1
|
Jähnigen S, Vuilleumier R, Zehnacker A. The genesis of OH-stretching vibrational circular dichroism in chiral molecular crystals. Chem Sci 2025:d4sc08055f. [PMID: 40321192 PMCID: PMC12044347 DOI: 10.1039/d4sc08055f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/22/2025] [Indexed: 05/08/2025] Open
Abstract
The stretching vibration of hydroxyl groups, ν(OH), appears with a strong absorption in the 3 μm region of the infrared (IR) spectrum. In chiral molecular crystals, also vibrational circular dichroism (VCD) can be observed for this band, which is demonstrated by the example of two chiral alcohols crystallising with space groups P21 and P3121, respectively. Measurements demonstrate that the VCD bands of the ν(OH) mode show an increased fine structure in comparison to the broad infrared absorption bands. In a computational study, the chiroptical signal can entirely be traced back to non-local terms emerging from the supramolecular environment, determined by the hydrogen-bonded network involving the hydroxyl groups. In turn, the VCD of individual molecules in the crystal related to the ν(OH) mode is almost zero. It can thus be concluded that the entire VCD band in the 3 μm region is determined by the chirality of the crystal, but not by that of the molecules. Further analysis reveals that while vibrational coupling mainly arises from the hydrogen-bonded network, the VCD is strongly influenced by the weaker interactions and long-range order. This highlights the significance of the OH stretching mode as a sensitive probe of supramolecular chirality.
Collapse
Affiliation(s)
- Sascha Jähnigen
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin 14195 Berlin Germany +49 30 838 54568
| | - Rodolphe Vuilleumier
- Chimie Physique et Chimie du Vivant, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS 75005 Paris France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay 91405 Orsay France
| |
Collapse
|
2
|
Manna T, Das P, Rabbani A, Beyer F, Merten C, Masood Husain S. Biocatalytic Stereodivergent Synthesis of Substituted Tetrahydro-Benzo-(Oxa, Thia, and Di)-Azepines. Chemistry 2025; 31:e202404537. [PMID: 39925303 DOI: 10.1002/chem.202404537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/04/2025] [Accepted: 02/10/2025] [Indexed: 02/11/2025]
Abstract
Benzo-fused seven-membered N,O-, N,S- and N,N-containing heterocyclic moieties are found in several marketed drugs and biologically active molecules. However, the asymmetric synthesis of such heterocycles is limited to the use of transition metal catalysts or chiral phosphoric acids. In the current work, imine reductases (IREDs) are utilized to develop a general biocatalytic method for the stereodivergent synthesis of 5-substituted tetrahydro-1,4-benzoxazepines, 4-substituted tetrahydro-1,5-benzothiazepines, and 2,2,4-trisubstituted tetrahydro-1,5-benzodiazepines in excellent yields (up to 96 %), enantiomeric excess (up to >99 %) and diastereoselectivity (up to >99 %). In addition, imine reductase assisted reductive amination gave facile access to 2,4-disubstituted tetrahydro-1,5-benzodiazepines starting from 1,3-diketone and 1,2-diamino benzene with excellent stereoselectivity and high yields. The absolute configuration of the newly synthesized N-heterocycles was determined using vibrational circular dichroism (VCD). The presented methodology has further broadened the scope of IREDs towards the preparation of chiral seven-membered N-heterocycles containing another heteroatom.
Collapse
Affiliation(s)
- Tanaya Manna
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, India
| | - Piyal Das
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, India
| | - Aniqah Rabbani
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, India
| | - Frederike Beyer
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Christian Merten
- Department of Chemistry and Biochemistry, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Syed Masood Husain
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences Campus, Raebareli Road, Lucknow, 226014, India
| |
Collapse
|
3
|
Scheucher A, Gross C, Piringer M, Novacek J, Ofial AR, Waser M. Asymmetric isochalcogenourea-catalysed (4 + 2)-cycloadditions of ortho-quinone methides and allenoates. Org Biomol Chem 2025; 23:827-834. [PMID: 39636302 PMCID: PMC11619814 DOI: 10.1039/d4ob01855a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Chiral isochalcogenoureas (i.e. isothioureas and isoselenoureas) catalyse the asymmetric (4 + 2)-cycloaddition of various allenoates with ortho-quinone methides. This approach provides straightforward access to different chromane derivatives with high enantioselectivities, good yields, and control of the configuration of the exocyclic double bond. Furthermore, some of the novel ortho-quinone methides used herein were successfully integrated into the Mayr reactivity scale by determining their electrophilicity parameter.
Collapse
Affiliation(s)
- Anna Scheucher
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria.
| | - Christoph Gross
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Magdalena Piringer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria.
| | - Johanna Novacek
- Institute of Analytical and General Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Armin R Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria.
| |
Collapse
|
4
|
Beyer F, Grassin C, Rowen JF, Sander W, Merten C. Vibrational Circular Dichroism of a Chiral Triplet Nitrene Investigated Under Matrix-Isolation Conditions in Parahydrogen. Chemistry 2024; 30:e202401731. [PMID: 38700114 DOI: 10.1002/chem.202401731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Vibrational circular dichroism (VCD) spectra of chiral high-spin organic radicals are expected to show a strong intensity enhancement and are thought to be difficult to predict using state-of-the-art theoretical methods. Herein we show that the chiral triplet nitrene obtained from photochemical cleavage of N2 from enantiopure 2-azido-9H-fluorenol does not feature extraordinarily strong intensities and that the experimental spectra match nicely with calculated ones. Thereby, this study demonstrates the general feasibility of studies on chiral high-spin organics by matrix-isolation VCD.
