1
|
Ran XY, Wei YF, Wu YL, Dai LR, Xia WL, Zhou PZ, Li K. Xanthene-based NIR organic phototheranostics agents: design strategies and biomedical applications. J Mater Chem B 2025; 13:2952-2977. [PMID: 39898613 DOI: 10.1039/d4tb02480j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Fluorescence imaging and phototherapy in the near-infrared window (NIR, 650-1700 nm) have attracted great attention for biomedical applications due to their minimal invasiveness, ultra-low photon scattering and high spatial-temporal precision. Among NIR emitting/absorbing organic dyes, xanthene derivatives with controllable molecular structures and optical properties, excellent fluorescence quantum yields, high molar absorption coefficients and remarkable chemical stability have been extensively studied and explored in the field of biological theranostics. The present study was aimed at providing a comprehensive summary of the progress in the development and design strategies of xanthene derivative fluorophores for advanced biological phototheranostics. This study elucidated several representative controllable strategies, including electronic programming strategies, extension of conjugated backbones, and strategic establishment of activatable fluorophores, which enhance the NIR fluorescence of xanthene backbones. Subsequently, the development of xanthene nanoplatforms based on NIR fluorescence for biological applications was detailed. Overall, this work outlines future efforts and directions for improving NIR xanthene derivatives to meet evolving clinical needs. It is anticipated that this contribution could provide a viable reference for the strategic design of organic NIR fluorophores, thereby enhancing their potential clinical practice in future.
Collapse
Affiliation(s)
- Xiao-Yun Ran
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Yuan-Feng Wei
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yan-Ling Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Li-Rui Dai
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wen-Li Xia
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Pei-Zhi Zhou
- Department of Neurosurgery, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
2
|
Liu T, Kompa J, Ling J, Lardon N, Zhang Y, Chen J, Reymond L, Chen P, Tran M, Yang Z, Zhang H, Liu Y, Pitsch S, Zou P, Wang L, Johnsson K, Chen Z. Gentle Rhodamines for Live-Cell Fluorescence Microscopy. ACS CENTRAL SCIENCE 2024; 10:1933-1944. [PMID: 39463828 PMCID: PMC11503488 DOI: 10.1021/acscentsci.4c00616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/30/2024] [Accepted: 09/20/2024] [Indexed: 10/29/2024]
Abstract
Rhodamines have been continuously optimized in brightness, biocompatibility, and color to fulfill the demands of modern bioimaging. However, the problem of phototoxicity caused by the excited fluorophore under long-term illumination has been largely neglected, hampering their use in time-lapse imaging. Here we introduce cyclooctatetraene (COT) conjugated rhodamines that span the visible spectrum and exhibit significantly reduced phototoxicity. We identified a general strategy for the generation of Gentle Rhodamines, which preserved their outstanding spectroscopic properties and cell permeability while showing an efficient reduction of singlet-oxygen formation and diminished cellular photodamage. Paradoxically, their photobleaching kinetics do not go hand in hand with reduced phototoxicity. By combining COT-conjugated spirocyclization motifs with targeting moieties, these Gentle Rhodamines compose a toolkit for time-lapse imaging of mitochondria, DNA, and actin, and synergize with covalent and exchangeable HaloTag labeling of cellular proteins with less photodamage than their commonly used precursors. Taken together, the Gentle Rhodamines generally offer alleviated phototoxicity and allow advanced video recording applications, including voltage imaging.
Collapse
Affiliation(s)
- Tianyan Liu
- College
of Future Technology, Institute of Molecular Medicine, National Biomedical
Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular
Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Science, Academy for Advanced Interdisciplinary Studies,
State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Julian Kompa
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
| | - Jing Ling
- College
of Future Technology, Institute of Molecular Medicine, National Biomedical
Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular
Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Science, Academy for Advanced Interdisciplinary Studies,
State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Nicolas Lardon
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
| | - Yuan Zhang
- College
of Future Technology, Institute of Molecular Medicine, National Biomedical
Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular
Medicine, Peking University, Beijing 100871, China
| | - Jingting Chen
- College
of Future Technology, Institute of Molecular Medicine, National Biomedical
Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular
Medicine, Peking University, Beijing 100871, China
| | - Luc Reymond
- Biomolecular
Screening Facility, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Peng Chen
- PKU-Nanjing
Institute of Translational Medicine, Nanjing 211800, China
- GenVivo
Tech, Nanjing 211800, China
| | - Mai Tran
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
| | - Zhongtian Yang
- College
of Future Technology, Institute of Molecular Medicine, National Biomedical
Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular
Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Science, Academy for Advanced Interdisciplinary Studies,
State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Haolin Zhang
- College
of Future Technology, Institute of Molecular Medicine, National Biomedical
Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular
Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Science, Academy for Advanced Interdisciplinary Studies,
State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Yitong Liu
- College
of Future Technology, Institute of Molecular Medicine, National Biomedical
Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular
Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Science, Academy for Advanced Interdisciplinary Studies,
State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
| | - Stefan Pitsch
- Spirochrome
AG, Chalberwiedstrasse
4, CH-8260 Stein
am Rhein, Switzerland
| | - Peng Zou
- Peking-Tsinghua
Center for Life Science, Academy for Advanced Interdisciplinary Studies,
State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
- College
of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules
Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory
of Bioorganic Chemistry and Molecular Engineering of the Ministry
of Education, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lu Wang
- Key
Laboratory of Smart Drug Delivery, Ministry of Education, School of
Pharmacy, Fudan University, 201203 Shanghai, China
| | - Kai Johnsson
- Department
of Chemical Biology, Max Planck Institute
for Medical Research, Heidelberg 69120, Germany
- Biomolecular
Screening Facility, École Polytechnique
Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Zhixing Chen
- College
of Future Technology, Institute of Molecular Medicine, National Biomedical
Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular
Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua
Center for Life Science, Academy for Advanced Interdisciplinary Studies,
State Key Laboratory of Membrane Biology, Peking University, Beijing 100871, China
- PKU-Nanjing
Institute of Translational Medicine, Nanjing 211800, China
- GenVivo
Tech, Nanjing 211800, China
| |
Collapse
|
3
|
Wu W, Yan K, He Z, Zhang L, Dong Y, Wu B, Liu H, Wang S, Zhang F. 2X-Rhodamine: A Bright and Fluorogenic Scaffold for Developing Near-Infrared Chemigenetic Indicators. J Am Chem Soc 2024. [PMID: 38605649 DOI: 10.1021/jacs.4c03485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Chemigenetic fusion of synthetic dyes with genetically encoded protein tags presents a promising avenue for in vivo imaging. However, its full potential has been hindered by the lack of bright and fluorogenic dyes operating in the "tissue transparency" near-infrared window (NIR, 700-1700 nm). Here, we report 2X-rhodamine (2XR), a novel bright scaffold that allows for the development of live-cell-compatible, NIR-excited variants with strong fluorogenicity beyond 1000 nm. 2XR utilizes a rigidified π-skeleton featuring dual atomic bridges and functions via a spiro-based fluorogenic mechanism. This design affords longer wavelengths, higher quantum yield (ΦF = 0.11), and enhanced fluorogenicity in water when compared to the phosphine oxide-cored, or sulfone-cored rhodamine, the NIR fluorogenic benchmarks currently used. We showcase their bright performance in video-rate dynamic imaging and targeted deep-tissue molecular imaging in vivo. Notably, we develop a 2XR variant, 2XR715-HTL, an NIR fluorogenic ligand for the HaloTag protein, enabling NIR genetically encoded calcium sensing and the first demonstration of in vivo chemigenetic labeling beyond 1000 nm. Our work expands the library of NIR fluorogenic tools, paving the way for in vivo imaging and sensing with the chemigenetic approach.
Collapse
Affiliation(s)
- Wenxiao Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Kui Yan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Zuyang He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Lu Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Yuyao Dong
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Bin Wu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Hongyue Liu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai 200433, China
| |
Collapse
|
4
|
Dunlop D, Horváth P, Klán P, Slanina T, Šebej P. Central Ring Puckering Enhances the Stokes Shift of Xanthene Dyes. Chemistry 2024; 30:e202400024. [PMID: 38197554 DOI: 10.1002/chem.202400024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/11/2024]
Abstract
Small-molecule dyes are generally designed based on well-understood electronic effects. However, steric hindrance can promote excited-state geometric relaxation, increasing the difference between the positions of absorption and emission bands (the Stokes shift). Accordingly, we hypothesized that sterically induced central ring puckering in xanthene dyes could be used to systematically increase their Stokes shift. Through a combined experimental/quantum-chemical approach, we screened a group of (9-acylimino)-pyronin dyes with a perturbed central ring geometry. Our results showed that an atom with sp3 hybridization in position 10 of (9-acylimino)-pyronins induces central ring puckering and facilitates excited-state geometric relaxation, thereby markedly enhancing their Stokes shifts (by up to ~2000 cm-1). Thus, we prepared fluorescent (9-acylimino)-pyronin pH sensors, which showed a Stokes shift disparity between acid and base forms of up to ~8700 cm-1. Moreover, the concept of ring puckering-enhanced Stokes shift can be applied to a wide range of xanthene analogues found in the literature. Therefore, central ring puckering may be reliably used as a strategy for enhancing Stokes shifts in the rational design of dyes.
