acylated ion at m/z 1954 with the Salmonella-type acyl distribution were used. The results confirmed the presence of multiple forms of lipid A in all strains analyzed. In addition, the negative-ion mode MS permitted efficient detection for non-phosphorylated lipid A components, too. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Viktor Sándor
- Institute of Bioanalysis and Szentágothai Research Centre, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary.
| | - Ágnes Dörnyei
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6, 7624, Pécs, Hungary
| | - Lilla Makszin
- Institute of Bioanalysis and Szentágothai Research Centre, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary
| | - Ferenc Kilár
- Institute of Bioanalysis and Szentágothai Research Centre, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary
- Department of Analytical and Environmental Chemistry, Faculty of Sciences, University of Pécs, Ifjúság útja 6, 7624, Pécs, Hungary
| | - Zoltán Péterfi
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Faculty of Medicine, University of Pécs, Szigeti út 12, 7624, Pécs, Hungary
| | - Anikó Kilár
- MTA-PTE Molecular Interactions in Separation Science Research Group, Ifjúság útja 6, 7624, Pécs, Hungary
| |
Collapse
|
12
|
Hernandez A, Bohannon JK, Luan L, Fensterheim BA, Guo Y, Patil NK, McAdams C, Wang J, Sherwood ER. The role of MyD88- and TRIF-dependent signaling in monophosphoryl lipid A-induced expansion and recruitment of innate immunocytes. J Leukoc Biol 2016; 100:1311-1322. [PMID: 27354411 DOI: 10.1189/jlb.1a0216-072r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/01/2016] [Accepted: 06/12/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment with the TLR4 agonist MPLA augments innate resistance to common bacterial pathogens. However, the cellular and molecular mechanisms by which MPLA augments innate immunocyte functions are not well characterized. This study examined the importance of MyD88- and TRIF-dependent signaling for leukocyte mobilization, recruitment, and activation following administration of MPLA. MPLA potently induced MyD88- and TRIF-dependent signaling. A single injection of MPLA caused rapid mobilization and recruitment of neutrophils, a response that was largely mediated by the chemokines CXCL1 and -2 and the hemopoietic factor G-CSF. Rapid neutrophil recruitment and chemokine production were regulated by both pathways although the MyD88-dependent pathway showed some predominance. In further studies, multiple injections of MPLA potently induced mobilization and recruitment of neutrophils and monocytes. Neutrophil recruitment after multiple injections of MPLA was reliant on MyD88-dependent signaling, but effective monocyte recruitment required activation of both pathways. MPLA treatment induced expansion of myeloid progenitors in bone marrow and upregulation of CD11b and shedding of L-selectin by neutrophils, all of which were attenuated in MyD88- and TRIF-deficient mice. These results show that MPLA-induced neutrophil and monocyte recruitment, expansion of bone marrow progenitors and augmentation of neutrophil adhesion molecule expression are regulated by both the MyD88- and TRIF-dependent pathways.