Collapse
Affiliation(s)
- Frederike Beyer
- Fakultät für Chemie und Biochemie, Organische Chemie II, Ruhr Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Corentin Grassin
- Fakultät für Chemie und Biochemie, Organische Chemie II, Ruhr Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Julien F Rowen
- Fakultät für Chemie und Biochemie, Organische Chemie II, Ruhr Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Wolfram Sander
- Fakultät für Chemie und Biochemie, Organische Chemie II, Ruhr Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| | - Christian Merten
- Fakultät für Chemie und Biochemie, Organische Chemie II, Ruhr Universität Bochum, Universitätsstraße 150, Bochum, 44801, Germany
| |
Collapse
|
5
|
Fusè M, Mazzeo G, Longhi G, Abbate S, Yang Q, Bloino J. Scaling-up VPT2: A feasible route to include anharmonic correction on large molecules. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 311:123969. [PMID: 38330757 DOI: 10.1016/j.saa.2024.123969] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/10/2024]
Abstract
Vibrational analysis plays a crucial role in the investigation of molecular systems. Though methodologies like second-order vibrational perturbation theory (VPT2) have paved the way to more accurate simulations, the computational cost remains a difficult barrier to overcome when the molecular size increases. Building upon recent advances in the identification of resonances, we propose an approach making anharmonic simulations possible for large-size systems, typically unreachable by standard means. This relies on the fact that, often, only portions of the whole spectra are of actual interest. Therefore, the anharmonic corrections can be included selectively on subsets of normal modes directly related to the regions of interest. Starting from the VPT2 equations, we evaluate rigorously and systematically the impact of the truncated anharmonic treatment onto simulations. The limit and feasibility of the reduced-dimensionality approach are detailed, starting on a smaller model system. The methodology is then challenged on the IR absorption and vibrational circular dichroism spectra of an organometallic complex in three different spectral ranges.
Collapse
Affiliation(s)
- Marco Fusè
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy.
| | - Giuseppe Mazzeo
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giovanna Longhi
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy; Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, VIA Branze 45, 25123, Brescia, Italy
| | - Sergio Abbate
- Dipartimento di Medicina Molecolare e Traslazionale, Università di Brescia, Viale Europa 11, 25123, Brescia, Italy; Istituto Nazionale di Ottica (INO), CNR, Research Unit of Brescia, c/o CSMT, VIA Branze 45, 25123, Brescia, Italy
| | - Qin Yang
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo náměstí 542/2, 160 00, Prague, Czech Republic
| | - Julien Bloino
- Scuola Normale Superiore, Piazza dei Cavalieri, 56125, Pisa, Italy.
| |
Collapse
|
6
|
Blasius J, Drysch K, Pilz FH, Frömbgen T, Kielb P, Kirchner B. Efficient Prediction of Mole Fraction Related Vibrational Frequency Shifts. J Phys Chem Lett 2023; 14:10531-10536. [PMID: 37972218 DOI: 10.1021/acs.jpclett.3c02761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
While so far it has been possible to calculate vibrational spectra of mixtures at a particular composition, we present here a novel cluster approach for a fast and robust calculation of mole fraction dependent infrared and vibrational circular dichroism spectra at the example of acetonitrile/(R)-butan-2-ol mixtures. By assigning weights to a limited number of quantum chemically calculated clusters, vibrational spectra can be obtained at any desired composition by a weighted average of the single cluster spectra. In this way, peak positions carrying information about intermolecular interactions can be predicted. We show that mole fraction dependent peak shifts can be accurately modeled and, that experimentally recorded infrared spectra can be reproduced with high accuracy over the entire mixing range. Because only a very limited number of clusters is required, the presented approach is a valuable and computationally efficient tool to access mole fraction dependent spectra of mixtures on a routine basis.
Collapse
Affiliation(s)
- Jan Blasius
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115 Bonn, Germany
| | - Katrin Drysch
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115 Bonn, Germany
| | - Frank Hendrik Pilz
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, D-53115 Bonn, Germany
| | - Tom Frömbgen
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115 Bonn, Germany
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D-45470 Mülheim an der Ruhr, Germany
| | - Patrycja Kielb
- Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Wegelerstraße 12, D-53115 Bonn, Germany
- Transdisciplinary Research Area "Building Blocks of Matter and Fundamental Interactions" (TRA Matter), University of Bonn, D-53115 Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry, Clausius Institute of Physical and Theoretical Chemistry, University of Bonn, Beringstraße 4-6, D-53115 Bonn, Germany
| |
Collapse
|
7
|
Grassin C, Pollok CH, Kreienborg NM, Merten C. Matrix effects in MI-VCD spectra of two chiral oxiranes and their potential microscopic origin. Phys Chem Chem Phys 2023; 25:31995-32001. [PMID: 37975701 DOI: 10.1039/d3cp05023h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Combining vibrational circular dichroism (VCD) spectroscopy with the matrix isolation (MI) technique opens up interesting possibilities to study chiral molecules. MI involves the isolation of guest species in inert solid matrices at cryogenic temperatures. Hence, MI-VCD measures are solid-state VCD measurements, and as such, can suffer from mostly birefringance-related artefacts in the same way as common solid-state VCD measurements. In this contribution, we demonstrate that the sample preparation condition have tremendous impact on the quality and reliability of the recorded MI-VCD spectra. While MI-IR spectra are basically blind to these artefacts, the variation of deposition temperatures and host flow rates seem to control whether high quality MI-VCD spectra are obtained or if depolarization effects lead to completely obscured spectra. For two selected examples, styrene oxide (SO) and 1-phenyl propylene oxide (PPO), we discuss how the various experimental conditions may lead to the aforementioned effects and give a microscopic description of their origin.
