1
|
Kumar I, Sharma R, Sharma U. Synthesis of quinoline mimics via C-H bond functionalization of quinoline: a review on recent progress. Org Biomol Chem 2025; 23:2572-2585. [PMID: 39950444 DOI: 10.1039/d4ob02013h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Functionalization of the quinoline ring has emerged as a transformative strategy in modern synthetic chemistry because of the medicinal potential of quinoline-based scaffolds. The precise and selective introduction of diverse functional groups significantly expands the chemical space and enhances the pharmacological profile of quinoline derivatives. By carefully selecting catalysts, reaction conditions, and directing groups, researchers have unlocked novel pathways for the efficient synthesis of quinoline-based compounds with improved efficacy, target selectivity, and safety. This approach accelerates drug discovery and broadens the therapeutic potential of quinoline scaffolds for treating various diseases, including cancer, infectious diseases, and neurological disorders. Over the past two decades, this field has experienced exponential growth, as evidenced by the increasing number of research publications and comprehensive review articles. This surge in interest is driven by the potential of quinoline functionalization to generate novel drug candidates with enhanced bioactivity and reduced side effects. This review summarizes the key advancements from January 2021 to 2024, focusing on the latest methodologies, catalytic systems, and applications in drug development.
Collapse
Affiliation(s)
- Inder Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
- Department of Chemistry, KDC Government College Jaisinghpur, Kangra, HP, India
| | - Ritika Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
- Department of Chemistry, University of Delhi, 110007, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
| |
Collapse
|
2
|
Thakur A, Chandra D, Sharma U. Rh(III)-catalyzed regioselective C(sp 2)-H alkenylation of isoquinolones with methoxyallene: A facile access to aldehyde-bearing isoquinolones. Org Biomol Chem 2024; 22:6612-6616. [PMID: 39101476 DOI: 10.1039/d4ob01084a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
A simple and rapid access to isoquinolone aldehyde scaffolds has been established by a rhodium-catalyzed reaction between isoquinolone and methoxyallene that forges alkenylation in an explicit regioselective manner. Herein, methoxyallene serving as an acrolein equivalent results in execution of this unique functionalization. Furthermore, the compatibility with complex molecules underscores the significance of this developed protocol. The mechanistic proposal for this regioselective transformation was consistent with kinetic studies and several control reactions.
Collapse
Affiliation(s)
- Ankita Thakur
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Devesh Chandra
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India.
| | - Upendra Sharma
- C-H Activation & Phytochemistry Lab, Chemical Technology Division, CSIR-IHBT, Palampur, Himachal Pradesh 176061, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
3
|
Zhu S, Liu P, Hong X. Cobalt phthalocyanine (CoPc) anchored on Ti 3C 2 MXene nanosheets for highly efficient selective catalytic oxidation. NANOSCALE ADVANCES 2024; 6:3211-3219. [PMID: 38868815 PMCID: PMC11166119 DOI: 10.1039/d4na00123k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 06/14/2024]
Abstract
Quinclorac is an important precursor for pharmaceutical, agricultural, and synthetic chemistry. The state-of-the-art synthesis of quinclorac via condensation, chlorination and oxidative hydrolysis often uses homogeneous catalysts and strong acid oxidant agents to promote the catalytic oxidation, which requires huge manpower input for the late-stage purification process and is usually environmentally unfriendly. In this work, we successfully fabricated a stable cobalt phthalocyanine (CoPc) Co-based composite (CoPc/Ti3C2) by anchoring CoPc on the surface of Ti3C2 nanosheets for the selective oxidation of 3,7-dichloro-8-dichloro methyl quinoline (3,7-D-8-DMQ) into quinclorac. More impressively, CoPc/Ti3C2-4.5%-Mn-Br exhibits a high selectivity of 91.8% for the catalytic oxidation of 3,7-D-8-DMQ to quinclorac in acetic acid, with a quinclorac yield of 87.5%, which is approximately 2.46 times higher than that of pristine CoPc-Mn-Br. The obtained heterogeneous catalytic system shows good reusability. Detailed mechanistic investigations reveal that the system works through the free radical mechanism via the formation of Co2+/Co3+ redox cycles. This work provides a new understanding for the stabilization of reaction intermediates and facilitates the design of catalysts for selective catalytic oxidation.
Collapse
Affiliation(s)
- Simeng Zhu
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan China
| | - Peng Liu
- Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, School of Pharmaceutical Sciences, Wuhan University Wuhan China
| | - Xinlin Hong
- College of Chemistry and Molecular Sciences, Wuhan University Wuhan China
| |
Collapse
|
4
|
Guan X, Li WJ, Shuai MS, Zhang M, Zhou CC, Fu XZ, Yang YY, Zhou M, He B, Zhao YL. Rh(III)-Catalyzed C7-Alkylation of Isatogens with Malonic Acid Diazoesters. J Org Chem 2024; 89:2984-2995. [PMID: 38334453 DOI: 10.1021/acs.joc.3c02405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Rh(III)-catalyzed C7-alkylation of isatogens (indolin-3-one N-oxides) with malonic acid diazoesters has been developed. This strategy utilizes oxygen anion on the N-oxide group of isatogens as a directing group and successfully achieves the synthesis of a series of C7-alkylated isatogens with moderate to good yields (48-86% yields). Moreover, the N-oxides of isatogens can not only serve as the simple directing group for C7-H bond cleavage but also be deoxidized for easy removal.
Collapse
Affiliation(s)
- Xiang Guan
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Wen-Jie Li
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Ming-Shan Shuai
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Mao Zhang
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Chao-Chao Zhou
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Xiao-Zhong Fu
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yuan-Yong Yang
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Meng Zhou
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Bin He
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| | - Yong-Long Zhao
- School of Pharmacy, and Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, P.R. China
| |
Collapse
|
5
|
Mandal S, Karjee P, Saha S, Punniyamurthy T. Directed C8-H allylation of quinoline N-oxides with vinylcyclopropanes via sequential C-H/C-C activation. Chem Commun (Camb) 2023; 59:2823-2826. [PMID: 36799135 DOI: 10.1039/d2cc06646g] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The Rh(III)-catalyzed C8-allylation of quinoline N-oxides has been accomplished using vinylcyclopropanes as an allyl source with excellent diastereoselectivity at room temperature. The C-H/C-C activation, substrate scope and natural product mutation are the important practical features.
