1
|
Song JL, Yang ZF, Fang S, Chen WL, Ye LB, Liu X, Shu B. Rhodium-catalyzed C-H α-fluoroalkenylation/annulation of β-ketosulfoxonium ylides with 2,2-difluorovinyl tosylate/oxadiazolones. Chem Commun (Camb) 2024; 60:15000-15003. [PMID: 39600176 DOI: 10.1039/d4cc05621c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A Rh(III)-catalyzed C-H α-fluoroalkenylation/annulation of β-ketosulfoxonium ylides with 2,2-difluorovinyl tosylate/oxadiazolones was realized, which afforded various o-fluoroalkenylation β-ketosulfoxonium ylides with high Z-selectivity and diverse oxadiazolone fused-isoquinolines. This protocol featured mild conditions, broad substrate scope, and functional-group compatibility. In addition, scale-up synthesis, related applications and preliminary mechanistic explorations were also accomplished.
Collapse
Affiliation(s)
- Jia-Lin Song
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Zi-Feng Yang
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P. R. China.
| | - Sheng Fang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Wang-Liang Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Lian-Bao Ye
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
| | - Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, P. R. China.
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China.
- Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
2
|
Liu Y, Tian J, Zeng W, Wang Y, Hu C, Luo X, Qiu Y, Pu H, Wu Y, Xue W. Novel Flavonol Derivatives Containing Quinoxaline: Insights into the Antifungal Mechanism against Sclerotinia sclerotiorum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23766-23775. [PMID: 39418190 DOI: 10.1021/acs.jafc.4c07799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this study, 12 pairs of tautomeric flavonol derivatives containing quinoxaline were synthesized. The results of antifungal activity showed that in the enol-keto tautomerism, the target compounds containing keto (YB series) had better inhibitory activity against Sclerotinia sclerotiorum (S.s.) than compounds containing enol (YA series). YB9 showed the strongest antifungal activity against S.s., and the median effective concentration (EC50) value was 1.0 μg/mL, which was better than azoxystrobin (Az, 35.3 μg/mL). In vivo fungal inhibition experiments showed that the protective activity of YB9 against rape leaves was 83.4% at 200 μg/mL, which was superior to that of Az (70.2%). The activity of succinate dehydrogenase and molecular docking results showed that YB9 had a stronger antifungal effect than YA9. The results of oxalic acid content determination showed that YB9 could reduce the pathogenic ability of S.s. Then, the inhibitory effect of YB9 against S.s. was further verified by scanning electron microscopy, fluorescence microscopy, cell membrane permeability, cell content leakage, and malondialdehyde content.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Jiao Tian
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Wei Zeng
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yuhong Wang
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Chunmei Hu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Xingping Luo
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yujiao Qiu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Haotao Pu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| | - Yongjun Wu
- College of Life Sciences, Guizhou University, Guiyang 550025, P. R. China
| | - Wei Xue
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals, Guizhou University, Guiyang 550025, P. R. China
| |
Collapse
|
3
|
Li H, Cheng W, Wang C. Annulation of 2-Aroyl D-A Cyclopropanes via Selectively Ring-Opening Process with o-Benzenediamines to Access Quinoxaline Derivatives. J Org Chem 2024; 89:10333-10337. [PMID: 38953243 DOI: 10.1021/acs.joc.4c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
An annulation reaction of 2-aroyl D-A cyclopropanes with o-benzenediamines via selective cleavage of C-C bonds of cyclopropane in the presence of DBU/Sc(OTf)3 reaction systems was developed for the direct preparation of 2-aryl-3-benzylquinoxalines. This synthetic approach tolerated a wide range of readily available aroyl-substituted D-A cyclopropanes with diverse functional groups and had operationally simple and mild reaction conditions.
Collapse
Affiliation(s)
- Haiwen Li
- School of Chemistry and Chemical Engineering, Yangzhou University,180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Wenzhe Cheng
- School of Chemistry and Chemical Engineering, Yangzhou University,180 Siwangting Street, Yangzhou 225002, P. R. China
| | - Cunde Wang
- School of Chemistry and Chemical Engineering, Yangzhou University,180 Siwangting Street, Yangzhou 225002, P. R. China
| |
Collapse
|
4
|
Zou WX, Hu Q, Shen DT, Wu WR, Wei J, Yang ZF, Bao MZ, Liu X, Zhang SS. A Platform for the Synthesis of Diverse Phosphonyl and Thiofunctionalized Sulfoxonium Ylides. Org Lett 2024; 26:5811-5816. [PMID: 38940397 DOI: 10.1021/acs.orglett.4c02000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
A practical strategy for the construction of diverse phosphonyl and thiofunctionalized sulfoxonium ylides via controllable monofunctionalization of hybrid I(III)/S(VI) ylides is presented. This process allows efficient P-H insertion of I(III)/S(VI) ylides under Cu catalysis, enabling the synthesis of phosphonyl sulfoxonium ylides, whereas reaction with sulfur-containing reagents including AgSCF3, KSC(S)OR, and KSCN under mild conditions resulted in α-trifluoromethylthiolation, dithiocarbanation, and thiocyanation of sulfoxonium ylides accordingly. Of note, wide substrate compatibility (108 examples), excellent efficiency (up to 99% yield), gram-scale experiments, and various product derivatizations highlight the synthetic utility of this protocol.