Collapse
Affiliation(s)
- Corentin Grassin
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Corina H Pollok
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Nora M Kreienborg
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany.
| | - Christian Merten
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany.
| |
Collapse
|
8
|
Müller C, Scholten K, Engelage E, Merten C. Synthesis and VCD Spectroscopic Characterization of a Series of Azacryptands from a Chiral Valine-Based Derivative of Tris(2-aminoethyl)amine (TREN). Chemistry 2023; 29:e202302126. [PMID: 37556200 DOI: 10.1002/chem.202302126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/09/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Utilizing experimental and computational vibrational circular dichroism (VCD) spectroscopy, we explored the conformational preferences of a series of chiral C3 -symmetric octaazacryptands with tris(2-aminoethyl)-amine head groups derived from valine. While the spectra of the smallest azacryptand with p-phenyl linkers and its elongated derivative with p-biphenyls linker were found to match well with the computed spectra, the computed conformational preferences of the m-biphenyl-based azacryptand did not seem to reflect the conformations dominating in chloroform solution. A detailed analysis revealed that structural changes resulting in a collapsed cage structure gave a notably better match with the experiment. It could subsequently be concluded from the VCD analysis, that the octaazacryptands prefer a collapsed structure, which is not predicted by density functional theory (DFT) calculations as the global minimum structures. These findings are expected to have consequences also for future studies on inclusion complexes of such azacryptands.
Collapse
Affiliation(s)
- Clemens Müller
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Kevin Scholten
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Elric Engelage
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Christian Merten
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
9
|
Merten C. Modelling solute-solvent interactions in VCD spectra analysis with the micro-solvation approach. Phys Chem Chem Phys 2023; 25:29404-29414. [PMID: 37881890 DOI: 10.1039/d3cp03408a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Vibrational circular dichroism (VCD) spectroscopy has become an important part of the (stereo-)chemists' toolbox as a reliable method for the determination of absolute configurations. Being the chiroptical version of infrared spectroscopy, it has also been recognized as being very sensitive to conformational changes and intermolecular interactions. This sensitivity originates from the fact that the VCD spectra of individual conformers are often more different than their IR spectra, so that changes in conformational distributions or band positions and intensities become more pronounced. What is an advantage for studies focussing on intermolecular interactions can, however, quickly turn into a major obstacle during AC determinations: solute-solvent interactions can have a strong influence on spectral signatures and they must be accurately treated when simulating VCD and IR spectra. In this perspective, we showcase selected examples which exhibit particularly pronounced solvent effects. It is demonstrated that it is typically sufficient to model solute-solvent interactions by placing single solvent molecules near hydrogen bonding sites of the solute and subsequently use the optimized structures for spectra simulations. This micro-solvation approach works reasonably well for medium-sized, not too conformationally flexible molecules. We thus also discuss its limitations and outline the next steps that method development needs to take in order to further improve the workflows for VCD spectra predictions.
Collapse
Affiliation(s)
- Christian Merten
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
10
|
Pál D, Besnard C, de Aguirre A, Poblador-Bahamonde AI, Pescitelli G, Lacour J. 2,4,5,7-Tetranitrofluorenone Oximate for the Naked-Eye Detection of H-Bond Donors and the Chiroptical Sensing of Enantiopure Reagents. Chemistry 2023; 29:e202302169. [PMID: 37529861 DOI: 10.1002/chem.202302169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/03/2023]
Abstract
Hydrogen bonding greatly influences rates and equilibrium positions of chemical reactions, conformations, and sometimes even stereochemistry. This study reports on tetranitrofluorenone oximate, a novel dye capable of naked-eye detection of hydrogen-bond donating species (HBDs) and of rapid determination of H-bond donation strength by hypsochromic shift monitoring. In addition, the molecule possesses atropisomeric conformations, of M and P configuration, as evidenced in solid and solution state studies by X-ray diffraction and electronic circular dichroism (ECD), respectively. In the latter case, enantiopure bis-thioureas were the most effective HBDs to promote a chiral induction (diastereoselective recognition, Pfeiffer effect); the ECD results being rationalized by time-dependent density functional theory (TDDFT) calculations. Based on these experiments, bis-thioureas were used as chiral reagents in asymmetric 1,3-dipolar cycloadditions of structurally-related nitrones; the ECD sensing of the stereoinduction between bis-thioureas and the oximate serving as an indirect method of selection of the most effective HBD for asymmetric synthesis.
Collapse
Affiliation(s)
- Dávid Pál
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland
| | - Céline Besnard
- Laboratory of Crystallography, University of Geneva, Quai Ernest Ansermet Genève, 24, 1211, Geneva 4, Switzerland
| | - Adiran de Aguirre
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland
| | | | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, 56124, Pisa, Italy
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, 1211, Geneva 4, Switzerland
| |
Collapse
|
11
|
Groß J, Kühlborn J, Pusch S, Weber C, Andernach L, Renzer G, Eckhardt P, Brauer J, Opatz T. Comparison of different density functional theory methods for the calculation of vibrational circular dichroism spectra. Chirality 2023; 35:753-765. [PMID: 37227055 DOI: 10.1002/chir.23580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/26/2023]
Abstract
The determination of the absolute configuration (AC) of an organic molecule is still a challenging task for which the combination of spectroscopic with quantum-mechanical methods has become a promising approach. In this study, we investigated the accuracy of DFT methods (480 overall combinations of 15 functionals, 16 basis sets, and 2 solvation models) to calculate the VCD spectra of six chiral organic molecules in order to benchmark their capability to facilitate the determination of the AC.