Collapse
Affiliation(s)
- Santu Mandal
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Pallab Karjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | - Sharajit Saha
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati-781039, India.
| | | |
Collapse
|
6
|
Ko N, Min J, Moon J, Ismail NF, Moon K, Singh P, Mishra NK, Lee W, Kim IS. Rhodium(III)-Catalyzed Conjugate Addition of β-CF 3-Enones with Quinoline N-Oxides. J Org Chem 2023; 88:602-612. [PMID: 36524705 DOI: 10.1021/acs.joc.2c02659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The site-selective incorporation of a trifluoromethyl group into biologically active molecules and pharmaceuticals has emerged as a central topic in medicinal chemistry and drug discovery. Herein, we demonstrate the rhodium(III)-catalyzed conjugate addition of β-trifluoromethylated enones with quinoline N-oxides, which result in the generation of β-trifluoromethyl-β'-quinolinated ketones. The reaction proceeds under mild conditions with complete functional group tolerance. The synthetic applicability was showcased by successful gram-scale experiments and valuable synthetic transformations of coupling products.
Collapse
Affiliation(s)
- Nayoung Ko
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jeonghyun Min
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Junghyea Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Nuraimi Farwizah Ismail
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.,PAPRSB, Institute of Health Science, Universiti Brunei Darussalam, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kyeongwon Moon
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Pargat Singh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | | | - Wonsik Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
7
|
Singha K, Habib I, Hossain M. Quinoline N‐Oxide: A Versatile Precursor in Organic Transformations. ChemistrySelect 2022. [DOI: 10.1002/slct.202203537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Koustav Singha
- Synthetic Organic Research Laboratory UGC-Human Resource Development Centre (Chemistry) University of North Bengal Siliguri Darjeeling 734013 India
| | - Imran Habib
- Synthetic Organic Research Laboratory UGC-Human Resource Development Centre (Chemistry) University of North Bengal Siliguri Darjeeling 734013 India
| | - Mossaraf Hossain
- Synthetic Organic Research Laboratory UGC-Human Resource Development Centre (Chemistry) University of North Bengal Siliguri Darjeeling 734013 India
| |
Collapse
|
8
|
Vera DR, Mantilla JP, Palma A, Cobo J, Glidewell C. Synthesis and spectroscopic and structural characterization of three new 2-methyl-4-styrylquinolines formed using Friedländer reactions between (2-aminophenyl)chalcones and acetone. Acta Crystallogr C Struct Chem 2022; 78:524-530. [PMID: 36196785 PMCID: PMC9533309 DOI: 10.1107/s2053229622008634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Three new 2-methyl-4-styrylquinoline derivatives have been synthesized in high yields using Friedländer reactions between chalcones [1-(2-aminophenyl)-3-arylprop-2-en-1-ones] and acetone, and characterized using IR, 1H and 13C NMR spectroscopy, and mass spectrometry, and by crystal structure analysis. In (E)-4-(4-fluorostyryl)-2-methylquinoline, C18H14FN, (I), the molecules are joined into cyclic centrosymmetric dimers by C-H...N hydrogen bonds and these dimers are linked into sheets by π-π stacking interactions. The molecules of (E)-2-methyl-4-[4-(trifluoromethyl)styryl]quinoline, C19H14F3N, (II), are linked into cyclic centrosymmetric dimers by C-H...π hydrogen bonds and these dimers are linked into chains by a single π-π stacking interaction. There are no significant hydrogen bonds in the structure of (E)-4-(2,6-dichlorostyryl)-2-methylquinoline, C18H13Cl2N, (III), but molecules related by translation along [010] form stacks with an intermolecular spacing of only 3.8628 (2) Å. Comparisons are made with the structures of some related compounds.
Collapse
Affiliation(s)
- Diana Rocío Vera
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Juan P. Mantilla
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Justo Cobo
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain
| | - Christopher Glidewell
- School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, United Kingdom
| |
Collapse
|
9
|
Parmar D, Dhiman AK, Kumar R, Sharma AK, Sharma U. Cp*Co(III)-Catalyzed Selective C8-Olefination and Oxyarylation of Quinoline N-Oxides with Terminal Alkynes. J Org Chem 2022; 87:9069-9087. [PMID: 35758768 DOI: 10.1021/acs.joc.2c00752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Herein we report Cp*Co(III)-catalyzed site-selective (C8)-H olefination and oxyarylation of quinoline N-oxides with terminal alkynes. The selectivity for C8-olefination and oxyarylation is sterically and electronically controlled. In the case of quinoline N-oxides (unsubstituted at the C2 position), only the olefination product was obtained irrespective of the nature of the alkynes. In contrast, oxyarylation was observed exclusively when 2-substituted quinoline N-oxides were reacted with 9-ethynylphenanthrene. However, alkynes with electron-withdrawing groups provided only olefination products with 2-substituted quinoline N-oxides. The developed strategy allowed a facile functionalization of quinoline N-oxides bearing natural molecules and an estrone-derived terminal alkyne to deliver the corresponding olefinated and oxyarylated products. To understand the reaction mechanism, control experiments, deuterium-labeling experiments, and kinetic isotope effect (KIE) studies were performed.
Collapse
Affiliation(s)
- Diksha Parmar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Kumar Dhiman
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rohit Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akhilesh K Sharma
- International Research Center for Elements Science (IRCELS), Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Logeswaran R, Jeganmohan M. Transition‐Metal‐Catalyzed, Chelation‐Assisted C−H Alkenylation and Allylation of Organic Molecules with Unactivated Alkenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
11
|
Chandra D, Manisha, Sharma U. Recent Advances in the High-Valent Cobalt-Catalyzed C-H Functionalization of N-Heterocycles. CHEM REC 2021; 22:e202100271. [PMID: 34932274 DOI: 10.1002/tcr.202100271] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/21/2021] [Indexed: 12/18/2022]
Abstract
Direct functionalization of heterocycles using C-H activation widely relies on the precious metal complexes. In past decade, the use of earth abundant and inexpensive transition metal to functionalize heterocycles has become an attractive alternate strategy. This concept is also interesting due to the unique reactivity pattern of these inexpensive metals. In this context we and other research groups have utilized the high-valent cobalt complexes as an inexpensive and readily available catalyst for the functionalization of heterocycles. In this review, we intend to brief recent progress made in the area of high-valent cobalt complexes catalyzed C-H functionalization of N-containing heterocycles.