Collapse
Affiliation(s)
- Antonio Hernandez
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee;
| | - Julia K Bohannon
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Liming Luan
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Benjamin A Fensterheim
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Yin Guo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Naeem K Patil
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Chase McAdams
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jingbin Wang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| | - Edward R Sherwood
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee; and
| |
Collapse
|
13
|
D'Alonzo D, Cipolletti M, Tarantino G, Ziaco M, Pieretti G, Iadonisi A, Palumbo G, Alfano A, Giuliano M, De Rosa M, Schiraldi C, Cammarota M, Parrilli M, Bedini E, Corsaro MM. A Semisynthetic Approach to New Immunoadjuvant Candidates: Site-Selective Chemical Manipulation ofEscherichia coliMonophosphoryl Lipid A. Chemistry 2016; 22:11053-63. [DOI: 10.1002/chem.201601284] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Daniele D'Alonzo
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo, via Cintia 4 80126 Naples Italy
| | - Manuela Cipolletti
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo, via Cintia 4 80126 Naples Italy
- Department of Biology; University “Roma Tre”; Viale G. Marconi 446 00146 Rome Italy
| | - Giulia Tarantino
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo, via Cintia 4 80126 Naples Italy
- Cardiff Catalysis Institute; School of Chemistry; Cardiff University; Main Building, Park Place CF10 3AT Cardiff The United Kingdom
| | - Marcello Ziaco
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo, via Cintia 4 80126 Naples Italy
| | - Giuseppina Pieretti
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo, via Cintia 4 80126 Naples Italy
| | - Alfonso Iadonisi
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo, via Cintia 4 80126 Naples Italy
| | - Giovanni Palumbo
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo, via Cintia 4 80126 Naples Italy
| | - Alberto Alfano
- Department of Experimental Medicine; Second University of Naples; via de Crecchio 7 80138 Naples Italy
| | - Mariateresa Giuliano
- Department of Experimental Medicine; Second University of Naples; via de Crecchio 7 80138 Naples Italy
| | - Mario De Rosa
- Department of Experimental Medicine; Second University of Naples; via de Crecchio 7 80138 Naples Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine; Second University of Naples; via de Crecchio 7 80138 Naples Italy
| | - Marcella Cammarota
- Department of Experimental Medicine; Second University of Naples; via de Crecchio 7 80138 Naples Italy
| | - Michelangelo Parrilli
- Department of Biology; University of Naples Federico II; Complesso Universitario Monte S. Angelo via Cintia 4 80126 Naples Italy
| | - Emiliano Bedini
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo, via Cintia 4 80126 Naples Italy
| | - Maria M. Corsaro
- Department of Chemical Sciences; University of Naples Federico II; Complesso Universitario Monte S. Angelo, via Cintia 4 80126 Naples Italy
| |
Collapse
|
14
|
Yamamoto H, Oda M, Kanno M, Tamashiro S, Tamura I, Yoneda T, Yamasaki N, Domon H, Nakano M, Takahashi H, Terao Y, Kasai Y, Imagawa H. Chemical Hybridization of Vizantin and Lipid A to Generate a Novel LPS Antagonist. Chem Pharm Bull (Tokyo) 2016; 64:246-57. [DOI: 10.1248/cpb.c15-00828] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Masataka Oda
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences
| | - Marina Kanno
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Shota Tamashiro
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Ikuko Tamura
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | | | - Naoto Yamasaki
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Hisanori Domon
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences
| | - Mayo Nakano
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | | | - Yutaka Terao
- Division of Microbiology and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences
| | - Yusuke Kasai
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| | - Hiroshi Imagawa
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University
| |
Collapse
|
15
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update for 2009-2010. MASS SPECTROMETRY REVIEWS 2015; 34:268-422. [PMID: 24863367 PMCID: PMC7168572 DOI: 10.1002/mas.21411] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/16/2013] [Accepted: 07/16/2013] [Indexed: 05/07/2023]
Abstract
This review is the sixth update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2010. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, arrays and fragmentation are covered in the first part of the review and applications to various structural typed constitutes the remainder. The main groups of compound that are discussed in this section are oligo and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals. Many of these applications are presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions and applications to chemical synthesis.
Collapse
Affiliation(s)
- David J. Harvey
- Department of BiochemistryOxford Glycobiology InstituteUniversity of OxfordOxfordOX1 3QUUK
| |
Collapse
|
16
|
A combined fermentative-chemical approach for the scalable production of pure E. coli monophosphoryl lipid A. Appl Microbiol Biotechnol 2014; 98:7781-91. [DOI: 10.1007/s00253-014-5865-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/27/2014] [Accepted: 05/28/2014] [Indexed: 11/25/2022]
|
17
|
Wang Z, Chinoy ZS, Ambre SG, Peng W, McBride R, de Vries RP, Glushka J, Paulson JC, Boons GJ. A general strategy for the chemoenzymatic synthesis of asymmetrically branched N-glycans. Science 2013; 341:379-83. [PMID: 23888036 DOI: 10.1126/science.1236231] [Citation(s) in RCA: 265] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A systematic, efficient means of producing diverse libraries of asymmetrically branched N-glycans is needed to investigate the specificities and biology of glycan-binding proteins. To that end, we describe a core pentasaccharide that at potential branching positions is modified by orthogonal protecting groups to allow selective attachment of specific saccharide moieties by chemical glycosylation. The appendages were selected so that the antenna of the resulting deprotected compounds could be selectively extended by glycosyltransferases to give libraries of asymmetrical multi-antennary glycans. The power of the methodology was demonstrated by the preparation of a series of complex oligosaccharides that were printed as microarrays and screened for binding to lectins and influenza-virus hemagglutinins, which showed that recognition is modulated by presentation of minimal epitopes in the context of complex N-glycans.