Collapse
Affiliation(s)
- David Dunlop
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 160 00, Czech Republic
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, Prague 2, 128 40, Czech Republic
| | - Peter Horváth
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Petr Klán
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Tomáš Slanina
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, Prague 6, 160 00, Czech Republic
| | - Peter Šebej
- RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| |
Collapse
|
5
|
Jiang G, Liu H, Liu H, Ke G, Ren TB, Xiong B, Zhang XB, Yuan L. Chemical Approaches to Optimize the Properties of Organic Fluorophores for Imaging and Sensing. Angew Chem Int Ed Engl 2024; 63:e202315217. [PMID: 38081782 DOI: 10.1002/anie.202315217] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Indexed: 12/30/2023]
Abstract
Organic fluorophores are indispensable tools in cells, tissue and in vivo imaging, and have enabled much progress in the wide range of biological and biomedical fields. However, many available dyes suffer from insufficient performances, such as short absorption and emission wavelength, low brightness, poor stability, small Stokes shift, and unsuitable permeability, restricting their application in advanced imaging technology and complex imaging. Over the past two decades, many efforts have been made to improve these performances of fluorophores. Starting with the luminescence principle of fluorophores, this review clarifies the mechanisms of the insufficient performance for traditional fluorophores to a certain extent, systematically summarizes the modified approaches of optimizing properties, highlights the typical applications of the improved fluorophores in imaging and sensing, and indicates existing problems and challenges in this area. This progress not only proves the significance of improving fluorophores properties, but also provide a theoretical guidance for the development of high-performance fluorophores.
Collapse
Affiliation(s)
- Gangwei Jiang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Han Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Hong Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Bin Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, 410082, Changsha, P. R. China
| |
Collapse
|
6
|
Grimm J, Tkachuk AN, Patel R, Hennigan ST, Gutu A, Dong P, Gandin V, Osowski AM, Holland KL, Liu ZJ, Brown TA, Lavis LD. Optimized Red-Absorbing Dyes for Imaging and Sensing. J Am Chem Soc 2023; 145:23000-23013. [PMID: 37842926 PMCID: PMC10603817 DOI: 10.1021/jacs.3c05273] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Indexed: 10/17/2023]
Abstract
Rhodamine dyes are excellent scaffolds for developing a broad range of fluorescent probes. A key property of rhodamines is their equilibrium between a colorless lactone and fluorescent zwitterion. Tuning the lactone-zwitterion equilibrium constant (KL-Z) can optimize dye properties for specific biological applications. Here, we use known and novel organic chemistry to prepare a comprehensive collection of rhodamine dyes to elucidate the structure-activity relationships that govern KL-Z. We discovered that the auxochrome substituent strongly affects the lactone-zwitterion equilibrium, providing a roadmap for the rational design of improved rhodamine dyes. Electron-donating auxochromes, such as julolidine, work in tandem with fluorinated pendant phenyl rings to yield bright, red-shifted fluorophores for live-cell single-particle tracking (SPT) and multicolor imaging. The N-aryl auxochrome combined with fluorination yields red-shifted Förster resonance energy transfer (FRET) quencher dyes useful for creating a new semisynthetic indicator to sense cAMP using fluorescence lifetime imaging microscopy (FLIM). Together, this work expands the synthetic methods available for rhodamine synthesis, generates new reagents for advanced fluorescence imaging experiments, and describes structure-activity relationships that will guide the design of future probes.
Collapse
Affiliation(s)
- Jonathan
B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Ariana N. Tkachuk
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - S. Thomas Hennigan
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Alina Gutu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Valentina Gandin
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Anastasia M. Osowski
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Katie L. Holland
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Zhe J. Liu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Timothy A. Brown
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, United States
| |
Collapse
|
7
|
Aktalay A, Khan TA, Bossi ML, Belov VN, Hell SW. Photoactivatable Carbo- and Silicon-Rhodamines and Their Application in MINFLUX Nanoscopy. Angew Chem Int Ed Engl 2023; 62:e202302781. [PMID: 37555720 DOI: 10.1002/anie.202302781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/05/2023] [Accepted: 08/08/2023] [Indexed: 08/10/2023]
Abstract
New photoactivatable fluorescent dyes (rhodamine, carbo- and silicon-rhodamines [SiR]) with emission ranging from green to far red have been prepared, and their photophysical properties studied. The photocleavable 2-nitrobenzyloxycarbonyl unit with an alpha-carboxyl group as a branching point and additional functionality was attached to a polycyclic and lipophilic fluorescent dye. The photoactivatable probes having the HaloTagTM amine (O2) ligand bound with a dye core were obtained and applied for live-cell staining in stable cell lines incorporating Vimentin (VIM) or Nuclear Pore Complex Protein NUP96 fused with the HaloTag. The probes were applied in 2D (VIM, NUP96) and 3D (VIM) MINFLUX nanoscopy, as well as in superresolution fluorescence microscopy with single fluorophore activation (VIM, live-cell labeling). Images of VIM and NUPs labeled with different dyes were acquired and their apparent dimensions and shapes assessed on a lower single-digit nanometer scale. Applicability and performance of the photoactivatable dye derivatives were evaluated in terms of photoactivation rate, labeling and detection efficiency, number of detected photons per molecule and other parameters related to MINFLUX nanoscopy.
Collapse
Affiliation(s)
- Ayse Aktalay
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstraße 29, 69120, Heidelberg, Germany
| | - Taukeer A Khan
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
| | - Mariano L Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstraße 29, 69120, Heidelberg, Germany
| | - Vladimir N Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan W Hell
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), Jahnstraße 29, 69120, Heidelberg, Germany
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), Am Fassberg 11, 37077, Göttingen, Germany
| |
Collapse
|
8
|
Dai M, Yang YJ, Sarkar S, Ahn KH. Strategies to convert organic fluorophores into red/near-infrared emitting analogues and their utilization in bioimaging probes. Chem Soc Rev 2023; 52:6344-6358. [PMID: 37608780 DOI: 10.1039/d3cs00475a] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Organic fluorophores aided by current microscopy imaging modalities are essential for studying biological systems. Recently, red/near-infrared emitting fluorophores have attracted great research efforts, as they enable bioimaging applications with reduced autofluorescence interference and light scattering, two significant obstacles for deep-tissue imaging, as well as reduced photodamage and photobleaching. Herein, we analyzed the current strategies to convert key organic fluorophores bearing xanthene, coumarin, and naphthalene cores into longer wavelength-emitting derivatives by focussing on their effectiveness and limitations. Together, we introduced typical examples of how such fluorophores can be used to develop molecular probes for biological analytes, along with key sensing features. Finally, we listed several critical issues to be considered in developing new fluorophores.
Collapse
Affiliation(s)
- Mingchong Dai
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
- CEDAR, Knight Cancer Institute, School of Medicine, Oregon Health & Science University, Portland, Oregon, 97201, USA.
| | - Yun Jae Yang
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| | - Sourav Sarkar
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| | - Kyo Han Ahn
- Department of Chemistry, Pohang University of Science and Technology, Pohang, 37673, South Korea.
| |
Collapse
|
9
|
Lei Y, Xiao Y, Yuan L, Ma C, Yu H, Zhang X, Zhang Y, Xiao Y. A new six-membered spiro-rhodamine probe for Cu 2+ and its imaging in mitochondria and lysosomes of Hela cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 278:121334. [PMID: 35576842 DOI: 10.1016/j.saa.2022.121334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/06/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Different from five-membered rhodamine spirolactam (Rh-OH), a new six-membered spiro-rhodamine probe (SRh-OH) bearing urea structure has been developed in this paper. Compared with five-membered Rh-OH, six-membered SRh-OH exhibited higher selectivity and sensitivity to Cu2+ in aqueous solution. Upon addition of 10 equiv. Cu2+, the molar extinction coefficient of SRh-OH at 563 nm can be up to 4.73 × 104 Lmol-1cm-1. In the range of Cu2+ from 0 to 28 μM, there was an excellent linear relationship between the absorption or emission intensity and Cu2+ concentration. The detection limit of SRh-OH was as low as 26 nM (S/N = 3). The reversible binding mode of SRh-OH with Cu2+ was further confirmed by S2- and EDTA addition. Bio-imaging showed SRh-OH can map the distribution of Cu2+ not only in mitochondria but also in lysosomes of Hela cells.