Collapse
Affiliation(s)
- Jonathan Groß
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Jonas Kühlborn
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Stefan Pusch
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Carina Weber
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Lars Andernach
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Galit Renzer
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Paul Eckhardt
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Jan Brauer
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
12
|
Perez Mellor AF, Brazard J, Kozub S, Bürgi T, Szweda R, Adachi TBM. Unveiling the Configurational Landscape of Carbamate: Paving the Way for Designing Functional Sequence-Defined Polymers. J Phys Chem A 2023; 127:7309-7322. [PMID: 37624607 PMCID: PMC10493977 DOI: 10.1021/acs.jpca.3c02442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Carbamate is an emerging class of a polymer backbone for constructing sequence-defined, abiotic polymers. It is expected that new functional materials can be de novo designed by controlling the primary polycarbamate sequence. While amino acids have been actively studied as building blocks for protein folding and peptide self-assembly, carbamates have not been widely investigated from this perspective. Here, we combined infrared (IR), vibrational circular dichroism (VCD), and nuclear magnetic resonance (NMR) spectroscopy with density functional theory (DFT) calculations to understand the conformation of carbamate monomer units in a nonpolar, aprotic environment (chloroform). Compared with amino acid building blocks, carbamates are more rigid, presumably due to the extended delocalization of π-electrons on the backbones. Cis configurations of the amide bond can be energetically stable in carbamates, whereas peptides often assume trans configurations at low energies. This study lays an essential foundation for future developments of carbamate-based sequence-defined polymer material design.
Collapse
Affiliation(s)
- Ariel F. Perez Mellor
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Johanna Brazard
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Sara Kozub
- Łukasiewicz
Research Network − PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Thomas Bürgi
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Roza Szweda
- Łukasiewicz
Research Network − PORT Polish Center for Technology Development, Stabłowicka 147, Wrocław 54-066, Poland
| | - Takuji B. M. Adachi
- Department
of Physical Chemistry, Sciences II, University
of Geneva, 30, Quai Ernest Ansermet, Geneva 1211, Switzerland
| |
Collapse
|
13
|
Jähnigen S, Le Barbu-Debus K, Guillot R, Vuilleumier R, Zehnacker A. How Crystal Symmetry Dictates Non-Local Vibrational Circular Dichroism in the Solid State. Angew Chem Int Ed Engl 2023; 62:e202215599. [PMID: 36441537 PMCID: PMC10107176 DOI: 10.1002/anie.202215599] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 11/29/2022]
Abstract
Solid-State Vibrational Circular Dichroism (VCD) can be used to determine the absolute structure of chiral crystals, but its interpretation remains a challenge in modern spectroscopy. In this work, we investigate the effect of a twofold screw axis on the solid-state VCD spectrum in a combined experimental and theoretical analysis of P21 crystals of (S)-(+)-1-indanol. Even though the space group is achiral, a single proper symmetry operation has an important impact on the VCD spectrum, which reflects the supramolecular chirality of the crystal. Distinguishing between contributions originating from molecular chirality and from chiral crystal packing, we find that while IR absorption hardly depends on the symmetry of the space group, the situation is different for VCD, where completely new non-local patterns emerge. Understanding the two underlying mechanisms, namely gauge transport and direct coupling, will help to use VCD to distinguish polymorphic forms.
Collapse
Affiliation(s)
- Sascha Jähnigen
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, CNRS, PSL University, Sorbonne Université, 75005, Paris, France
| | - Katia Le Barbu-Debus
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS, Université Paris-Saclay, 91405, Orsay, France
| | - Rodolphe Vuilleumier
- PASTEUR, Département de Chimie, Ecole Normale Supérieure, CNRS, PSL University, Sorbonne Université, 75005, Paris, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405, Orsay, France
| |
Collapse
|
14
|
Kemper M, Drost DA, Engelage E, Merten C. Stereochemistry Controls Dihydrogen Bonding Strengths in Chiral Amine Boranes Adducts. Angew Chem Int Ed Engl 2022; 61:e202213859. [PMID: 36245340 PMCID: PMC10099978 DOI: 10.1002/anie.202213859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Indexed: 11/07/2022]
Abstract
The growing interest in exploiting novel concepts of non-covalent interactions in catalysts and supramolecular chemistry made us revisit a special kind of hydrogen bonding: the dihydrogen bond (DHB), formed between a classical hydrogen bond donor and a hydridic hydrogen as acceptor. Herein, we investigate how the strength of the N-Hδ+ ⋅⋅⋅δ- H-B interaction and hence the DHB-driven self-aggregation of amine-borane adducts is governed by steric effects by comparing the structures and binding enthalpies of various chiral derivatives. For a diastereomeric pair of amine-boranes prepared from a chiral secondary amine, we show that the stereochemistry at the nitrogen has significant influence on the interaction enthalpy. Based on this finding, N-chiral amine boranes can be envisioned to become interesting building blocks in supramolecular chemistry to fine-tune the formation dynamics of assemblies.
Collapse
Affiliation(s)
- Michael Kemper
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Deborah A Drost
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Elric Engelage
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| | - Christian Merten
- Ruhr Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801, Bochum, Germany
| |
Collapse
|
15
|
Ehrhard A, Gunkel L, Jäger S, Sell AC, Nagata Y, Hunger J. Elucidating Conformation and Hydrogen-Bonding Motifs of Reactive Thiourea Intermediates. ACS Catal 2022; 12:12689-12700. [PMID: 36313523 PMCID: PMC9594049 DOI: 10.1021/acscatal.2c03382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/19/2022] [Indexed: 11/29/2022]
Abstract
Substituted diphenylthioureas (DPTUs) are efficient hydrogen-bonding organo-catalysts, and substitution of DPTUs has been shown to greatly affect catalytic activity. Yet, both the conformation of DPTUs in solution and the conformation and hydrogen-bonded motifs within catalytically active intermediates, pertinent to their mode of activation, have remained elusive. By combining linear and ultrafast vibrational spectroscopy with spectroscopic simulations and calculations, we show that different conformational states of thioureas give rise to distinctively different N-H stretching bands in the infrared spectra. In the absence of hydrogen-bond-accepting substrates, we show that vibrational structure and dynamics are highly sensitive to the substitution of DPTUs with CF3 groups and to the interaction with the solvent environment, allowing for disentangling the different conformational states. In contrast to bare diphenylthiourea (0CF-DPTU), we find the catalytically superior CF3-substituted DPTU (4CF-DPTU) to favor the trans-trans conformation in solution, allowing for donating two hydrogen bonds to the reactive substrate. In the presence of a prototypical substrate, DPTUs in trans-trans conformation hydrogen bond to the substrate's C=O group, as evidenced by a red-shift of the N-H vibration. Yet, our time-resolved infrared experiments indicate that only one N-H group forms a strong hydrogen bond to the carbonyl moiety, while thiourea's second N-H group only weakly interacts with the substrate. Our data indicate that hydrogen-bond exchange between these N-H groups occurs on the timescale of a few picoseconds for 0CF-DPTU and is significantly accelerated upon CF3 substitution. Our results highlight the subtle interplay between conformational equilibria, bonding states, and bonding lifetimes in reactive intermediates in thiourea catalysis, which help rationalize their catalytic activity.