Collapse
Affiliation(s)
- Wen-Xuan Zou
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Qiong Hu
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Dan-Ting Shen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Wen-Rong Wu
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Jiaohang Wei
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Zi-Feng Yang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Mei-Zhu Bao
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| | - Xiang Liu
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Chen SY, Zeng YF, Zou WX, Shen DT, Zheng YC, Song JL, Zhang SS. Divergent Synthesis of Tetrasubstituted Phenols via [3 + 3] Cycloaddition Reaction of Vinyl Sulfoxonnium Ylides with Cyclopropenones. Org Lett 2023; 25:4286-4291. [PMID: 37265108 DOI: 10.1021/acs.orglett.3c01327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Two categories of tetrasubstituted phenols were prepared via the cycloaddition reaction of vinyl sulfoxonnium ylides with cyclopropenones in a switchable manner. Copper carbenoid was proposed as the active intermediate in the process of 2,3,4,5-tetrasubstituted phenols formation, while 2,3,5,6-tetrasubstituted phenols were generated via the direct [3 + 3] annulation of vinyl sulfoxonnium ylides with cyclopropenones under metal-free conditions. Further synthetic applications were also demonstrated.
Collapse
Affiliation(s)
- Shao-Yong Chen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Wen-Xuan Zou
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Dan-Ting Shen
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yi-Chuan Zheng
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jia-Lin Song
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shang-Shi Zhang
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
6
|
Fitzgerald SA, Xiao X, Zhao J, Horton PN, Coles SJ, Knighton RC, Ward BD, Pope SJA. Organometallic Platinum(II) Photosensitisers that Demonstrate Ligand-Modulated Triplet-Triplet Annihilation Energy Upconversion Efficiencies. Chemistry 2023; 29:e202203241. [PMID: 36394514 PMCID: PMC10107691 DOI: 10.1002/chem.202203241] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/18/2022]
Abstract
A series of 2-phenylquinoxaline ligands have been synthesised that introduce either CF3 or OCF3 electron-withdrawing groups at different positions of the phenyl ring. These ligands were investigated as cyclometalating reagents for platinum(II) to give neutral complexes of the form [Pt(C^N)(acac)] (in which C^N=cyclometalating ligand; acac=acetyl acetonate). X-ray crystallographic studies on three examples showed that the complexes adopt an approximate square planar geometry. All examples revealed strong Pt-Pt linear contacts of 3.2041(6), 3.2199(3) and 3.2586(2) Å. The highly coloured complexes display efficient visible absorption at 400-500 nm (ϵ ≈5000 M-1 cm-1 ) and orange red photoluminescent characteristics (λem =603-620 nm; Φem ≤37 %), which were subtly tuned by the ligand. Triplet emitting character was confirmed by microsecond luminescence lifetimes and the photogeneration of singlet oxygen with quantum efficiencies up to 57 %. Each complex was investigated as a photosensitiser for triplet-triplet annihilation energy upconversion using 9,10-diphenylanthracene as the annihilator species: a range of good upconversion efficiencies (ΦUC 5.9-14.1 %) were observed and shown to be strongly influenced by the ligand structure in each case.