Collapse
Affiliation(s)
- Yongsheng Lei
- College of Environmental Sciences, Liaoning University, Shenyang 110036, PR China
| | - Yannan Xiao
- College of Environmental Sciences, Liaoning University, Shenyang 110036, PR China
| | - Lin Yuan
- College of Environmental Sciences, Liaoning University, Shenyang 110036, PR China
| | - Chen Ma
- College of Environmental Sciences, Liaoning University, Shenyang 110036, PR China
| | - Haibo Yu
- College of Environmental Sciences, Liaoning University, Shenyang 110036, PR China; State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China.
| | - Xinfu Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China.
| | - Ying Zhang
- College of Environmental Sciences, Liaoning University, Shenyang 110036, PR China.
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, PR China
| |
Collapse
|
10
|
Bachman JL, Wight CD, Bardo AM, Johnson AM, Pavlich CI, Boley AJ, Wagner HR, Swaminathan J, Iverson BL, Marcotte EM, Anslyn EV. Evaluating the Effect of Dye-Dye Interactions of Xanthene-Based Fluorophores in the Fluorosequencing of Peptides. Bioconjug Chem 2022; 33:1156-1165. [PMID: 35622964 DOI: 10.1021/acs.bioconjchem.2c00103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A peptide sequencing scheme utilizing fluorescence microscopy and Edman degradation to determine the amino acid position in fluorophore-labeled peptides was recently reported, referred to as fluorosequencing. It was observed that multiple fluorophores covalently linked to a peptide scaffold resulted in a decrease in the anticipated fluorescence output and worsened the single-molecule fluorescence analysis. In this study, we report an improvement in the photophysical properties of fluorophore-labeled peptides by incorporating long and flexible (PEG)10 linkers at the peptide attachment points. Long linkers to the fluorophores were installed using copper-catalyzed azide-alkyne cycloaddition conditions. The photophysical properties of these peptides were analyzed in solution and immobilized on a microscope slide at the single-molecule level under peptide fluorosequencing conditions. Solution-phase fluorescence analysis showed improvements in both quantum yield and fluorescence lifetime with the long linkers. While on the solid support, photometry measurements showed significant increases in fluorescence brightness and 20 to 60% improvements in the ability to determine the amino acid position with fluorosequencing. This spatial distancing strategy demonstrates improvements in the peptide sequencing platform and provides a general approach for improving the photophysical properties in fluorophore-labeled macromolecules.
Collapse
Affiliation(s)
- James L Bachman
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christopher D Wight
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Angela M Bardo
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Amber M Johnson
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Cyprian I Pavlich
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander J Boley
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Holden R Wagner
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jagannath Swaminathan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Brent L Iverson
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Edward M Marcotte
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric V Anslyn
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Ito M, Sakai M, Ando N, Yamaguchi S. Electron-Deficient Heteroacenes that Contain Two Boron Atoms: Near-Infrared Fluorescence Based on a Push-Pull Effect*. Angew Chem Int Ed Engl 2021; 60:21853-21859. [PMID: 34115434 DOI: 10.1002/anie.202106642] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Indexed: 12/20/2022]
Abstract
Electron-deficient heteroacenes that contain two tricoordinate boron atoms in their acene skeletons and planarized phenyl ether moieties at their periphery were synthesized via the borylation of silicon-bridged precursors. X-ray crystallographic analysis revealed quinoidal structures, which give rise to two-step reversible redox processes for both the reduction and oxidation. These compounds exhibit intense absorption and sharp fluorescence bands with vibronic structures in the near-infrared (NIR) region. These properties originate from the push-pull effect along the long axis of the molecule derived from the electron-donating ether moieties and the electron-accepting boron moieties. Of particular note is the NIR emission of the thienothiophene-centered heteroacene, which has a maximum at 952 nm with a narrow band width of 309 cm-1 in cyclohexane. A Franck-Condon analysis revealed the crucial role of the sterically less-hindered thienothiophene spacer in achieving this sharp emission band.
Collapse
Affiliation(s)
- Masato Ito
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Mika Sakai
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Naoki Ando
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry, Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo, Chikusa, Nagoya, 464-8602, Japan.,Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo, Chikusa, Nagoya, 464-8601, Japan
| |
Collapse
|
12
|
Ito M, Sakai M, Ando N, Yamaguchi S. Electron‐Deficient Heteroacenes that Contain Two Boron Atoms: Near‐Infrared Fluorescence Based on a Push–Pull Effect**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Masato Ito
- Department of Chemistry Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University, Furo Chikusa Nagoya 464–8602 Japan
| | - Mika Sakai
- Department of Chemistry Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University, Furo Chikusa Nagoya 464–8602 Japan
| | - Naoki Ando
- Department of Chemistry Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University, Furo Chikusa Nagoya 464–8602 Japan
| | - Shigehiro Yamaguchi
- Department of Chemistry Graduate School of Science, and Integrated Research Consortium on Chemical Sciences (IRCCS) Nagoya University, Furo Chikusa Nagoya 464–8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM) Nagoya University, Furo Chikusa Nagoya 464–8601 Japan
| |
Collapse
|
13
|
Lv X, Han T, Yuan X, Shi H, Guo W. Design, synthesis, and bioimaging applications of a new class of carborhodamines. Analyst 2021; 146:64-68. [PMID: 33165453 DOI: 10.1039/d0an01916j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We herein developed a new class of carborhodamines (CRs), i.e. 10-methoxy-substituted carborhodamines MCRs, by a simple synthesis procedure, which have absorption and emission wavelengths longer than classical CRs while retaining their excellent photophysical properties. Based on the MCR platform, we constructed the mitochondria-targeted fluorescent probe MCR-DMA and demonstrated its potential for sensing singlet oxygen (1O2) in living cells during the photodynamic therapy process.
Collapse
Affiliation(s)
- Xin Lv
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | | | | | | | | |
Collapse
|
14
|
Adhikari P, Bhattacharyya D, Nandi S, Kancharla PK, Das A. Reductive Alkylation of Quinolines to N-Alkyl Tetrahydroquinolines Catalyzed by Arylboronic Acid. Org Lett 2021; 23:2437-2442. [PMID: 33711233 DOI: 10.1021/acs.orglett.1c00302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A boronic acid catalyzed one-pot tandem reduction of quinolines to tetrahydroquinolines followed by reductive alkylation by the aldehyde has been demonstrated. This step-economcial synthesis of N-alkyl tetrahydroquinolines has been achieved directly from readily available quinolines, aldehydes, and Hantzsch ester under mild reaction conditions. The mechanistic study demonstrates the unique behavior of organoboron catalysts as both Lewis acids and hydrogen-bond donors.
Collapse
Affiliation(s)
- Priyanka Adhikari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Dipanjan Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sekhar Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pavan K Kancharla
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Animesh Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
15
|
Bisballe N, Laursen BW. What is Best Strategy for Water Soluble Fluorescence Dyes?-A Case Study Using Long Fluorescence Lifetime DAOTA Dyes*. Chemistry 2020; 26:15969-15976. [PMID: 32639046 DOI: 10.1002/chem.202002457] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/01/2020] [Indexed: 12/14/2022]
Abstract
The lipophilic nature of organic dyes complicates their effectiveness in aqueous solutions. In this work we investigate three different strategies for achieving water-solubility of the diazaoxatriangulenium (DAOTA+ ) chromophore: hydrophilic counter ions, aromatic sulfonation of the chromophore, and attachment of charged side chains. The long fluorescence lifetime (FLT, τf =20 ns) of DAOTA+ makes it a sensitive probe to analyze solvation and aggregation effects. Direct sulfonation of the chromophore was found to increase solubility drastically, but at the cost of greatly reduced quantum yields (QYs) due to enhanced non-radiative deactivation processes. The introduction of either cationic (4) or zwitterionic side chains (5), however, brings the FLT (τf =18 ns) and QY (ϕf =0.56) of the dye to the same level as the parent chromophore in acetonitrile. Time-resolved fluorescence spectroscopy also reveals a high resistance to aggregation and non-specific binding in a high loading of bovine serum albumin (BSA). The results clearly show that addition of charged flexible side chains is preferable to direct sulfonation of the chromophore core.
Collapse
Affiliation(s)
- Niels Bisballe
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| | - Bo W Laursen
- Nano-Science Center, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
16
|
Deng F, Liu L, Huang W, Huang C, Qiao Q, Xu Z. Systematic study of synthesizing various heteroatom-substituted rhodamines from diaryl ether analogues. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118466. [PMID: 32521444 DOI: 10.1016/j.saa.2020.118466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
The dye rhodamine, as the most popular scaffold to construct fluorescent labels and probes, has been explored extensively on its structure-fluorescence relationships. Particularly, the replacement of the oxygen atom in the 10th position with heteroatoms obtained various new rhodamines with improved photophysical properties, such as brightness, photostability, red-shifted emission and fluorogenicity. However, the applications of heteroatom-substituted rhodamines have been hindered by difficult synthetic routes. Herein, we explored the condensation strategy of diaryl ether analogues and o-tolualdehyde to synthesize various heteroatom-substituted rhodamines. We found that the electron property and steric effect in the rhodamine 10th position determined the synthetic yield. It's concluded that this condensation method was more suitable for the synthesis of heteroatom-substituted rhodamines with small or electron-donating groups like rhodamine, S-rhodamine and Si-rhodamine. We hope these results will benefit the design and synthesis of heteroatom-substituted rhodamines.