Collapse
Affiliation(s)
- Amelie
A. Ehrhard
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Lucas Gunkel
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Sebastian Jäger
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Arne C. Sell
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yuki Nagata
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Johannes Hunger
- Max-Planck Institute for
Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
16
|
Galimberti DR. Vibrational Circular Dichroism from DFT Molecular Dynamics: The AWV Method. J Chem Theory Comput 2022; 18:6217-6230. [PMID: 36112978 PMCID: PMC9558311 DOI: 10.1021/acs.jctc.2c00736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Indexed: 11/29/2022]
Abstract
The paper illustrates the Activity Weighted Velocities (AWV) methodology to compute Vibrational Circular Dichroism (VCD) anharmonic spectra from Density Functional Theory (DFT) molecular dynamics. AWV calculates the spectra by the Fourier Transform of the time correlation functions of velocities, weighted by specific observables: the Atomic Polar Tensors (APTs) and the Atomic Axial Tensors (AATs). Indeed, AWV shows to correctly reproduce the experimental spectra for systems in the gas and liquid phases, both in the case of weakly and strongly interacting systems. The comparison with the experimental spectra is striking especially in the fingerprint region, as demonstrated by the three benchmark systems discussed: (1S)-Fenchone in the gas phase, (S)-(-)-Propylene oxide in the liquid phase, and (R)-(-)-2-butanol in the liquid phase. The time evolution of APTs and AATs can be adequately described by a linear combination of the tensors of a small set of appropriate reference structures, strongly reducing the computational cost without compromising accuracy. Additionally, AWV allows the partition of the spectral signal in its molecular components without any expensive postprocessing and any localization of the charge density or the wave function.
Collapse
Affiliation(s)
- Daria Ruth Galimberti
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
17
|
Golub TP, Feßner M, Engelage E, Merten C. Dynamic Stereochemistry of a Biphenyl-Bisprolineamide Model Catalyst and its Imidazolidinone Intermediates. Chemistry 2022; 28:e202201317. [PMID: 35611719 PMCID: PMC9545261 DOI: 10.1002/chem.202201317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 12/15/2022]
Abstract
In this study, we characterize the dynamic stereochemistry of a biphenyl-2,2'-bis(proline amide) catalyst in chloroform and DMSO as representative weakly and strongly hydrogen bonding solvents. Using vibrational circular dichroism (VCD) spectroscopy and density functional theory (DFT) based spectra calculations, we show that the preferred axial stereochemistry of the catalyst is determined by solute-solvent interactions. Explicitly considering solvation with DMSO molecules is found to be essential to correctly predict the conformational preferences of the catalyst. Furthermore, we investigate the stereochemistry of the corresponding enamines and imidazolidinones that are formed upon reaction with isovaleraldehyde. The enamines are found to rapidly convert to endo-imidazolidinones and the thermodynamically favored exo-imidazolidinones are formed only slowly. The present study demonstrates that the stereochemistry of these imidazolidinones can be deduced directly from the VCD spectra analysis without any further detailed analysis of NMR spectra. Hence, we herein exemplify the use of VCD spectroscopy for an in situ characterization of intermediates relevant in asymmetric catalysts.
Collapse
Affiliation(s)
- Tino P. Golub
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| | - Malte Feßner
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| | - Elric Engelage
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| | - Christian Merten
- Ruhr Universität BochumFakultät für Chemie und BiochemieOrganische Chemie IIUniversitätsstraße 15044801BochumGermany
| |
Collapse
|
18
|
Golub TP, Abazid AH, Nachtsheim BJ, Merten C. Structure Elucidation of
In Situ
Generated Chiral Hypervalent Iodine Complexes via Vibrational Circular Dichroism (VCD). Angew Chem Int Ed Engl 2022; 61:e202204624. [PMID: 35570718 PMCID: PMC10084129 DOI: 10.1002/anie.202204624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 12/23/2022]
Abstract
The structure of in situ generated chiral aryl-λ3 -iodanes obtained under oxidative reaction conditions was not yet observable with experimental techniques and their proposed structures are purely based on DFT calculations. Herein, we establish vibrational circular dichroism (VCD) spectroscopy as an experimental technique to verify DFT-calculated chiral iodane structures. Based on a chiral triazole-substituted iodoarene catalyst, we were able to elucidate a yet undescribed cationic chiral iodane as the most populated intermediate under oxidative conditions with a significant intramolecular N-I-interaction and no significant interactions with tosylate or m-chlorobenzoic acid as potential anionic ligands. Instead, aggregation of these substrates was found, which resulted in the formation of a non-coordinating anionic hydrogen bonded complex. The importance of VCD as a crucial experimental observable is further highlighted by the fact that our initial structural proposal, that was purely based on DFT calculations, could be falsified.