Collapse
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manisha
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-IHBT, Palampur, HP 176 061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
12
|
Prabagar B, Yang Y, Shi Z. Site-selective C-H functionalization to access the arene backbone of indoles and quinolines. Chem Soc Rev 2021; 50:11249-11269. [PMID: 34486584 DOI: 10.1039/d0cs00334d] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The site-selective C-H bond functionalization of heteroarenes can eventually provide chemists with great techniques for editing and building complex molecular scaffolds. During the past decade, benzo-fused N-heterocycles such as indoles and quinolines have been among the most widely investigated organic templates. Early developments have led to site-selective C-H bond functionalization on the pyrrole and pyridine cores of indoles and quinolines; however, C-H functionalization on the benzenoid ring has remained a great challenge in catalysis. In this review, we elaborate on recent developments in the highly challenging functionalization of C-H bonds on the less-reactive benzenoid core of indoles and quinolines. These findings are mainly described as selective directing group assisted strategies, remote C-H functionalization techniques and their reaction mechanisms. The underlying principle in each strategy is elucidated, which aims to facilitate the design of a more advanced structure of heterocycles based on bioactive molecules, synthetic drugs, and material aspects. Moreover, the challenges and perspectives for catalytic C-H functionalization to access the arene backbone of indoles and quinolines are also proposed in the conclusion section.
Collapse
Affiliation(s)
- B Prabagar
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Youqing Yang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
13
|
Corio A, Gravier-Pelletier C, Busca P. Regioselective Functionalization of Quinolines through C-H Activation: A Comprehensive Review. Molecules 2021; 26:5467. [PMID: 34576936 PMCID: PMC8466797 DOI: 10.3390/molecules26185467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022] Open
Abstract
Quinoline is a versatile heterocycle that is part of numerous natural products and countless drugs. During the last decades, this scaffold also became widely used as ligand in organometallic catalysis. Therefore, access to functionalized quinolines is of great importance and continuous efforts have been made to develop efficient and regioselective synthetic methods. In this regard, C-H functionalization through transition metal catalysis, which is nowadays the Graal of organic green chemistry, represents the most attractive strategy. We aim herein at providing a comprehensive review of methods that allow site-selective metal-catalyzed C-H functionalization of quinolines, or their quinoline N-oxides counterparts, with a specific focus on their scope and limitations, as well as mechanistic aspects if that accounts for the selectivity.
Collapse
Affiliation(s)
| | | | - Patricia Busca
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR CNRS 8601, Université de Paris, 45 rue des Saints-Pères, 75006 Paris, France; (A.C.); (C.G.-P.)
| |
Collapse
|
14
|
An W, Lee SH, Kim D, Oh H, Kim S, Byun Y, Kim HJ, Mishra NK, Kim IS. Site-Selective C8-Alkylation of Quinoline N-Oxides with Maleimides under Rh(III) Catalysis. J Org Chem 2021; 86:7579-7587. [PMID: 33949193 DOI: 10.1021/acs.joc.1c00612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The site-selective modification of quinolines and their analogs has emerged as a pivotal topic in medicinal chemistry and drug discovery. Herein, we describe the rhodium(III)-catalyzed C8-alkylation of quinoline N-oxides with maleimides as alkylating agents, resulting in the formation of bioactive succinimide-containing quinoline derivatives. The reaction proceeds under mild conditions with complete functional group tolerance.
Collapse
Affiliation(s)
- Won An
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suk Hun Lee
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Dayoung Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.,Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon 34113, Republic of Korea
| | - Harin Oh
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Suho Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youjung Byun
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hyun Jin Kim
- Division of Bio and Drug Discovery, Korea Research Institute of Chemical Technology, Daejeon 34113, Republic of Korea
| | | | - In Su Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
15
|
Thakur A, Dhiman AK, Sumit, Kumar R, Sharma U. Rh(III)-Catalyzed Regioselective C8-Alkylation of Quinoline N-Oxides with Maleimides and Acrylates. J Org Chem 2021; 86:6612-6621. [PMID: 33881315 DOI: 10.1021/acs.joc.1c00393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, we disclose the Rh(III)-catalyzed selective C8-alkylation of quinoline N-oxides with maleimides and acrylates. The main features of the reaction include complete C8-selectivity and broad substrate scope with good to excellent yields. The reaction also proceeded well with unprotected maleimide. The applicability of the developed methodology is demonstrated with gram-scale synthesis and post-modification of the alkylated product. Preliminary mechanistic study revealed that the reaction proceeds through a five-membered rhodacycle and involves proto-demetalation step.
Collapse
Affiliation(s)
- Ankita Thakur
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Kumar Dhiman
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rakesh Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource and Technology, Palampur 176061, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Chandra D, Dhiman AK, Parmar D, Sharma U. Alkylation, alkenylation, and alkynylation of heterocyclic compounds through group 9 (Co, Rh, Ir) metal-catalyzed C-H activation. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2020. [DOI: 10.1080/01614940.2020.1839849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Devesh Chandra
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Ankit Kumar Dhiman
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Diksha Parmar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| | - Upendra Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, U.P., India
| |
Collapse
|
17
|
Rani G, Luxami V, Paul K. Traceless directing groups: a novel strategy in regiodivergent C-H functionalization. Chem Commun (Camb) 2020; 56:12479-12521. [PMID: 32985634 DOI: 10.1039/d0cc04863a] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The use of functional groups as internal ligands for assisting C-H functionalization, termed the chelation assisted strategy, is emerging as one of the most powerful tools for construction of C-C and C-X bonds from inert C-H bonds. However, there are various directing groups which cannot be either removed after functionalization or require some additional steps or reagents for their removal, thereby limiting the scope of structural diversity of the products, and the step and atom economy of the system. These limitations are overcome by the use of the traceless directing group (TDG) strategy wherein functionalization of the substrate and removal of the directing group can be carried out in a one pot fashion. Traceless directing groups serve as the most ideal chelation assisted strategy with a high degree of reactivity and selectivity without any requirement for additional steps for their removal. The present review overviews the use of various functional groups such as carboxylic acids, aldehydes, N-oxides, nitrones, N-nitroso amines, amides, sulfoxonium ylides and silicon tethered directing groups for assisting transition metal catalyzed C-H functionalization reactions in the last decade.