Collapse
Affiliation(s)
- Fei Deng
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Limin Liu
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China.
| | - Wei Huang
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Chunfang Huang
- School of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, Jiangxi 343009, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| |
Collapse
|
17
|
Zhang H, Liu J, Sun YQ, Liu M, Guo W. Carbon–Dipyrromethenes: Bright Cationic Fluorescent Dyes and Potential Application in Revealing Cellular Trafficking of Mitochondrial Glutathione Conjugates. J Am Chem Soc 2020; 142:17069-17078. [DOI: 10.1021/jacs.0c06916] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Hongxing Zhang
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Jing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Yuan-Qiang Sun
- College of Chemistry, Green Catalysis Center, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, Zhengzhou University, Zhengzhou 450001, China
| | - Mengxing Liu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
18
|
Melnychuk N, Egloff S, Runser A, Reisch A, Klymchenko AS. Light‐Harvesting Nanoparticle Probes for FRET‐Based Detection of Oligonucleotides with Single‐Molecule Sensitivity. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201913804] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nina Melnychuk
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Sylvie Egloff
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Anne Runser
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Andreas Reisch
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Andrey S. Klymchenko
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| |
Collapse
|
19
|
Melnychuk N, Egloff S, Runser A, Reisch A, Klymchenko AS. Light‐Harvesting Nanoparticle Probes for FRET‐Based Detection of Oligonucleotides with Single‐Molecule Sensitivity. Angew Chem Int Ed Engl 2020; 59:6811-6818. [DOI: 10.1002/anie.201913804] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/30/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Nina Melnychuk
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Sylvie Egloff
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Anne Runser
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Andreas Reisch
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| | - Andrey S. Klymchenko
- Laboratoire de Bioimagerie et PathologiesUMR 7021 CNRSFaculté de PharmacieUniversité de Strasbourg 74, Route du Rhin 67401 Illkirch France
| |
Collapse
|
20
|
Bachman JL, Pavlich CI, Boley AJ, Marcotte EM, Anslyn EV. Synthesis of Carboxy ATTO 647N Using Redox Cycling for Xanthone Access. Org Lett 2020; 22:381-385. [PMID: 31825225 DOI: 10.1021/acs.orglett.9b03981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A synthesis of the carbopyronine dye Carboxy ATTO 647N from simple materials is reported. This route proceeds in 11 forward steps from 3-bromoaniline with the key xanthone intermediate formed using a new oxidation methodology. The step utilizes an oxidation cycle with base, water, iodine, and more than doubles the yield of the standard permanganate oxidation methodology, accessing gram-scale quantities of this late-stage product. From this, Carboxy ATTO 647N was prepared in only four additional steps. This facile route to a complex fluorophore is expected to enable further studies in fluorescence imaging.
Collapse
Affiliation(s)
- James L Bachman
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Cyprian I Pavlich
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Alexander J Boley
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Edward M Marcotte
- Department of Molecular Biosciences , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Eric V Anslyn
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
21
|
Amador-Sánchez YA, Aguilar-Granda A, Flores-Cruz R, González-Calderón D, Orta C, Rodríguez-Molina B, Jiménez-Sánchez A, Miranda LD. Diversity-Oriented Synthesis of Highly Fluorescent Fused Isoquinolines for Specific Subcellular Localization. J Org Chem 2019; 85:633-649. [PMID: 31830777 DOI: 10.1021/acs.joc.9b02712] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A multicomponent diversity-oriented synthesis of new highly emissive tetracyclic isoquinolines that target specific organelles is described. The title compounds were prepared via a three-step protocol starting with an Ugi four-component reaction, followed by either an intramolecular alkyne hydroarylation and subsequent alkene isomerization or through a Pomeranz-Fritsch-type cyclization with a final intramolecular Heck reaction. Subcellular localization studies of these compounds using green channel confocal microscopy revealed remarkable and distinctive distribution patterns in live cells, showing an unprecedented high selectivity and imaging contrast. The differentiated organelle visualization-including localizers for mitochondria, lysosomes, Golgi apparatus, endoplasmic reticulum, and plasma membrane-was achieved by varying the nature of the tetracyclic system and substituent pattern, changing the original four-component set in the starting Ugi reaction.
Collapse
Affiliation(s)
- Yoarhy A Amador-Sánchez
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| | - Andrés Aguilar-Granda
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| | - Ricardo Flores-Cruz
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| | - Davir González-Calderón
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| | - Cynthia Orta
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| | - Braulio Rodríguez-Molina
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| | - Arturo Jiménez-Sánchez
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| | - Luis D Miranda
- Instituto de Química , Universidad Nacional Autónoma de México , Circuito Exterior , Ciudad Universitaria, Coyoacán , Ciudad de México 04510 , Mexico
| |
Collapse
|
22
|
Lv X, Gao C, Han T, Shi H, Guo W. Improving the quantum yields of fluorophores by inhibiting twisted intramolecular charge transfer using electron-withdrawing group-functionalized piperidine auxochromes. Chem Commun (Camb) 2019; 56:715-718. [PMID: 31848530 DOI: 10.1039/c9cc09138f] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we present that the negative inductive effect exerted by electron-withdrawing groups, such as sulfone groups, can obviously improve the ionization potential of amino auxochromes, thereby effectively inhibiting twisted intramolecular charge transfer (TICT) and markedly improving the quantum yields of several families of fluorophores in aqueous solution.
Collapse
Affiliation(s)
- Xin Lv
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Chunmei Gao
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Taihe Han
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Hu Shi
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Wei Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
23
|
Li M, Li Y, Wang X, Cui X, Wang T. Synthesis and application of near-infrared substituted rhodamines. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Zheng Q, Ayala AX, Chung I, Weigel AV, Ranjan A, Falco N, Grimm JB, Tkachuk AN, Wu C, Lippincott-Schwartz J, Singer RH, Lavis LD. Rational Design of Fluorogenic and Spontaneously Blinking Labels for Super-Resolution Imaging. ACS CENTRAL SCIENCE 2019; 5:1602-1613. [PMID: 31572787 PMCID: PMC6764213 DOI: 10.1021/acscentsci.9b00676] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Indexed: 05/24/2023]
Abstract
Rhodamine dyes exist in equilibrium between a fluorescent zwitterion and a nonfluorescent lactone. Tuning this equilibrium toward the nonfluorescent lactone form can improve cell-permeability and allow creation of "fluorogenic" compounds-ligands that shift to the fluorescent zwitterion upon binding a biomolecular target. An archetype fluorogenic dye is the far-red tetramethyl-Si-rhodamine (SiR), which has been used to create exceptionally useful labels for advanced microscopy. Here, we develop a quantitative framework for the development of new fluorogenic dyes, determining that the lactone-zwitterion equilibrium constant (K L-Z) is sufficient to predict fluorogenicity. This rubric emerged from our analysis of known fluorophores and yielded new fluorescent and fluorogenic labels with improved performance in cellular imaging experiments. We then designed a novel fluorophore-Janelia Fluor 526 (JF526)-with SiR-like properties but shorter fluorescence excitation and emission wavelengths. JF526 is a versatile scaffold for fluorogenic probes including ligands for self-labeling tags, stains for endogenous structures, and spontaneously blinking labels for super-resolution immunofluorescence. JF526 constitutes a new label for advanced microscopy experiments, and our quantitative framework will enable the rational design of other fluorogenic probes for bioimaging.
Collapse
Affiliation(s)
- Qinsi Zheng
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| | - Anthony X. Ayala
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| | - Inhee Chung
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| | - Aubrey V. Weigel
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| | - Anand Ranjan
- Department of Biology and Department of Molecular
Biology and Genetics, Johns Hopkins University, Baltimore,
Maryland 21218, United States
| | - Natalie Falco
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| | - Ariana N. Tkachuk
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| | - Carl Wu
- Department of Biology and Department of Molecular
Biology and Genetics, Johns Hopkins University, Baltimore,
Maryland 21218, United States
| | | | - Robert H. Singer
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
- Department of Anatomy and Structural Biology,
Albert Einstein College of Medicine, Bronx, New York 10461,
United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes
Medical Institute, Ashburn, Virginia 20147, United
States
| |
Collapse
|
25
|
Ando N, Soutome H, Yamaguchi S. Near-infrared fluorescein dyes containing a tricoordinate boron atom. Chem Sci 2019; 10:7816-7821. [PMID: 31588332 PMCID: PMC6764465 DOI: 10.1039/c9sc02314c] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 07/03/2019] [Indexed: 01/28/2023] Open
Abstract
Tricoordinate boron imparts near-infrared absorption/emission and unusual multi-stage changes in the photophysical properties to fluorescein dyes.