Collapse
Affiliation(s)
- Tino P. Golub
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Germany
| | - Ayham H. Abazid
- Universität Bremen Fachbereich 2—Biologie und Chemie, Institut für Organische und Analytische Chemie Germany
| | - Boris J. Nachtsheim
- Universität Bremen Fachbereich 2—Biologie und Chemie, Institut für Organische und Analytische Chemie Germany
| | - Christian Merten
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Germany
| |
Collapse
|
19
|
Golub TP, Abazid AH, Nachtsheim BJ, Merten C. Strukturaufklärung eines chiralen
in situ
erzeugten hypervalentem Iod‐Komplex mittels VCD‐Spektroskopie. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tino P. Golub
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Deutschland
| | - Ayham H. Abazid
- Universität Bremen Fachbereich 2 – Biologie und Chemie, Institut für Organische und Analytische Chemie (Deutschland)
| | - Boris J. Nachtsheim
- Universität Bremen Fachbereich 2 – Biologie und Chemie, Institut für Organische und Analytische Chemie (Deutschland)
| | - Christian Merten
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
20
|
Weirich L, Tusha G, Engelage E, Schäfer LV, Merten C. VCD spectroscopy reveals conformational changes of chiral crown ethers upon complexation of potassium and ammonium cations. Phys Chem Chem Phys 2022; 24:11721-11728. [PMID: 35506489 DOI: 10.1039/d2cp01309f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two chiral derivatives of 18-crown-6, namely the host molecules 2,3-diphenyl- and 2-phenyl-18c6, serve as model systems to investigate whether VCD spectroscopy can be used to monitor conformational changes occurring upon complexation of guests. Host-guest complexes of both crown ethers were prepared by addition of KNO3. The more bulky 2,3-diphenyl-18c6 is found to undergo major conformational changes upon encapsulation of K+, which are revealed as characteristic changes of the VCD spectral signatures. In contrast, while 2-phenyl-18c6 also incorporates K+ into the macrocycle, strong conformational changes are not occurring and thus spectral changes are negligible. With an octyl ammonium cation as guest molecule, 2,3-diphenyl-18c6 shows the same conformational and spectral changes that were observed for K+-complexes. In addition, the asymmetric NH3-deformation modes are found to gain VCD intensity through an induced VCD process. An analysis of the vibrational spectra enables a differentiation of VCD active and inactive guest modes: There appears to be a correlation between the symmetry of the vibrational mode and the induced VCD intensity. While this finding makes the host-guest complexes interesting systems for future theoretical studies on the origin of induced VCD signatures, the observations described in this study demonstrate that VCD spectroscopy is indeed a suitable technique for the characterization of supramolecular host-guest complexes.
Collapse
Affiliation(s)
- Luisa Weirich
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Gers Tusha
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Theoretische Chemie, Universitätsstraße 150, 44801 Bochum, Germany
| | - Elric Engelage
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Lars V Schäfer
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Theoretische Chemie, Universitätsstraße 150, 44801 Bochum, Germany
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
21
|
Dupont J, Lepère V, Zehnacker A, Hartweg S, Garcia GA, Nahon L. Photoelectron Circular Dichroism as a Signature of Subtle Conformational Changes: The Case of Ring Inversion in 1-Indanol. J Phys Chem Lett 2022; 13:2313-2320. [PMID: 35245057 DOI: 10.1021/acs.jpclett.2c00074] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chirality plays a fundamental role in the molecular recognition processes. Molecular flexibility is also crucial in molecular recognition, allowing the interacting molecules to adjust their structures and hence optimize the interaction. Methods probing simultaneously chirality and molecular conformation are therefore crucially needed. Taking advantage of a possible control in the gas phase of the conformational distribution between the equatorial and axial conformers resulting from a ring inversion in jet-cooled 1-indanol, we demonstrate here the sensitivity of valence-shell photoelectron circular dichroism (PECD) to both chirality and subtle conformational changes, in a case where the photoelectron spectra of the two conformers are identical. For the highest occupied orbital, we observe a dramatic inversion of the PECD-induced photoelectron asymmetries, while the photoionization cross-section and usual anisotropy (β) parameter are completely insensitive to conformational isomerism. Such a sensitivity is a major asset for the ongoing developments of PECD-based techniques as a sensitive chiral (bio)chemical analytical tool in the gas phase.
Collapse
Affiliation(s)
- Jennifer Dupont
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Valéria Lepère
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, F-91405 Orsay, France
| | - Sebastian Hartweg
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France
| | - Gustavo A Garcia
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France
| | - Laurent Nahon
- Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France
| |
Collapse
|
22
|
Yuan YC, Mellah M, Schulz E, David ORP. Making Chiral Salen Complexes Work with Organocatalysts. Chem Rev 2022; 122:8841-8883. [PMID: 35266711 DOI: 10.1021/acs.chemrev.1c00912] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Bisimine derivatives of salicylaldehyde with chiral diamines (salens) are privileged ligands in asymmetric organometallic catalysis, which can be used in cooperation with organocatalysts as additives. The latter can be a modifier of the metal reactivity by liganding or a true co-catalyst working in tandem or in a dual system. All scenarios encountered in the literature are reviewed and classified according to the organocatalyst. In each case, mechanistic and physical-organic chemistry considerations are discussed to better understand the gears of these complex catalytic settings.