Collapse
Affiliation(s)
- Geetika Rani
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala-147001, India.
| | | | | |
Collapse
|
18
|
Shukla RK, Nair AM, Khan S, Volla CMR. Cobalt-Catalyzed C8-Dienylation of Quinoline-N-Oxides. Angew Chem Int Ed Engl 2020; 59:17042-17048. [PMID: 32558084 DOI: 10.1002/anie.202003216] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/25/2020] [Indexed: 12/19/2022]
Abstract
An efficient Cp*CoIII -catalyzed C8-dienylation of quinoline-N-oxides was achieved by employing allenes bearing leaving groups at the α-position as the dienylating agents. The reaction proceeds by CoIII -catalyzed C-H activation of quinoline-N-oxides and regioselective migratory insertion of the allene followed by a β-oxy elimination, leading to overall dienylation. Site-selective C-H activation was achieved with excellent selectivity under mild reaction conditions, and 30 mol % of a NaF additive was found to be crucial for the efficient dienylation. The methodology features high stereoselectivity, mild reaction conditions, and good functional-group tolerance. C8-alkenylation of quinoline-N-oxides was achieved in the case of allenes devoid of leaving groups as coupling partners. Furthermore, gram-scale preparation and preliminary mechanistic experiments were carried out to gain insights into the reaction mechanism.
Collapse
Affiliation(s)
- Rahul K Shukla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Salman Khan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
19
|
Dhiman AK, Thakur A, Kumar R, Sharma U. Rhodium‐Catalyzed Selective C−H Bond Functionalization of Quinolines. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000341] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ankit K. Dhiman
- Chemical Technology Division and AcSIR CSIR-Institute of Himalayan Bioresource Technology Palampur India
| | - Ankita Thakur
- Chemical Technology Division and AcSIR CSIR-Institute of Himalayan Bioresource Technology Palampur India
| | - Rakesh Kumar
- Chemical Technology Division and AcSIR CSIR-Institute of Himalayan Bioresource Technology Palampur India
| | - Upendra Sharma
- Chemical Technology Division and AcSIR CSIR-Institute of Himalayan Bioresource Technology Palampur India
| |
Collapse
|
20
|
Rodríguez D, Guerrero SA, Palma A, Cobo J, Glidewell C. 4-Styrylquinolines from cyclocondensation reactions between (2-aminophenyl)chalcones and 1,3-diketones: crystal structures and regiochemistry. Acta Crystallogr C Struct Chem 2020; 76:883-890. [PMID: 32887859 PMCID: PMC7474186 DOI: 10.1107/s2053229620010803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/10/2022] Open
Abstract
Structures are reported for two matched sets of substituted 4-styrylquinolines which were prepared by the formation of the heterocyclic ring in cyclocondensation reactions between 1-(2-aminophenyl)-3-arylprop-2-en-1-ones with 1,3-dicarbonyl compounds. (E)-3-Acetyl-4-[2-(4-methoxyphenyl)ethenyl]-2-methylquinoline, C21H19NO2, (I), (E)-3-acetyl-4-[2-(4-bromophenyl)ethenyl]-2-methylquinoline, C20H16BrNO, (II), and (E)-3-acetyl-2-methyl-4-{2-[4-(trifluoromethyl)phenyl]ethenyl}quinoline, C21H16F3NO, (III), are isomorphous and in each structure the molecules are linked by a single C-H...O hydrogen bond to form C(6) chains. In (I), but not in (II) or (III), this is augmented by a C-H...π(arene) hydrogen bond to form a chain of rings; hence, (I)-(III) are not strictly isostructural. By contrast with (I)-(III), no two of ethyl (E)-4-[2-(4-methoxyphenyl)ethenyl]-2-methylquinoline-3-carboxylate, C22H21NO3, (IV), ethyl (E)-4-[2-(4-bromophenyl)ethenyl]-2-methylquinoline-3-carboxylate, C21H18BrNO2, (V), and ethyl (E)-2-methyl-4-{2-[4-(trifluoromethyl)phenyl]ethenyl}quinoline-3-carboxylate, C22H18F3NO2, (VI), are isomorphous. The molecules of (IV) are linked by a single C-H...O hydrogen bond to form C(13) chains, but cyclic centrosymmetric dimers are formed in both (V) and (VI). The dimer in (V) contains a C-H...π(pyridyl) hydrogen bond, while that in (VI) contains two independent C-H...O hydrogen bonds. Comparisons are made with some related structures, and both the regiochemistry and the mechanism of the heterocyclic ring formation are discussed.
Collapse
Affiliation(s)
- Diego Rodríguez
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Sergio Andrés Guerrero
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, AA 678, Bucaramanga, Colombia
| | - Justo Cobo
- Departamento de Química Inorgánica y Orgánica, Universidad de Jaén, 23071 Jaén, Spain
| | | |
Collapse
|
21
|
Parmar D, Kumar R, Kumar R, Sharma U. Ru(II)-Catalyzed Chemoselective C(sp3)–H Monoarylation of 8-Methyl Quinolines with Arylboronic Acids. J Org Chem 2020; 85:11844-11855. [DOI: 10.1021/acs.joc.0c01603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Diksha Parmar
- Chemical Technology Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rohit Kumar
- Chemical Technology Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Chemical Technology Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Chemical Technology Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
22
|
Shukla RK, Nair AM, Khan S, Volla CMR. Cobalt‐Catalyzed C8‐Dienylation of Quinoline‐
N
‐Oxides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003216] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Rahul K. Shukla
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Akshay M. Nair
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Salman Khan
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| | - Chandra M. R. Volla
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai India
| |
Collapse
|
23
|
Dhiman AK, Thakur A, Kumar I, Kumar R, Sharma U. Co(III)-Catalyzed C-H Amidation of Nitrogen-Containing Heterocycles with Dioxazolones under Mild Conditions. J Org Chem 2020; 85:9244-9254. [PMID: 32558566 DOI: 10.1021/acs.joc.0c01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A cobalt(III)-catalyzed C-8 selective C-H amidation of quinoline N-oxide using dioxazolone as an amidating reagent under mild conditions is disclosed. The reaction proceeds efficiently with excellent functional group compatibility. The utility of the current method is demonstrated by gram scale synthesis of C-8 amide quinoline N-oxide and by converting this amidated product into functionalized quinolines. Furthermore, the developed catalytic method is also applicable for C-7 amidation of N-pyrimidylindolines and ortho-amidation of benzamides.