Bora-fluoresceins (BFs), fluorescein analogues containing a tricoordinate boron atom instead of an oxygen atom at the 10-position of the fluorescein skeleton, were synthesized as a new family of fluorescein analogues. The deprotonated BFs exhibited absorption and fluorescence in the near-infrared region, which were significantly red-shifted relative to those of hitherto-known heteroatom-substituted fluorescein analogues on account of the orbital interaction between the tricoordinate boron atom and the fluorescein skeleton. BFs also showed multi-stage changes resulting from a Lewis acid–base equilibrium at the boron center in combination with a Brønsted acid–base equilibrium at the phenolic hydroxy group.
Collapse
Affiliation(s)
- Naoki Ando
- Department of Chemistry , Graduate School of Science , Integrated Research Consortium on Chemical Sciences (IRCCS) , Nagoya University , Furo, Chikusa , Nagoya 464-8602 , Japan .
| | - Hiroki Soutome
- Department of Chemistry , Graduate School of Science , Integrated Research Consortium on Chemical Sciences (IRCCS) , Nagoya University , Furo, Chikusa , Nagoya 464-8602 , Japan .
| | - Shigehiro Yamaguchi
- Department of Chemistry , Graduate School of Science , Integrated Research Consortium on Chemical Sciences (IRCCS) , Nagoya University , Furo, Chikusa , Nagoya 464-8602 , Japan . .,Institute of Transformative Bio-Molecules (WPI-ITbM) , Nagoya University , Furo, Chikusa , Nagoya 464-8602 , Japan
| |
Collapse
|
26
|
Benson S, Fernandez A, Barth ND, de Moliner F, Horrocks MH, Herrington CS, Abad JL, Delgado A, Kelly L, Chang Z, Feng Y, Nishiura M, Hori Y, Kikuchi K, Vendrell M. SCOTfluors: Small, Conjugatable, Orthogonal, and Tunable Fluorophores for In Vivo Imaging of Cell Metabolism. Angew Chem Int Ed Engl 2019; 58:6911-6915. [PMID: 30924239 PMCID: PMC6563150 DOI: 10.1002/anie.201900465] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Indexed: 12/11/2022]
Abstract
The transport and trafficking of metabolites are critical for the correct functioning of live cells. However, in situ metabolic imaging studies are hampered by the lack of fluorescent chemical structures that allow direct monitoring of small metabolites under physiological conditions with high spatial and temporal resolution. Herein, we describe SCOTfluors as novel small-sized multi-colored fluorophores for real-time tracking of essential metabolites in live cells and in vivo and for the acquisition of metabolic profiles from human cancer cells of variable origin.
Collapse
Affiliation(s)
- Sam Benson
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Antonio Fernandez
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Nicole D. Barth
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Fabio de Moliner
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Mathew H. Horrocks
- UK Dementia Research Institute and EaStCHEM School of ChemistryThe University of EdinburghEH9 3FJEdinburghUK
| | | | - Jose Luis Abad
- Research Unit on Bioactive MoleculesInstitute for Advanced Chemistry of Catalonia08034BarcelonaSpain
- University of BarcelonaFaculty of Pharmacy, Unit of Pharmaceutical Chemistry (CSIC Associated Unit)BarcelonaSpain
| | - Antonio Delgado
- Research Unit on Bioactive MoleculesInstitute for Advanced Chemistry of Catalonia08034BarcelonaSpain
- University of BarcelonaFaculty of Pharmacy, Unit of Pharmaceutical Chemistry (CSIC Associated Unit)BarcelonaSpain
| | - Lisa Kelly
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Ziyuan Chang
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | - Yi Feng
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| | | | - Yuichiro Hori
- Graduate School of EngineeringOsaka UniversitySuitaJapan
| | - Kazuya Kikuchi
- Graduate School of EngineeringOsaka UniversitySuitaJapan
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of EdinburghEH16 4TJEdinburghUK
| |
Collapse
|
27
|
Wirth R, Gao P, Nienhaus GU, Sunbul M, Jäschke A. SiRA: A Silicon Rhodamine-Binding Aptamer for Live-Cell Super-Resolution RNA Imaging. J Am Chem Soc 2019; 141:7562-7571. [PMID: 30986047 DOI: 10.1021/jacs.9b02697] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Although genetically encoded light-up RNA aptamers have become promising tools for visualizing and tracking RNAs in living cells, aptamer/ligand pairs that emit in the far-red and near-infrared (NIR) regions are still rare. In this work, we developed a light-up RNA aptamer that binds silicon rhodamines (SiRs). SiRs are photostable, NIR-emitting fluorophores that change their open-closed equilibrium between the noncolored spirolactone and the fluorescent zwitterion in response to their environment. This property is responsible for their high cell permeability and fluorogenic behavior. Aptamers binding to SiR were in vitro selected from a combinatorial RNA library. Sequencing, bioinformatic analysis, truncation, and mutational studies revealed a 50-nucleotide minimal aptamer, SiRA, which binds with nanomolar affinity to the target SiR. In addition to silicon rhodamines, SiRA binds structurally related rhodamines and carborhodamines, making it a versatile tool spanning the far-red region of the spectrum. Photophysical characterization showed that SiRA is remarkably resistant to photobleaching and constitutes the brightest far-red light-up aptamer system known to date owing to its favorable features: a fluorescence quantum yield of 0.98 and an extinction coefficient of 86 000 M-1cm-1. Using the SiRA system, we visualized the expression of RNAs in bacteria in no-wash live-cell imaging experiments and also report stimulated emission depletion (STED) super-resolution microscopy images of aptamer-based, fluorescently labeled mRNA in live cells. This work represents, to our knowledge, the first application of the popular SiR dyes and of intramolecular spirocyclization as a means of background reduction in the field of aptamer-based RNA imaging. We anticipate a high potential for this novel RNA labeling tool to address biological questions.
Collapse
Affiliation(s)
- Regina Wirth
- Institute of Pharmacy and Molecular Biotechnology (IPMB) , Heidelberg University , 69120 Heidelberg , Germany
| | - Peng Gao
- Institute of Applied Physics (APH) , Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1 , D-76131 Karlsruhe , Germany.,Institute of Nanotechnology (INT) , Karlsruhe Institute of Technology (KIT) , D-76344 Eggenstein-Leopoldshafen , Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics (APH) , Karlsruhe Institute of Technology (KIT) , Wolfgang-Gaede-Straße 1 , D-76131 Karlsruhe , Germany.,Institute of Nanotechnology (INT) , Karlsruhe Institute of Technology (KIT) , D-76344 Eggenstein-Leopoldshafen , Germany.,Institute of Toxicology and Genetics (ITG) , Karlsruhe Institute of Technology (KIT) , D-76344 Eggenstein-Leopoldshafen , Germany.,Department of Physics , University of Illinois at Urbana-Champaign , 1110 West Green Street , Urbana , Illinois 61801 , United States
| | - Murat Sunbul
- Institute of Pharmacy and Molecular Biotechnology (IPMB) , Heidelberg University , 69120 Heidelberg , Germany
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology (IPMB) , Heidelberg University , 69120 Heidelberg , Germany
| |
Collapse
|
28
|
Benson S, Fernandez A, Barth ND, de Moliner F, Horrocks MH, Herrington CS, Abad JL, Delgado A, Kelly L, Chang Z, Feng Y, Nishiura M, Hori Y, Kikuchi K, Vendrell M. SCOTfluors: Small, Conjugatable, Orthogonal, and Tunable Fluorophores for In Vivo Imaging of Cell Metabolism. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900465] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sam Benson
- Centre for Inflammation ResearchThe University of Edinburgh EH16 4TJ Edinburgh UK
| | - Antonio Fernandez
- Centre for Inflammation ResearchThe University of Edinburgh EH16 4TJ Edinburgh UK
| | - Nicole D. Barth
- Centre for Inflammation ResearchThe University of Edinburgh EH16 4TJ Edinburgh UK
| | - Fabio de Moliner
- Centre for Inflammation ResearchThe University of Edinburgh EH16 4TJ Edinburgh UK
| | - Mathew H. Horrocks
- UK Dementia Research Institute and EaStCHEM School of ChemistryThe University of Edinburgh EH9 3FJ Edinburgh UK
| | | | - Jose Luis Abad
- Research Unit on Bioactive MoleculesInstitute for Advanced Chemistry of Catalonia 08034 Barcelona Spain
- University of BarcelonaFaculty of Pharmacy, Unit of Pharmaceutical Chemistry (CSIC Associated Unit) Barcelona Spain
| | - Antonio Delgado
- Research Unit on Bioactive MoleculesInstitute for Advanced Chemistry of Catalonia 08034 Barcelona Spain
- University of BarcelonaFaculty of Pharmacy, Unit of Pharmaceutical Chemistry (CSIC Associated Unit) Barcelona Spain
| | - Lisa Kelly
- Centre for Inflammation ResearchThe University of Edinburgh EH16 4TJ Edinburgh UK
| | - Ziyuan Chang
- Centre for Inflammation ResearchThe University of Edinburgh EH16 4TJ Edinburgh UK
| | - Yi Feng
- Centre for Inflammation ResearchThe University of Edinburgh EH16 4TJ Edinburgh UK
| | | | - Yuichiro Hori
- Graduate School of EngineeringOsaka University Suita Japan
| | - Kazuya Kikuchi
- Graduate School of EngineeringOsaka University Suita Japan
| | - Marc Vendrell
- Centre for Inflammation ResearchThe University of Edinburgh EH16 4TJ Edinburgh UK
| |
Collapse
|
29
|
New coumarin- and phenoxazine-based fluorescent probes for live-cell STED nanoscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2019; 48:485-490. [DOI: 10.1007/s00249-019-01354-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/15/2019] [Accepted: 03/04/2019] [Indexed: 10/27/2022]
|
30
|
Rosenberg M, Santella M, Bogh SA, Muñoz AV, Andersen HOB, Hammerich O, Bora I, Lincke K, Laursen BW. Extended Triangulenium Ions: Syntheses and Characterization of Benzo-Bridged Dioxa- and Diazatriangulenium Dyes. J Org Chem 2019; 84:2556-2567. [PMID: 30694674 DOI: 10.1021/acs.joc.8b02978] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The very limited class of fluorophores, with a long fluorescence lifetime (>10 ns) and fluorescence beyond 550 nm, has been expanded with two benzo-fused triangulenium derivatives and two cationic [5]-helicene salts. The syntheses of the benzo-bridged dioxa- and diazatriangulenium derivatives (BDOTA+ and BDATA+, respectively) required two different synthetic approaches, which reflect the structural and physiochemical impact on the reactivity of [5]-helicenium precursors. Spectroscopic investigations show that the introduction of the benzo bridge into the triangulenium chromophore significantly redshifts the absorption and emission while maintaining fluorescence lifetimes above 10 ns. The combination of a high quantum yield, long fluorescence lifetime, and emission above 600 nm is possible only if the structural aspects of the triangulenium framework are perfectly harmonized to secure a low rate of nonradiative deactivation. The new benzo bridge may be a general motif to obtain red-shifted derivatives of other dye classes.