Collapse
Affiliation(s)
- Yu-Chao Yuan
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France.,Institut Lavoisier de Versailles, 45 avenue des Etats-Unis, 78035 Versailles, France
| | - Mohamed Mellah
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| | - Emmanuelle Schulz
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire et des Matériaux d'Orsay, 91405 Orsay, France
| | - Olivier R P David
- Institut Lavoisier de Versailles, 45 avenue des Etats-Unis, 78035 Versailles, France
| |
Collapse
|
23
|
Scholten K, Merten C. Solvation of the Boc-Val-Phe- nPr peptide characterized by VCD spectroscopy and DFT calculations. Phys Chem Chem Phys 2022; 24:3611-3617. [PMID: 35103263 DOI: 10.1039/d1cp05457k] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The conformational preferences of peptides are strongly determined by hydrogen bonding interactions. Intermolecular solute-solvent interactions compete with intramolecular interactions, which typically stabilize the secondary structure of the peptide. The analysis of vibrational circular dichroism (VCD) spectra can give insights into solvation-induced changes in the conformational distribution of small peptides. Here we describe the VCD spectroscopic characterization of the model peptide Boc-Val-Phe-nPr in chloroform as representative for a weakly interacting solvent and dimethyl sulfoxide (DMSO-d6) as a strongly hydrogen bonding solvent. We show that the conformational preferences of the peptide in chloroform are well-described by the computationally predicted distribution of the isolated molecule assuming only implicit solvation effects through a continuum solvation model. In order to simulate the spectra recorded in DMSO-d6, solvation was accounted for explicitly by computed microsolvated structures containing one to three solvent molecules. A good match of the computed spectra with the experimental data is obtained by this method. Comparing the conformational distributions in deuterated chloroform-d1 and DMSO-d6, structures with intramolecular hydrogen bonds such as the (δ,δ)-conformer family contribute to the conformational distribution only when there is no strong interaction with the solvent. This is in contrast to the results for the related Boc-Pro-Phe-nPr studied before, for which the intramolecular interaction was found to persist in DMSO-d6. Furthermore, we discuss the influence of hydrogen bonding to different numbers of solvent molecules on the spectral signatures and show that the structure of the peptide in DMSO-d6 is best described as a mixture of twofold-solvated (δ,β)- and threefold-solvated (β,β)-conformers.
Collapse
Affiliation(s)
- Kevin Scholten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
24
|
Scholten K, Merten C. Anion-binding of a chiral tris(2-aminoethyl)amine-based tripodal thiourea: A spectroscopic and computational study. Phys Chem Chem Phys 2022; 24:4042-4050. [DOI: 10.1039/d1cp05688c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Thioureas are well-known structural motifs in supramolecular anion recognition. Their conformational preferences are typically characterized by detailed NMR spectroscopy and crystallography, which are often complemented with computational results from geometry...
Collapse
|
25
|
Golub T, Kano T, Maruoka K, Merten C. VCD spectroscopy distinguishes the enamine and iminium ion of a 1,1’-binaphthyl azepine. Chem Commun (Camb) 2022; 58:8412-8415. [DOI: 10.1039/d2cc02863h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a VCD spectroscopic characterization of a chiral 1,1’-binaphthyl azepine catalyst and show that the VCD spectra of an in-situ generated enamine and an ex-situ prepared iminium ion are...
Collapse
|
26
|
Golub TP, Merten C. Vibrational CD study on the solution phase structures of the MacMillan catalyst and its corresponding iminium ion. Phys Chem Chem Phys 2021; 23:25162-25169. [PMID: 34730148 DOI: 10.1039/d1cp04497d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
We demonstrate that VCD spectroscopy can reveal insights into the conformational preferences of the iminium ion obtained from MacMillan's imidazolidinone catalyst. For both the isolated and in situ generated iminium ion, the comparison of experimental and computed VCD spectra directly confirms that conformer 2b ("Houk-conformer") is the dominant structure in solution. This conclusion is reached without any in-depth interpretation of the spectroscopic data, just by visual comparison of the spectral signatures. For the parent catalyst 1 and its salts 1·HCl and 1·HClO4, we report a comprehensive analysis of the conformational preferences in two solvents. VCD spectroscopy is subsequently shown to be able to reveal small conformational changes induced by solute-solvent and solute-anion interactions.
Collapse
Affiliation(s)
- Tino P Golub
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Christian Merten
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Organische Chemie II, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
27
|
Kaminský J, Horáčková F, Biačková N, Hubáčková T, Socha O, Kubelka J. Double Hydrogen Bonding Dimerization Propensity of Aqueous Hydroxy Acids Investigated Using Vibrational Optical Activity. J Phys Chem B 2021; 125:11350-11363. [PMID: 34612644 DOI: 10.1021/acs.jpcb.1c05480] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lactic and malic acids are key substances in a number of biochemical processes in living cells and are also utilized in industry. Vibrational spectroscopy represents an efficient and sensitive way to study their structure and interactions. Since water is the natural environment, proper understanding of their molecular dynamics in aqueous solutions is of critical importance. To this end, we employed Raman spectroscopy and Raman optical activity (ROA) to study the conformation of l-lactic and l-malic acids in water (while varying pH, temperature, and concentration), with special emphasis on their double hydrogen bonding dimerization propensity. Raman and ROA experimental data were supported by extensive theoretical calculations of the vibrational properties and by additional experiments (IR absorption, vibrational circular dichroism, and NMR). Conformational behavior of the acids in water was described by molecular dynamics simulations. Reliability of the results was verified by calculating the vibrational properties of populated conformers and by comparing thus obtained spectral features with the experimental data. Calculations estimated the incidence of H-bonded dimers in water to be low in lactic acid and comparable to monomers in malic acid. The "hybrid" approach presented here reveals limitations of relying on the experimental spectra alone to study dimer formation.