Collapse
Affiliation(s)
| | - Xiao Xiao
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsSchool of Chemical EngineeringDalian University of TechnologyDalian116024P.R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine ChemicalsFrontiers Science Center for Smart MaterialsSchool of Chemical EngineeringDalian University of TechnologyDalian116024P.R. China
| | - Peter N. Horton
- UK National Crystallographic Service, ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | - Simon J. Coles
- UK National Crystallographic Service, ChemistryUniversity of Southampton HighfieldSouthamptonSO17 1BJUK
| | | | - Benjamin D. Ward
- School of ChemistryMain BuildingCardiff UniversityCardiffCF10 3ATUK
| | - Simon J. A. Pope
- School of ChemistryMain BuildingCardiff UniversityCardiffCF10 3ATUK
| |
Collapse
|
7
|
Song JL, Chen SY, Xiao L, Xie XL, Zheng YC, Shang-Shi Z, Shu B. Rh(III)‐Catalyzed N‐Arylation of Alkyl Dioxazolones with Arylboronic Acids for the Synthesis of N‐Aryl Amides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jia-Lin Song
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| | - Shao-Yong Chen
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Lin Xiao
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Xiao-Ling Xie
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| | - Yi-Chuan Zheng
- Guangdong Pharmaceutical University Center for Drug Research and Development CHINA
| | - Zhang Shang-Shi
- Guangdong Pharmaceutical University Center for Drug Research and development Higher Education Mega Center 510006 GuangZhou CHINA
| | - Bing Shu
- Guangdong Pharmaceutical University School of Pharmacy CHINA
| |
Collapse
|
8
|
Bhorali P, Sultana S, Gogoi S. Recent Advances in Metal‐Catalyzed C−H Bond Functionalization Reactions of Sulfoxonium Ylides. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Pratiksha Bhorali
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sabera Sultana
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
| | - Sanjib Gogoi
- Applied Organic Chemistry Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
9
|
Zheng YC, Shu B, Zeng YF, Chen SY, Song JL, Liu YZ, Xiao L, Liu XG, Zhang X, Zhang SS. A cascade indazolone-directed Ir( iii)- and Rh( iii)-catalyzed C(sp 2)–H functionalization/[4 + 2] annulation of 1-arylindazolones with sulfoxonium ylides to access chemically divergent 8 H-indazolo [1,2- a]cinnolines. Org Chem Front 2022. [DOI: 10.1039/d2qo00871h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An indazolone-directed chemoselective synthesis of 8H-indazolo [1,2-a]cinnolines has been realized via a cascade Cp*Ir(iii)- and Cp*Rh(iii)-catalyzed C–H activation/cyclization reaction of 1-arylindazolones with sulfoxonium ylides.
Collapse
Affiliation(s)
- Yi-Chuan Zheng
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Bing Shu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yao-Fu Zeng
- School of Pharmaceutical Science, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, P. R. China
| | - Shao-Yong Chen
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Jia-Lin Song
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Yan-Zhi Liu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Lin Xiao
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Xu-Ge Liu
- School of Pharmacy, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xuanxuan Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Shang-Shi Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems, Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| |
Collapse
|
10
|
Zhang J, Zhang C, Zheng Z, Zhou P, Liu W. Research Progress of Sulfoxonium Ylides in the Construction of Five/Six-Membered Nitrogen-Containing Heterocycles. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Chidrawar A, Devulapally YC, Balasubramanian S, Basireddy VSR. Rh(III)‐Catalyzed Oxidative Annulation of 2‐Arylindazoles with β‐Ketosulfoxonium Ylides. ChemistrySelect 2021. [DOI: 10.1002/slct.202102982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ajay Chidrawar
- Fluoro &Agrochemicals CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 Uttar Pradesh India
| | - Yogananda Chary Devulapally
- Fluoro &Agrochemicals CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 Uttar Pradesh India
| | - Sridhar Balasubramanian
- Laboratory of X-ray Crystallography CSIR-Indian Institute of Chemical Technology Hyderabad 500 007 India
| | | |
Collapse
|
12
|
Xie H, Zhong M, Kang H, Shu B, Zhang S. A Cascade Rh(III)‐catalyzed C−H Activation/Chemodivergent Annulation of
N
‐carbamoylindoles with Sulfoxonium Ylides for the Synthesis of Dihydropyrimidoindolone and Tricyclic [1,3]Oxazino[3,4‐
a
]indol‐1‐ones Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Hui Xie
- Center for Drug Research and Development Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Mei Zhong
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Hua‐Jie Kang
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Bing Shu
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| | - Shang‐Shi Zhang
- Center for Drug Research and Development Guangdong Pharmaceutical University Guangzhou 510006 People's Republic of China
| |
Collapse
|
13
|
Maikhuri VK, Prasad AK, Jha A, Srivastava S. Recent advances in the transition metal catalyzed synthesis of quinoxalines: a review. NEW J CHEM 2021. [DOI: 10.1039/d1nj01442k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review summarizes the recent developments in the synthesis of a variety of substituted quinoxalines using transition metal catalysts.
Collapse
Affiliation(s)
- Vipin K. Maikhuri
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi 110007
- India
| | - Ashok K. Prasad
- Bioorganic Laboratory
- Department of Chemistry
- University of Delhi
- Delhi 110007
- India
| | - Amitabh Jha
- Department of Chemistry
- Acadia University
- Wolfville
- Canada
| | | |
Collapse
|
14
|
He M, Chen Y, Luo Y, Li J, Lai R, Yang Z, Wang Y, Wu Y. Transition-metal-free [3+3] annulation reaction of sulfoxonium ylides with cyclopropenones for the synthesis of 2-pyrones. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|