Collapse
Affiliation(s)
- Martin Rosenberg
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5 , Copenhagen 2100 , Denmark
| | - Marco Santella
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5 , Copenhagen 2100 , Denmark
| | - Sidsel A Bogh
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5 , Copenhagen 2100 , Denmark
| | - Alberto Viñas Muñoz
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5 , Copenhagen 2100 , Denmark
| | - Helene O B Andersen
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5 , Copenhagen 2100 , Denmark
| | - Ole Hammerich
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5 , Copenhagen 2100 , Denmark
| | - Ilkay Bora
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5 , Copenhagen 2100 , Denmark
| | - Kasper Lincke
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5 , Copenhagen 2100 , Denmark
| | - Bo W Laursen
- Nano-Science Center and Department of Chemistry , University of Copenhagen , Universitetsparken 5 , Copenhagen 2100 , Denmark
| |
Collapse
|
31
|
Abstract
Fluorogenic probes efficiently reduce non-specific background signals, which often results in highly improved signal-to-noise ratios.
Collapse
Affiliation(s)
- Eszter Kozma
- Chemical Biology Research Group
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1117 Budapest
| | - Péter Kele
- Chemical Biology Research Group
- Institute of Organic Chemistry
- Research Centre for Natural Sciences
- Hungarian Academy of Sciences
- 1117 Budapest
| |
Collapse
|
32
|
Bachman JL, Escamilla PR, Boley AJ, Pavlich CI, Anslyn EV. Improved Xanthone Synthesis, Stepwise Chemical Redox Cycling. Org Lett 2018; 21:206-209. [DOI: 10.1021/acs.orglett.8b03661] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- James L. Bachman
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - P. Rogelio Escamilla
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Alexander J. Boley
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Cyprian I. Pavlich
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Eric V. Anslyn
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
33
|
Romieu A, Dejouy G, Valverde IE. Quest for novel fluorogenic xanthene dyes: Synthesis, spectral properties and stability of 3-imino-3H-xanthen-6-amine (pyronin) and its silicon analog. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.11.031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Rosenberg M, Rostgaard KR, Liao Z, Madsen AØ, Martinez KL, Vosch T, Laursen BW. Design, synthesis, and time-gated cell imaging of carbon-bridged triangulenium dyes with long fluorescence lifetime and red emission. Chem Sci 2018; 9:3122-3130. [PMID: 29780456 PMCID: PMC5932597 DOI: 10.1039/c8sc00089a] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/15/2018] [Indexed: 01/05/2023] Open
Abstract
Time-resolved fluorescence offers many advantages over normal steady-state detection and becomes increasingly important in bioimaging. However, only very few fluorophores with emission in the visible range and fluorescence lifetimes above 5 ns are available. In this work, we prepare a series of new aza/oxa-triangulenium dyes where one of the usual oxa or aza bridges is replaced by an isopropyl bridge. This leads to a significant redshift of fluorescence with only moderate reductions of quantum yields and a unique long fluorescence lifetime. The fluorescence of the isopropyl bridged diazatriangulenium derivative CDATA+ is red-shifted by 50 nm (1400 cm-1) as compared to the oxygen-bridged DAOTA+ chromophore and has intense emission in the red region (600-700 nm) with a quantum yield of 61%, and a fluorescence lifetime of 15.8 ns in apolar solution. When the CDATA+ dye is used as cell stain, high photostability and efficient time-gated cell imaging is demonstrated.
Collapse
Affiliation(s)
- M Rosenberg
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - K R Rostgaard
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - Z Liao
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - A Ø Madsen
- Department of Pharmacy , University of Copenhagen , Universitetsparken 2, DK-2100 , Copenhagen Ø , Denmark
| | - K L Martinez
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - T Vosch
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| | - B W Laursen
- Nano-Science Center & Department of Chemistry , University of Copenhagen , Universitetsparken 5, DK-2100 , Copenhagen Ø , Denmark . ;
| |
Collapse
|
35
|
Grygorenko OO, Biitseva AV, Zhersh S. Amino sulfonic acids, peptidosulfonamides and other related compounds. Tetrahedron 2018. [DOI: 10.1016/j.tet.2018.01.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Hanaoka K, Kagami Y, Piao W, Myochin T, Numasawa K, Kuriki Y, Ikeno T, Ueno T, Komatsu T, Terai T, Nagano T, Urano Y. Synthesis of unsymmetrical Si-rhodamine fluorophores and application to a far-red to near-infrared fluorescence probe for hypoxia. Chem Commun (Camb) 2018; 54:6939-6942. [DOI: 10.1039/c8cc02451k] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A versatile synthesis of unsymmetrical Si-rhodamines was established and applied for development of a hypoxia-sensing far-red to NIR fluorescence probe.
Collapse
|
37
|
Grimm J, Brown TA, Tkachuk AN, Lavis LD. General Synthetic Method for Si-Fluoresceins and Si-Rhodamines. ACS CENTRAL SCIENCE 2017; 3:975-985. [PMID: 28979939 PMCID: PMC5620978 DOI: 10.1021/acscentsci.7b00247] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Indexed: 05/24/2023]
Abstract
The century-old fluoresceins and rhodamines persist as flexible scaffolds for fluorescent and fluorogenic compounds. Extensive exploration of these xanthene dyes has yielded general structure-activity relationships where the development of new probes is limited only by imagination and organic chemistry. In particular, replacement of the xanthene oxygen with silicon has resulted in new red-shifted Si-fluoresceins and Si-rhodamines, whose high brightness and photostability enable advanced imaging experiments. Nevertheless, efforts to tune the chemical and spectral properties of these dyes have been hindered by difficult synthetic routes. Here, we report a general strategy for the efficient preparation of Si-fluoresceins and Si-rhodamines from readily synthesized bis(2-bromophenyl)silane intermediates. These dibromides undergo metal/bromide exchange to give bis-aryllithium or bis(aryl Grignard) intermediates, which can then add to anhydride or ester electrophiles to afford a variety of Si-xanthenes. This strategy enabled efficient (3-5 step) syntheses of known and novel Si-fluoresceins, Si-rhodamines, and related dye structures. In particular, we discovered that previously inaccessible tetrafluorination of the bottom aryl ring of the Si-rhodamines resulted in dyes with improved visible absorbance in solution, and a convenient derivatization through fluoride-thiol substitution. This modular, divergent synthetic method will expand the palette of accessible xanthenoid dyes across the visible spectrum, thereby pushing further the frontiers of biological imaging.