Collapse
Affiliation(s)
- Zhen Wang
- Complex Carbohydrate Research Center, University of Georgia, 315 Riverbend Road, Athens, GA 30602, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lewicky JD, Ulanova M, Jiang ZH. Synthesis and immunostimulatory activity of diethanolamine-containing lipid A mimics. RSC Adv 2012. [DOI: 10.1039/c2ra01149b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
19
|
Piazza M, Calabrese V, Damore G, Cighetti R, Gioannini T, Weiss J, Peri F. A synthetic lipid A mimetic modulates human TLR4 activity. ChemMedChem 2011; 7:213-7. [PMID: 22140087 DOI: 10.1002/cmdc.201100494] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Indexed: 02/06/2023]
Affiliation(s)
- Matteo Piazza
- Dipartimento di Biotecnologie e Bioscienze, Università di Milano Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
Lewicky JD, Ulanova M, Jiang ZH. Synthesis of a dimeric monosaccharide lipid A mimic and its synergistic effect on the immunostimulatory activity of lipopolysaccharide. Carbohydr Res 2011; 346:1705-13. [DOI: 10.1016/j.carres.2011.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/29/2011] [Accepted: 05/15/2011] [Indexed: 01/22/2023]
|
21
|
Kaeothip S, Paranjape G, Terrill SE, Bongat AFG, Udan MLD, Kamkhachorn T, Johnson HL, Nichols MR, Demchenko AV. Development of LPS antagonistic therapeutics: synthesis and evaluation of glucopyranoside-spacer-amino acid motifs. RSC Adv 2011. [DOI: 10.1039/c1ra00145k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
22
|
Gaekwad J, Zhang Y, Zhang W, Reeves J, Wolfert MA, Boons GJ. Differential induction of innate immune responses by synthetic lipid a derivatives. J Biol Chem 2010; 285:29375-86. [PMID: 20634284 PMCID: PMC2937970 DOI: 10.1074/jbc.m110.115204] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 07/13/2010] [Indexed: 01/23/2023] Open
Abstract
Recent studies have indicated that lipopolysaccharides (LPS) isolated from particular bacterial strains can bias innate immune responses toward different signal transduction pathways thereby eliciting unique patterns of cytokines. Heterogeneity in the structure of lipid A (the active component of LPS) and possible contaminations with other inflammatory components have made it difficult to confirm these observations and dissect molecular motifs that may be responsible for modulatory properties. To address these issues, we have examined, for the first time, the ability of a range of well defined synthetic lipid As and isolated LPS and lipid A preparations to induce the production of a wide range of cytokines in three different mouse cell types. It was found that, for a given compound, the potencies of production of the various cytokines differed significantly. An additive model, in which a chemical change in the structure of a compound effects the potencies of all cytokines in the same manner, could describe the potencies of the cytokines for all compounds. Thus, no evidence was found that the structure of lipid A can modulate the pattern of cytokine production. In addition, the statistical analysis showed that the relative ordering of the potencies of the compounds was identical in the different cell types and that structural features such as the presence of a 3-deoxy-D-manno-octulosonic acid moiety, anomeric phosphate, lipid length, and acylation pattern were important for pro-inflammatory activity. Finally, it was found that transcriptional and post-transcription control mechanisms determine potencies and efficacies of cytokine production in cell-specific manners.
Collapse
Affiliation(s)
| | | | - Wei Zhang
- Statistics Department, University of Georgia, Athens, Georgia 30602
| | - Jaxk Reeves
- Statistics Department, University of Georgia, Athens, Georgia 30602
| | | | | |
Collapse
|
23
|
Cipolla L, Gabrielli L, Bini D, Russo L, Shaikh N. Kdo: a critical monosaccharide for bacteria viability. Nat Prod Rep 2010; 27:1618-29. [DOI: 10.1039/c004750n] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|