Collapse
Affiliation(s)
- Ankit Kumar Dhiman
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Ankita Thakur
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Inder Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
24
|
|
25
|
Kumar R, Parmar D, Gupta SS, Chandra D, Dhiman AK, Sharma U. Cp*Rh
III
‐Catalyzed Sterically Controlled C(sp
3
)−H Selective Mono‐ and Diarylation of 8‐Methylquinolines with Organoborons**. Chemistry 2020; 26:4396-4402. [DOI: 10.1002/chem.201905591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/14/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR CSIR-IHBT 176061 Palampur India
| | - Diksha Parmar
- Natural Product Chemistry and Process Development Division and AcSIR CSIR-IHBT 176061 Palampur India
| | - Shiv Shankar Gupta
- Natural Product Chemistry and Process Development Division and AcSIR CSIR-IHBT 176061 Palampur India
| | - Devesh Chandra
- Natural Product Chemistry and Process Development Division and AcSIR CSIR-IHBT 176061 Palampur India
| | - Ankit Kumar Dhiman
- Natural Product Chemistry and Process Development Division and AcSIR CSIR-IHBT 176061 Palampur India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR CSIR-IHBT 176061 Palampur India
| |
Collapse
|
26
|
Gupta SS, Kumar R, Sharma U. Regioselective Arylation of Quinoline N-Oxides (C8), Indolines (C7) and N- tert-Butylbenzamide with Arylboronic Acids. ACS OMEGA 2020; 5:904-913. [PMID: 31956844 PMCID: PMC6964538 DOI: 10.1021/acsomega.9b03884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Herein, we disclose Ru(II)-catalyzed regioselective distal C(sp2)-H arylation of quinoline N-oxide with arylboronic acids to 8-arylquinolines. In the developed method, the Ru(II)-catalyst shows dual activity, that is, distal C-H activation of quinoline N-oxides followed by in situ deoxygenation of arylated quinoline N-oxide in the same pot. The current catalytic method features use of Ru metal as the catalyst and arylboronic acids as the arylating source under mild reaction conditions. Use of the Rh(III)-catalyst in place of Ru(II) under the same conditions afforded 8-arylquinoline N-oxides with excellent regioselectivity. Furthermore, the developed Ru(II) catalytic system is also extended for the C(sp2)-H arylation of indolines, N-tert-butylbenzamide, and 6-(5H)-phenanthridinone. Formation of the quinoline N-oxide coordinated ruthenium adduct is found to be the key reaction intermediate, which has been characterized by single crystal X-ray diffraction and NMR spectroscopy.
Collapse
Affiliation(s)
- Shiv Shankar Gupta
- Natural Product Chemistry and Process
Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process
Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process
Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
27
|
Kouznetsov VV, Vargas Méndez LY, Puerto Galvis CE, Ortiz Villamizar MC. The direct C–H alkenylation of quinoline N-oxides as a suitable strategy for the synthesis of promising antiparasitic drugs. NEW J CHEM 2020. [DOI: 10.1039/c9nj05054j] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review highlights the direct C–H alkenylation of quinoline N-oxides covering the metal-free and transition-metal catalysed protocols, and the regioselectivity during the synthesis of antiparasitic drugs based on quinoline scaffold.
Collapse
Affiliation(s)
- Vladimir V. Kouznetsov
- Laboratorio de Química Orgánica y Biomolecular
- CMN
- Universidad Industrial de Santander
- Parque Tecnológico Guatiguará
- Piedecuesta 681011
| | - Leonor Y. Vargas Méndez
- Laboratorio de Química Orgánica y Biomolecular
- CMN
- Universidad Industrial de Santander
- Parque Tecnológico Guatiguará
- Piedecuesta 681011
| | - Carlos E. Puerto Galvis
- Laboratorio de Química Orgánica y Biomolecular
- CMN
- Universidad Industrial de Santander
- Parque Tecnológico Guatiguará
- Piedecuesta 681011
| | - Marlyn C. Ortiz Villamizar
- Laboratorio de Química Orgánica y Biomolecular
- CMN
- Universidad Industrial de Santander
- Parque Tecnológico Guatiguará
- Piedecuesta 681011
| |
Collapse
|
28
|
Das R, Khot NP, Deshpande AS, Kapur M. Catalyst Control in Switching the Site Selectivity of C-H Olefinations of 1,2-Dihydroquinolines: An Approach to Positional-Selective Functionalization of Quinolines. Chemistry 2019; 26:927-938. [PMID: 31625636 DOI: 10.1002/chem.201904512] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Indexed: 12/19/2022]
Abstract
A unique approach to achieve site-selective C-H olefinations exclusively at the C-3- or C-8-positions in the quinoline framework has been developed by catalyst control. Distal C(3)-H functionalization is achieved by using palladium catalysis, whereas proximal C(8)-H functionalization is obtained by employing ruthenium catalysis. Switching the site selectivity within a single substrate directly indicates two diverse pathways, which are operating under the palladium- and ruthenium-catalyzed reaction conditions.
Collapse
Affiliation(s)
- Riki Das
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India.,Present address: Department of Chemistry, University of Minnesota, Minneapolis, MN, 55455-0431, USA
| | - Nandkishor Prakash Khot
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Akanksha Santosh Deshpande
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institution of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, MP, India
| |
Collapse
|
29
|
Kumar R, Sharma R, Kumar R, Sharma U. Cp*Rh(III)-Catalyzed Regioselective C(sp3)–H Methylation of 8-Methylquinolines with Organoborons. Org Lett 2019; 22:305-309. [DOI: 10.1021/acs.orglett.9b04331] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Ritika Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rohit Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
30
|
Kumar R, Kumar R, Parmar D, Gupta SS, Sharma U. Ru(II)/Rh(III)-Catalyzed C(sp3)–C(sp3) Bond Formation through C(sp3)–H Activation: Selective Linear Alkylation of 8-Methylquinolines and Ketoximes with Olefins. J Org Chem 2019; 85:1181-1192. [DOI: 10.1021/acs.joc.9b03257] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Rohit Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Diksha Parmar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Shiv Shankar Gupta
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
31
|
Kumar R, Sharma R, Kumar I, Upadhyay P, Dhiman AK, Kumar R, Kumar R, Purohit R, Sahal D, Sharma U. Evaluation of Antiplasmodial Potential of C2 and C8 Modified Quinolines: in vitro and in silico Study. Med Chem 2019; 15:790-800. [PMID: 30324888 DOI: 10.2174/1573406414666181015144413] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 09/02/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
BACKGROUND Malaria remains a common life-threatening infectious disease across the globe due to the development of resistance by Plasmodium parasite against most antimalarial drugs. The situation demands new and effective drug candidates against Plasmodium. OBJECTIVES The objective of this study is to design, synthesize and test novel quinoline based molecules against the malaria parasite. METHODS C2 and C8 modified quinoline analogs obtained via C-H bond functionalization approach were synthesized and evaluated for inhibition of growth of P. falciparum grown in human red blood cells using SYBR Green microtiter plate based screening. Computational molecular docking studies were carried out with top fourteen molecules using Autodoc software. RESULTS The biological evaluation results revealed good activity of quinoline-8-acrylate 3f (IC50 14.2 µM), and the 2-quinoline-α-hydroxypropionates 4b (IC50 6.5 µM), 4j (IC50 5.5 µM) and 4g (IC50 9.5 µM), against chloroquine sensitive Pf3D7 strain. Top fourteen molecules were screened also against chloroquine resistant Pf INDO strain and the observed resistant indices were found to lie between 1 and 7.58. Computational molecular docking studies indicated a unique mode of binding of these quinolines to Falcipain-2 and heme moiety, indicating these to be the probable targets of their antiplasmodial action. CONCLUSION An important finding of our work is the fact that unlike Chloroquine which shows a resistance Index of 15, the resistance indices for the most promising molecules studied by us were about one indicating equal potency against drug sensitive and resistant strains of the malaria parasite.