Collapse
|
38
|
Oracz J, Westphal V, Radzewicz C, Sahl SJ, Hell SW. Photobleaching in STED nanoscopy and its dependence on the photon flux applied for reversible silencing of the fluorophore. Sci Rep 2017; 7:11354. [PMID: 28900102 PMCID: PMC5595794 DOI: 10.1038/s41598-017-09902-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/01/2017] [Indexed: 11/25/2022] Open
Abstract
In STED (stimulated emission depletion) nanoscopy, the resolution and signal are limited by the fluorophore de-excitation efficiency and photobleaching. Here, we investigated their dependence on the pulse duration and power of the applied STED light for the popular 750 nm wavelength. In experiments with red- and orange-emitting dyes, the pulse duration was varied from the sub-picosecond range up to continuous-wave conditions, with average powers up to 200 mW at 80 MHz repetition rate, i.e. peak powers up to 1 kW and pulse energies up to 2.5 nJ. We demonstrate the dependence of bleaching on pulse duration, which dictates the optimal parameters of how to deliver the photons required for transient fluorophore silencing. Measurements with the dye ATTO647N reveal that the bleaching of excited molecules scales with peak power with a single effective order ~1.4. This motivates peak power reduction while maintaining the number of STED-light photons, in line with the superior resolution commonly achieved for nanosecond STED pulses. Other dyes (ATTO590, STAR580, STAR635P) exhibit two distinctive bleaching regimes for constant pulse energy, one with strong dependence on peak power, one nearly independent. We interpret the results within a photobleaching model that guides quantitative predictions of resolution and bleaching.
Collapse
Affiliation(s)
- Joanna Oracz
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077, Göttingen, Germany. .,University of Warsaw, Faculty of Physics, Pastera 5, 02-093, Warsaw, Poland.
| | - Volker Westphal
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077, Göttingen, Germany
| | - Czesław Radzewicz
- University of Warsaw, Faculty of Physics, Pastera 5, 02-093, Warsaw, Poland
| | - Steffen J Sahl
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077, Göttingen, Germany
| | - Stefan W Hell
- Max Planck Institute for Biophysical Chemistry, Department of NanoBiophotonics, Am Fassberg 11, 37077, Göttingen, Germany. .,Max Planck Institute for Medical Research, Department of Optical Nanoscopy, Jahnstr. 29, 69120, Heidelberg, Germany.
| |
Collapse
|
39
|
Weisenburger S, Boening D, Schomburg B, Giller K, Becker S, Griesinger C, Sandoghdar V. Cryogenic optical localization provides 3D protein structure data with Angstrom resolution. Nat Methods 2017; 14:141-144. [DOI: 10.1038/nmeth.4141] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 12/08/2016] [Indexed: 11/09/2022]
|
40
|
Debieu S, Romieu A. In situ formation of pyronin dyes for fluorescence protease sensing. Org Biomol Chem 2017; 15:2575-2584. [DOI: 10.1039/c7ob00370f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cutting-edge strategy for fluorogenic sensing of proteases (leucine aminopeptidase for the proof of concept) and based on the “covalent-assembly” principle is reported. Non-fluorescent mixed bis-aryl ethers are readily converted into a fluorescent pyronin through a domino process triggered by the peptide bond cleavage event caused by the targeted enzyme.
Collapse
Affiliation(s)
- Sylvain Debieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR 6302
- CNRS
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
| | - Anthony Romieu
- Institut de Chimie Moléculaire de l'Université de Bourgogne
- UMR 6302
- CNRS
- Univ. Bourgogne Franche-Comté
- 21078 Dijon
| |
Collapse
|
41
|
Karuso P, Loa Kum Cheung W, Peixoto PA, Boulangé A, Franck X. Epicocconone-Hemicyanine Hybrids: Near Infrared Fluorophores for Protein Staining and Cell Imaging. Chemistry 2016; 23:1820-1829. [DOI: 10.1002/chem.201604698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Peter Karuso
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney NSW 2109 Australia
| | - Wendy Loa Kum Cheung
- Department of Chemistry and Biomolecular Sciences; Macquarie University; Sydney NSW 2109 Australia
| | - Philippe A. Peixoto
- Normandie Univ.; CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014 & FR 3038); 76000 Rouen France
- Present address: Univ. Bordeaux; ISM (CNRS-UMR 5255); 351 Cours de la Libération Talence 33405 Cedex France
| | - Agathe Boulangé
- Normandie Univ.; CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014 & FR 3038); 76000 Rouen France
- Present address: AQUISTAIN; Domaine du Haut-Carré, Bâtiment C5; 351 Cours de la Libération 33400 Talence France
| | - Xavier Franck
- Normandie Univ.; CNRS, UNIROUEN, INSA Rouen, COBRA (UMR 6014 & FR 3038); 76000 Rouen France
| |
Collapse
|
42
|
Liu J, Sun YQ, Zhang H, Shi H, Shi Y, Guo W. Sulfone-Rhodamines: A New Class of Near-Infrared Fluorescent Dyes for Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:22953-22962. [PMID: 27548811 DOI: 10.1021/acsami.6b08338] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Given the wavelength dependence of tissue transparency and the requirement for sufficiently low background autofluorescence, the development of fluorescent dyes with excitation and emission maxima beyond 700 nm is highly desired, but it is a challenging task. Herein, a new class of fluorescent dyes, named sulfone-rhodamines (SO2Rs), was developed on the basis of the one-atom replacement of the rhodamine 10-position O atom by a sulfone group. Such a modification makes their absorption and emission maxima surprisingly reach up to 700-710 and 728-752 nm, respectively, much longer than their O-, C-, and Si-rhodamine analogs, due to the unusual d*-π* conjugation. Among these dyes, SO2R4 and SO2R5, bearing disubstituted meso-phenyl groups, show the greatest potentials for bioimaging applications in view of their wide pH range of application, high photostability, and big extinction coefficients and fluorescence quantum yields. They could quickly penetrate cells to give stable NIR fluorescence, even after continuous irradiation by a semiconductor laser, making them suitable candidates for time-lapse and long-term bioimaging applications. Moreover, they could specifically localize in lysosomes independent of alkylmorpholine targeted group, thus avoiding the problematic alkalization effect suffered by most LysoTrackers. Further imaging assays of frozen slices of rat kidney reveal that their tissue imaging depth is suprior to the widely used NIR labeling agent Cy5.5.
Collapse
Affiliation(s)
- Jing Liu
- School of Chemistry and Chemical Engineering and ‡Institute of Biotechnology, Shanxi University , Taiyuan 030006, China
| | - Yuan-Qiang Sun
- School of Chemistry and Chemical Engineering and ‡Institute of Biotechnology, Shanxi University , Taiyuan 030006, China
| | - Hongxing Zhang
- School of Chemistry and Chemical Engineering and ‡Institute of Biotechnology, Shanxi University , Taiyuan 030006, China
| | - Heping Shi
- School of Chemistry and Chemical Engineering and ‡Institute of Biotechnology, Shanxi University , Taiyuan 030006, China
| | - Yawei Shi
- School of Chemistry and Chemical Engineering and ‡Institute of Biotechnology, Shanxi University , Taiyuan 030006, China
| | - Wei Guo
- School of Chemistry and Chemical Engineering and ‡Institute of Biotechnology, Shanxi University , Taiyuan 030006, China
| |
Collapse
|
43
|
Abstract
The majority of studies of the living cell rely on capturing images using fluorescence microscopy. Unfortunately, for centuries, diffraction of light was limiting the spatial resolution in the optical microscope: structural and molecular details much finer than about half the wavelength of visible light (~200 nm) could not be visualized, imposing significant limitations on this otherwise so promising method. The surpassing of this resolution limit in far-field microscopy is currently one of the most momentous developments for studying the living cell, as the move from microscopy to super-resolution microscopy or 'nanoscopy' offers opportunities to study problems in biophysical and biomedical research at a new level of detail. This review describes the principles and modalities of present fluorescence nanoscopes, as well as their potential for biophysical and cellular experiments. All the existing nanoscopy variants separate neighboring features by transiently preparing their fluorescent molecules in states of different emission characteristics in order to make the features discernible. Usually these are fluorescent 'on' and 'off' states causing the adjacent molecules to emit sequentially in time. Each of the variants can in principle reach molecular spatial resolution and has its own advantages and disadvantages. Some require specific transitions and states that can be found only in certain fluorophore subfamilies, such as photoswitchable fluorophores, while other variants can be realized with standard fluorescent labels. Similar to conventional far-field microscopy, nanoscopy can be utilized for dynamical, multi-color and three-dimensional imaging of fixed and live cells, tissues or organisms. Lens-based fluorescence nanoscopy is poised for a high impact on future developments in the life sciences, with the potential to help solve long-standing quests in different areas of scientific research.
Collapse
|
44
|
Butkevich AN, Mitronova GY, Sidenstein SC, Klocke JL, Kamin D, Meineke DNH, D'Este E, Kraemer PT, Danzl JG, Belov VN, Hell SW. Fluorescent Rhodamines and Fluorogenic Carbopyronines for Super-Resolution STED Microscopy in Living Cells. Angew Chem Int Ed Engl 2016; 55:3290-4. [PMID: 26844929 PMCID: PMC4770443 DOI: 10.1002/anie.201511018] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Indexed: 11/14/2022]
Abstract
A range of bright and photostable rhodamines and carbopyronines with absorption maxima in the range of λ=500–630 nm were prepared, and enabled the specific labeling of cytoskeletal filaments using HaloTag technology followed by staining with 1 μm solutions of the dye–ligand conjugates. The synthesis, photophysical parameters, fluorogenic behavior, and structure–property relationships of the new dyes are discussed. Light microscopy with stimulated emission depletion (STED) provided one‐ and two‐color images of living cells with an optical resolution of 40–60 nm.
Collapse
Affiliation(s)
- Alexey N Butkevich
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| | - Gyuzel Yu Mitronova
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Sven C Sidenstein
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Jessica L Klocke
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Dirk Kamin
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Dirk N H Meineke
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Elisa D'Este
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Philip-Tobias Kraemer
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Johann G Danzl
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany
| | - Vladimir N Belov
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
45
|
Butkevich AN, Mitronova GY, Sidenstein SC, Klocke JL, Kamin D, Meineke DNH, D'Este E, Kraemer PT, Danzl JG, Belov VN, Hell SW. Fluoreszierende Rhodamine und fluorogene Carbopyronine für die STED-Mikroskopie lebender Zellen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201511018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alexey N. Butkevich
- Abteilung für NanoBiophotonik; Max-Planck-Institut für biophysikalische Chemie (MPIBPC); Am Faßberg 11 37077 Göttingen Deutschland
| | - Gyuzel Yu. Mitronova
- Abteilung für NanoBiophotonik; Max-Planck-Institut für biophysikalische Chemie (MPIBPC); Am Faßberg 11 37077 Göttingen Deutschland
| | - Sven C. Sidenstein
- Abteilung für NanoBiophotonik; Max-Planck-Institut für biophysikalische Chemie (MPIBPC); Am Faßberg 11 37077 Göttingen Deutschland
| | - Jessica L. Klocke
- Abteilung für NanoBiophotonik; Max-Planck-Institut für biophysikalische Chemie (MPIBPC); Am Faßberg 11 37077 Göttingen Deutschland
| | - Dirk Kamin
- Abteilung für NanoBiophotonik; Max-Planck-Institut für biophysikalische Chemie (MPIBPC); Am Faßberg 11 37077 Göttingen Deutschland
| | - Dirk N. H. Meineke
- Abteilung für NanoBiophotonik; Max-Planck-Institut für biophysikalische Chemie (MPIBPC); Am Faßberg 11 37077 Göttingen Deutschland
| | - Elisa D'Este
- Abteilung für NanoBiophotonik; Max-Planck-Institut für biophysikalische Chemie (MPIBPC); Am Faßberg 11 37077 Göttingen Deutschland
| | - Philip-Tobias Kraemer
- Abteilung für NanoBiophotonik; Max-Planck-Institut für biophysikalische Chemie (MPIBPC); Am Faßberg 11 37077 Göttingen Deutschland
| | - Johann G. Danzl
- Abteilung für NanoBiophotonik; Max-Planck-Institut für biophysikalische Chemie (MPIBPC); Am Faßberg 11 37077 Göttingen Deutschland
| | - Vladimir N. Belov
- Abteilung für NanoBiophotonik; Max-Planck-Institut für biophysikalische Chemie (MPIBPC); Am Faßberg 11 37077 Göttingen Deutschland
| | - Stefan W. Hell
- Abteilung für NanoBiophotonik; Max-Planck-Institut für biophysikalische Chemie (MPIBPC); Am Faßberg 11 37077 Göttingen Deutschland
| |
Collapse
|
46
|
Chevalier A, Piao W, Hanaoka K, Nagano T, Renard PY, Romieu A. Azobenzene-caged sulforhodamine dyes: a novel class of 'turn-on' reactive probes for hypoxic tumor cell imaging. Methods Appl Fluoresc 2015; 3:044004. [PMID: 29148517 DOI: 10.1088/2050-6120/3/4/044004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
New sulforhodamine-based fluorescent 'turn-on' probes have been developed for the direct imaging of cellular hypoxia. Rapid access to this novel class of water-soluble 'azobenzene-caged' fluorophores was made possible through an easily-implementable azo-coupling reaction between a fluorescent primary arylamine derived from a sulforhodamine 101 scaffold (named SR101-NaphtNH 2 ) and a tertiary aniline whose N-substituents are neutral, cationic, or zwitterionic. The detection mechanism is based on the bioreductive cleavage of the azo bond that restores strong far-red fluorescence (emission maximum at 625 nm) by regenerating the original sulforhodamine SR101-NaphtNH 2 . This valuable fluorogenic response was obtained for the three 'smart' probes studied in this work, as shown by an in vitro assay using rat liver microsomes placed under aerobic and then under hypoxic conditions. Most importantly, the probe namely SR101-NaphtNH 2 -Hyp-diMe was successfully applied for imaging the hypoxic status of tumor cells (A549 cells).
Collapse
Affiliation(s)
- Arnaud Chevalier
- Normandie Université, COBRA UMR 6014 & FR 3038; Univ. Rouen; INSA Rouen; CNRS, IRCOF, 1, Rue Tesnières, 76821 Mont-Saint-Aignan cedex, France
| | | | | | | | | | | |
Collapse
|
47
|
Chai X, Cui X, Wang B, Yang F, Cai Y, Wu Q, Wang T. Near-Infrared Phosphorus-Substituted Rhodamine with Emission Wavelength above 700 nm for Bioimaging. Chemistry 2015; 21:16754-8. [PMID: 26420515 DOI: 10.1002/chem.201502921] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Indexed: 12/21/2022]
Abstract
Phosphorus has been successfully fused into a classic rhodamine framework, in which it replaces the bridging oxygen atom to give a series of phosphorus-substituted rhodamines (PRs). Because of the electron-accepting properties of the phosphorus moiety, which is due to effective σ*-π* interactions and strengthened by the inductivity of phosphine oxide, PR exhibits extraordinary long-wavelength fluorescence emission, elongating to the region above 700 nm, with bathochromic shifts of 140 and 40 nm relative to rhodamine and silicon-substituted rhodamine, respectively. Other advantageous properties of the rhodamine family, including high molar extinction coefficient, considerable quantum efficiency, high water solubility, pH-independent emission, great tolerance to photobleaching, and low cytotoxicity, stay intact in PR. Given these excellent properties, PR is desirable for NIR-fluorescence imaging in vivo.
Collapse
Affiliation(s)
- Xiaoyun Chai
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai 200433 (P.R. China)
| | - Xiaoyan Cui
- Department of Chemistry, New York University, New York, New York 10003 (USA)
| | - Baogang Wang
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai 200433 (P.R. China)
| | - Fan Yang
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai 200433 (P.R. China).,College of Pharmacy, Yantai University, Yantai, Shandong 264005 (P.R. China)
| | - Yi Cai
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai 200433 (P.R. China).,College of Pharmacy, Yantai University, Yantai, Shandong 264005 (P.R. China)
| | - Qiuye Wu
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai 200433 (P.R. China)
| | - Ting Wang
- Department of Organic Chemistry, College of Pharmacy, Second Military Medical University, Shanghai 200433 (P.R. China).
| |
Collapse
|
48
|
Kolmakov K, Hebisch E, Wolfram T, Nordwig LA, Wurm CA, Ta H, Westphal V, Belov VN, Hell SW. Far-Red Emitting Fluorescent Dyes for Optical Nanoscopy: Fluorinated Silicon-Rhodamines (SiRF Dyes) and Phosphorylated Oxazines. Chemistry 2015; 21:13344-56. [DOI: 10.1002/chem.201501394] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/16/2015] [Indexed: 12/30/2022]
|
49
|
Red Emitting Coumarins: Insights of Photophysical Properties with DFT Methods. J Fluoresc 2015; 25:1117-26. [DOI: 10.1007/s10895-015-1602-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/15/2015] [Indexed: 12/26/2022]
|
50
|
Porterfield WB, Prescher JA. Tools for visualizing cell–cell ‘interactomes’. Curr Opin Chem Biol 2015; 24:121-30. [DOI: 10.1016/j.cbpa.2014.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/06/2014] [Indexed: 11/28/2022]
|