Collapse
Affiliation(s)
- Rakesh Kumar
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh-176 061, India
| | - Ritika Sharma
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh-176 061, India
| | - Inder Kumar
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh-176 061, India
| | - Pooja Upadhyay
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ankit Kumar Dhiman
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh-176 061, India
| | - Rohit Kumar
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India.,Centre for Nano and Material Sciences, Jain University, Jain Global, India
| | - Rituraj Purohit
- Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh-176 061, India.,Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India.,Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh-176 061, India
| |
Collapse
|
32
|
Kim J, Kim S, Kim D, Chang S. Ru-Catalyzed Deoxygenative Regioselective C8–H Arylation of Quinoline N-Oxides. J Org Chem 2019; 84:13150-13158. [DOI: 10.1021/acs.joc.9b01548] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jinwoo Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Suhyeon Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Dongwook Kim
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| | - Sukbok Chang
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
- Center for Catalytic Hydrocarbon Functionalization, Institute for Basic Science (IBS), Daejeon 34141, South Korea
| |
Collapse
|
33
|
Dhiman AK, Gupta SS, Sharma R, Kumar R, Sharma U. Rh(III)-Catalyzed C(8)–H Activation of Quinoline N-Oxides: Regioselective C–Br and C–N Bond Formation. J Org Chem 2019; 84:12871-12880. [DOI: 10.1021/acs.joc.9b01538] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ankit Kumar Dhiman
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Shiv Shankar Gupta
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Ritika Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
34
|
Dhiman AK, Chandra D, Kumar R, Sharma U. Catalyst-Free Synthesis of 2-Anilinoquinolines and 3-Hydroxyquinolines via Three-Component Reaction of Quinoline N-Oxides, Aryldiazonium Salts, and Acetonitrile. J Org Chem 2019; 84:6962-6969. [DOI: 10.1021/acs.joc.9b00739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ankit Kumar Dhiman
- Natural Product Chemistry & Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Devesh Chandra
- Natural Product Chemistry & Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry & Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry & Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
35
|
Chandra D, Dhiman AK, Kumar R, Sharma U. Microwave-Assisted Metal-Free Rapid Synthesis of C4-Arylated Quinolines via Povarov Type Multicomponent Reaction. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900325] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Devesh Chandra
- Natural Product Chemistry & Process Development Division and AcSIR; CSIR-IHBT; Palampur Himachal Pradesh 176061 India
| | - Ankit Kumar Dhiman
- Natural Product Chemistry & Process Development Division and AcSIR; CSIR-IHBT; Palampur Himachal Pradesh 176061 India
| | - Rakesh Kumar
- Natural Product Chemistry & Process Development Division and AcSIR; CSIR-IHBT; Palampur Himachal Pradesh 176061 India
| | - Upendra Sharma
- Natural Product Chemistry & Process Development Division and AcSIR; CSIR-IHBT; Palampur Himachal Pradesh 176061 India
| |
Collapse
|
36
|
Rej S, Chatani N. Rhodiumkatalysierte sp 2‐ und sp 3‐C‐H‐Funktionalisierungen mit entfernbaren dirigierenden Gruppen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201808159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Supriya Rej
- Department of Applied ChemistryFaculty of EngineeringOsaka University, Suita Osaka 565-0871 Japan
| | - Naoto Chatani
- Department of Applied ChemistryFaculty of EngineeringOsaka University, Suita Osaka 565-0871 Japan
| |
Collapse
|
37
|
Rej S, Chatani N. Rhodium-Catalyzed C(sp 2 )- or C(sp 3 )-H Bond Functionalization Assisted by Removable Directing Groups. Angew Chem Int Ed Engl 2019; 58:8304-8329. [PMID: 30311719 DOI: 10.1002/anie.201808159] [Citation(s) in RCA: 276] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/12/2018] [Indexed: 12/25/2022]
Abstract
In recent years, transition-metal-catalyzed C-H activation has become a key strategy in the field of organic synthesis. Rhodium complexes are widely used as catalysts in a variety of C-H functionalization reactions because of their high reactivity and selectivity. The availability of a number of rhodium complexes in various oxidation states enables diverse reaction patterns to be obtained. Regioselectivity, an important issue in C-H activation chemistry, can be accomplished by using a directing group to assist the reaction. However, to obtain the target functionalized compounds, it is also necessary to use a directing group that can be easily removed. A wide range of directed C-H functionalization reactions catalyzed by rhodium complexes have been reported to date. In this Review, we discuss Rh-catalyzed C-H functionalization reactions that are aided by the use of a removable directing group such as phenol, amine, aldehyde, ketones, ester, acid, sulfonic acid, and N-heteroaromatic derivatives.
Collapse
Affiliation(s)
- Supriya Rej
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Naoto Chatani
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
38
|
Biswas A, Sarkar S, Samanta R. Rh
III
‐Catalyzed Straightforward Synthesis of Benzophenanthroline and Benzophenanthrolinone Derivatives using Anthranils. Chemistry 2019; 25:3000-3004. [DOI: 10.1002/chem.201806373] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/11/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Aniruddha Biswas
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Souradip Sarkar
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Rajarshi Samanta
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
39
|
Sharma R, Kumar R, Sharma U. Rh/O2-Catalyzed C8 Olefination of Quinoline N-Oxides with Activated and Unactivated Olefins. J Org Chem 2019; 84:2786-2797. [DOI: 10.1021/acs.joc.8b03176] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Ritika Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR- IHBT, Palampur 176061, India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR- IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR- IHBT, Palampur 176061, India
| |
Collapse
|
40
|
Kumar R, Kumar R, Chandra D, Sharma U. Cp*CoIII–Catalyzed Alkylation of Primary and Secondary C(sp3)-H Bonds of 8-Alkylquinolines with Maleimides. J Org Chem 2019; 84:1542-1552. [DOI: 10.1021/acs.joc.8b02974] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Rohit Kumar
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Devesh Chandra
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR, CSIR-IHBT, Palampur 176061, India
| |
Collapse
|
41
|
Kumar R, Chaudhary S, Kumar R, Upadhyay P, Sahal D, Sharma U. Catalyst and Additive-Free Diastereoselective 1,3-Dipolar Cycloaddition of Quinolinium Imides with Olefins, Maleimides, and Benzynes: Direct Access to Fused N,N'-Heterocycles with Promising Activity against a Drug-Resistant Malaria Parasite. J Org Chem 2018; 83:11552-11570. [PMID: 30160960 DOI: 10.1021/acs.joc.8b01520] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A convenient and eco-friendly synthesis of various fused N-heterocyclic compounds through catalyst and additive-free 1,3 dipolar cycloadditions of quinolinium imides with olefins, maleimides, and benzynes in excellent yields and diastereoselectivities is reported. The thermally controlled diastereoselective [3 + 2] cycloaddition reaction between quinolinium imides and olefins provided cis-isomers at low temperature and trans-isomers at high temperature. A reaction between quinolinium imides with substituted maleimides gave four-ring-fused N-heterocyclic compounds in high yields as a single diastereomer. The aryne precursors also provided four-ring-fused N,N'-heterocyclic compounds in high yields. The in vitro antiplasmodial activity of selected molecules revealed that this class of molecules possesses potential for ongoing studies against malaria.
Collapse
Affiliation(s)
- Rakesh Kumar
- Natural Product Chemistry and Process Development Division and AcSIR , CSIR-IHBT , Palampur 176061 , India
| | - Sandeep Chaudhary
- Natural Product Chemistry and Process Development Division and AcSIR , CSIR-IHBT , Palampur 176061 , India
| | - Rohit Kumar
- Natural Product Chemistry and Process Development Division and AcSIR , CSIR-IHBT , Palampur 176061 , India
| | - Pooja Upadhyay
- Malaria Drug Discovery Laboratory , International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg , New Delhi , 110067 , India
| | - Dinkar Sahal
- Malaria Drug Discovery Laboratory , International Centre for Genetic Engineering and Biotechnology , Aruna Asaf Ali Marg , New Delhi , 110067 , India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division and AcSIR , CSIR-IHBT , Palampur 176061 , India
| |
Collapse
|
42
|
Sharma R, Kumar R, Kumar R, Upadhyay P, Sahal D, Sharma U. Rh(III)-Catalyzed C(8)–H Functionalization of Quinolines via Simultaneous C–C and C–O Bond Formation: Direct Synthesis of Quinoline Derivatives with Antiplasmodial Potential. J Org Chem 2018; 83:12702-12710. [DOI: 10.1021/acs.joc.8b02042] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ritika Sharma
- Department of Natural Product Chemistry & Process Development, and Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India
| | - Rakesh Kumar
- Department of Natural Product Chemistry & Process Development, and Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India
| | - Rohit Kumar
- Department of Natural Product Chemistry & Process Development, and Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India
| | - Pooja Upadhyay
- Malaria Drug Discovery Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Dinkar Sahal
- Malaria Drug Discovery Group, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Upendra Sharma
- Department of Natural Product Chemistry & Process Development, and Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology Palampur, Himachal Pradesh 176061, India
| |
Collapse
|
43
|
Sambiagio C, Schönbauer D, Blieck R, Dao-Huy T, Pototschnig G, Schaaf P, Wiesinger T, Zia MF, Wencel-Delord J, Besset T, Maes BUW, Schnürch M. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem Soc Rev 2018; 47:6603-6743. [PMID: 30033454 PMCID: PMC6113863 DOI: 10.1039/c8cs00201k] [Citation(s) in RCA: 1142] [Impact Index Per Article: 163.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 12/20/2022]
Abstract
The present review is devoted to summarizing the recent advances (2015-2017) in the field of metal-catalysed group-directed C-H functionalisation. In order to clearly showcase the molecular diversity that can now be accessed by means of directed C-H functionalisation, the whole is organized following the directing groups installed on a substrate. Its aim is to be a comprehensive reference work, where a specific directing group can be easily found, together with the transformations which have been carried out with it. Hence, the primary format of this review is schemes accompanied with a concise explanatory text, in which the directing groups are ordered in sections according to their chemical structure. The schemes feature typical substrates used, the products obtained as well as the required reaction conditions. Importantly, each example is commented on with respect to the most important positive features and drawbacks, on aspects such as selectivity, substrate scope, reaction conditions, directing group removal, and greenness. The targeted readership are both experts in the field of C-H functionalisation chemistry (to provide a comprehensive overview of the progress made in the last years) and, even more so, all organic chemists who want to introduce the C-H functionalisation way of thinking for a design of straightforward, efficient and step-economic synthetic routes towards molecules of interest to them. Accordingly, this review should be of particular interest also for scientists from industrial R&D sector. Hence, the overall goal of this review is to promote the application of C-H functionalisation reactions outside the research groups dedicated to method development and establishing it as a valuable reaction archetype in contemporary R&D, comparable to the role cross-coupling reactions play to date.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - David Schönbauer
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Remi Blieck
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Toan Dao-Huy
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Gerit Pototschnig
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Patricia Schaaf
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Thomas Wiesinger
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Muhammad Farooq Zia
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| | - Joanna Wencel-Delord
- Laboratoire de Chimie Moléculaire (UMR CNRS 7509)
, Université de Strasbourg
,
ECPM 25 Rue Becquerel
, 67087 Strasbourg
, France
| | - Tatiana Besset
- Normandie Univ
, INSA Rouen
, UNIROUEN
, CNRS
, COBRA (UMR 6014)
,
76000 Rouen
, France
| | - Bert U. W. Maes
- Organic Synthesis (ORSY)
, Department of Chemistry
, University of Antwerp
,
Groenenborgerlaan 171
, 2020 Antwerp
, Belgium
| | - Michael Schnürch
- Institute of Applied Synthetic Chemistry
, TU Wien
,
Getreidemarkt 9/163
, A-1060 Vienna
, Austria
.
| |
Collapse
|
44
|
Das R, Kapur M. Transition-Metal-Catalyzed C−H Functionalization Reactions of π-Deficient Heterocycles. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800204] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Riki Das
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhauri Bhopal 462066, MP India
| | - Manmohan Kapur
- Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal Bypass Road Bhauri Bhopal 462066, MP India
| |
Collapse
|
45
|
Xu X, Zhao H, Xu J, Chen C, Pan Y, Luo Z, Zhang Z, Li H, Xu L. Rhodium(III)-Catalyzed Oxidative Annulation of 2,2′-Bipyridine N-Oxides with Alkynes via Dual C–H Bond Activation. Org Lett 2018; 20:3843-3847. [DOI: 10.1021/acs.orglett.8b01434] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Haoqiang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Jianbin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Changjun Chen
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yixiao Pan
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhenli Luo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zongyao Zhang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Huanrong Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
46
|
Sharma R, Sharma U. Remote C-H bond activation/transformations: A continuous growing synthetic tool; Part II. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2018. [DOI: 10.1080/01614940.2018.1474538] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ritika Sharma
- Natural Product Chemistry and Process Development Division, CSIR Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division, CSIR Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientific and Innovative Research, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
| |
Collapse
|
47
|
Ghosh B, Biswas A, Chakraborty S, Samanta R. Rh III -Catalyzed Direct C8-Arylation of Quinoline N-Oxides using Diazonaphthalen-2(1H)-ones: A Practical Approach towards 8-aza BINOL. Chem Asian J 2018; 13:2388-2392. [PMID: 29665279 DOI: 10.1002/asia.201800462] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/16/2018] [Indexed: 01/18/2023]
Abstract
An efficient RhIII -catalyzed redox-neutral method for the direct C8-arylation of quinoline N-oxides using diazonaphthalen-2(1H)-one as coupling partner has been demonstrated. The developed method is simple, scalable and straightforward with a wide range of substrate scope. The applicative potential was extended with a late-stage functionalization and straightforward synthesis of 8-azaBINOL derivative. A plausible reaction pathway was proposed after carrying out preliminary control studies.
Collapse
Affiliation(s)
- Bidhan Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Aniruddha Biswas
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Soumen Chakraborty
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| |
Collapse
|
48
|
Li DY, Huang ZL, Liu PN. Heterobicyclic Core Retained Hydroarylations through C-H Activation: Synthesis of Epibatidine Analogues. Org Lett 2018; 20:2028-2032. [PMID: 29558151 DOI: 10.1021/acs.orglett.8b00571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The heterobicyclic core retained hydroarylation of oxa/azabenzonorbornadienes with quinoline N-oxides has been achieved under rhodium catalysis, giving quinoline N-oxide substituted heterobicyclic structures with excellent regioselectivity and in good yields. As the first example of the direct introduction of quinoline N-oxides onto heterobicyclic structures, the strained heterobicyclic core was well retained in the reaction. The products could be successfully transformed into a series of useful compounds, including epibatidine analogues.
Collapse
Affiliation(s)
- Deng-Yuan Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Lab for Advanced Materials and School of Chemistry & Molecular Engineering , East China University of Science & Technology , Meilong Road 130 , Shanghai 200237 , China
| | - Zheng-Lu Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Lab for Advanced Materials and School of Chemistry & Molecular Engineering , East China University of Science & Technology , Meilong Road 130 , Shanghai 200237 , China
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Lab for Advanced Materials and School of Chemistry & Molecular Engineering , East China University of Science & Technology , Meilong Road 130 , Shanghai 200237 , China
| |
Collapse
|
49
|
da Silva Júnior EN, Jardim GAM, Gomes RS, Liang YF, Ackermann L. Weakly-coordinating N-oxide and carbonyl groups for metal-catalyzed C–H activation: the case of A-ring functionalization. Chem Commun (Camb) 2018; 54:7398-7411. [DOI: 10.1039/c8cc03147a] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This feature review is focused on recent challenges based on the functionalizations at C-8 and C-5 positions of heterocyclic and quinoidal compounds – a topic that is still rarely explored in the literature.
Collapse
Affiliation(s)
| | - Guilherme A. M. Jardim
- Institute of Exact Sciences
- Department of Chemistry
- Federal University of Minas Gerais
- Belo Horizonte
- Brazil
| | - Roberto S. Gomes
- Faculty of Exact Sciences and Technologies
- Federal University of Grande Dourados
- Dourados
- Brazil
- Department of Chemistry and Chemical Biology
| | - Yu-Feng Liang
- Institut für Organische und Biomolekulare Chemie
- Georg-August-Universität Göttingen
- Gottingen 37077
- Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie
- Georg-August-Universität Göttingen
- Gottingen 37077
- Germany
| |
Collapse
|
50
|
Sharma R, Kumar I, Kumar R, Sharma U. Rhodium-Catalyzed Remote C-8 Alkylation of Quinolines with Activated and Unactivated Olefins: Mechanistic Study and Total Synthesis of EP4 Agonist. Adv Synth Catal 2017. [DOI: 10.1002/adsc.201700542] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Ritika Sharma
- Natural Product Chemistry and Process Development Division; CSIR-Institute of Himalayan Bioresource Technology; Palampur Himachal Pradesh- 176061 India
- Academy of Scientific and Innovative Research; Anusandhan Bhawan; 2 Rafi Marg New Delhi- 110001 India
| | - Inder Kumar
- Natural Product Chemistry and Process Development Division; CSIR-Institute of Himalayan Bioresource Technology; Palampur Himachal Pradesh- 176061 India
- Academy of Scientific and Innovative Research; Anusandhan Bhawan; 2 Rafi Marg New Delhi- 110001 India
| | - Rakesh Kumar
- Natural Product Chemistry and Process Development Division; CSIR-Institute of Himalayan Bioresource Technology; Palampur Himachal Pradesh- 176061 India
- Academy of Scientific and Innovative Research; Anusandhan Bhawan; 2 Rafi Marg New Delhi- 110001 India
| | - Upendra Sharma
- Natural Product Chemistry and Process Development Division; CSIR-Institute of Himalayan Bioresource Technology; Palampur Himachal Pradesh- 176061 India
- Academy of Scientific and Innovative Research; Anusandhan Bhawan; 2 Rafi Marg New Delhi- 110001 India
| |
Collapse
|