Collapse
Affiliation(s)
- Jakub Kaminský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Františka Horáčková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Nina Biačková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Tereza Hubáčková
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Ondřej Socha
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Jan Kubelka
- University of Wyoming, 651 N. 19th Street, Laramie, Wyoming 82072, United States
| |
Collapse
|
28
|
Affiliation(s)
- Arthur H. G. David
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
| | - J. Fraser Stoddart
- Department of Chemistry Northwestern University Evanston Illinois 60208 United States
- School of Chemistry University of New South Wales Sydney NSW 2052 Australia
- Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310021 China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 China
| |
Collapse
|
29
|
Jähnigen S, Zehnacker A, Vuilleumier R. Computation of Solid-State Vibrational Circular Dichroism in the Periodic Gauge. J Phys Chem Lett 2021; 12:7213-7220. [PMID: 34310135 DOI: 10.1021/acs.jpclett.1c01682] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We introduce a new theoretical formalism to compute solid-state vibrational circular dichroism (VCD) spectra from molecular dynamics simulations. Having solved the origin-dependence problem of the periodic magnetic gauge, we present IR and VCD spectra of (1S,2S)-trans-1,2-cyclohexanediol obtained from first-principles molecular dynamics calculations and nuclear velocity perturbation theory, along with the experimental results. Because the structure model imposes periodic boundary conditions, the common origin of the rotational strength has hitherto been ill-defined and was approximated by means of averaging multiple origins. The new formalism reconnects the periodic model with the finite physical system and restores gauge freedom. It nevertheless fully accounts for nonlocal spatial couplings from the gauge transport term. We show that even for small simulation cells the rich nature of solid-state VCD spectra found in experiments can be reproduced to a very satisfactory level.
Collapse
Affiliation(s)
- Sascha Jähnigen
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405 Orsay, France
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS,, 75005 Paris, France
| | - Anne Zehnacker
- Institut des Sciences Moléculaires d'Orsay (ISMO), CNRS, Université Paris-Saclay, 91405 Orsay, France
| | - Rodolphe Vuilleumier
- PASTEUR Laboratory, Département de Chimie, Ecole Normale Supérieure, PSL University, Sorbonne Université, CNRS,, 75005 Paris, France
| |
Collapse
|
30
|
Sato H, Takimoto K, Yoshida J, Watanabe Y, Yamagishi A. Solid-state Vibrational Circular Dichroism as Applied for Heterogenous Asymmetric Catalysis: Copper(II) Complexes Immobilized in Montmorillonite. CHEM LETT 2021. [DOI: 10.1246/cl.200937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hisako Sato
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Kazuyoshi Takimoto
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Jun Yoshida
- Department of Chemistry, School of Science, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa 252-0373, Japan
| | - Yutaka Watanabe
- Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Akihiko Yamagishi
- Faculty of Medicine, Toho University, 5-21-16 Omori-Nishi, Ota-ku, Tokyo 143-8540, Japan
| |
Collapse
|
31
|
Demarque DP, Kemper M, Merten C. VCD spectroscopy reveals that a water molecule determines the conformation of azithromycin in solution. Chem Commun (Camb) 2021; 57:4031-4034. [PMID: 33885696 DOI: 10.1039/d1cc00932j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the IR and VCD spectra of azithromycin, a macrolide antibiotic with a total of 18 stereogenic centers. The computational analysis of the spectra reveals that a single water molecule has to be considered in the conformational search. Its key role is the stabilization of an extended hydrogen bonding network and an otherwise unstable conformation that determines the VCD spectral signatures.
Collapse
Affiliation(s)
- Daniel P Demarque
- Ruhr-Universität Bochum, Organische Chemie 2, Stereochemistry and Chiroptical Spectroscopy, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Michael Kemper
- Ruhr-Universität Bochum, Organische Chemie 2, Stereochemistry and Chiroptical Spectroscopy, Universitätsstraße 150, 44801 Bochum, Germany.
| | - Christian Merten
- Ruhr-Universität Bochum, Organische Chemie 2, Stereochemistry and Chiroptical Spectroscopy, Universitätsstraße 150, 44801 Bochum, Germany.
| |
Collapse
|
32
|
Kemper M, Engelage E, Merten C. Chirale molekulare Propeller basierend auf Triarylboran‐Ammoniak‐Addukten. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Michael Kemper
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Deutschland
| | - Elric Engelage
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Deutschland
| | - Christian Merten
- Ruhr Universität Bochum Fakultät für Chemie und Biochemie, Organische Chemie II Universitätsstraße 150 44801 Bochum Deutschland
| |
Collapse
|
33
|
Kemper M, Engelage E, Merten C. Chiral Molecular Propellers of Triarylborane Ammonia Adducts. Angew Chem Int Ed Engl 2021; 60:2958-2962. [PMID: 33197119 PMCID: PMC7898383 DOI: 10.1002/anie.202014130] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Indexed: 11/19/2022]
Abstract
Chiral molecular propeller conformations have been induced to various triaryl structures including trityl derivatives and triaryl boranes. For borane-amine adducts, such induced propeller chirality has not been reported yet due to the low energy barrier for racemization in common triarylboranes such as B(C6 H5 )3 or B(C6 F5 )3 . Herein, we demonstrate that point chirality in side chains of chiral triarylborane-ammonia adducts, which feature intramolecular hydrogen bonds in addition to the dative N→B bond, can efficiently be transferred to triarylborane propeller chirality. Employing X-ray crystallography and ECD/VCD spectroscopy for structural characterizations, we investigate three examples with different steric demands of the incorporated chiral alkoxy side groups. We elucidate the conformational preferences of the molecular propellers. Furthermore, we show that computationally predicted conformational preferences obtained for the isolated, only implicitly solvated molecules are actually opposite to the experimentally observed ones.
Collapse
Affiliation(s)
- Michael Kemper
- Ruhr Universität BochumFakultät für Chemie und Biochemie, Organische Chemie IIUniversitätsstrasse 15044801BochumGermany
| | - Elric Engelage
- Ruhr Universität BochumFakultät für Chemie und Biochemie, Organische Chemie IIUniversitätsstrasse 15044801BochumGermany
| | - Christian Merten
- Ruhr Universität BochumFakultät für Chemie und Biochemie, Organische Chemie IIUniversitätsstrasse 15044801BochumGermany
| |
Collapse
|
34
|
Sato H, Takimoto K, Yoshida J, Yamagishi A. Vibrational circular dichroism towards asymmetric catalysis: chiral induction in substrates coordinated with copper( ii) ions. Phys Chem Chem Phys 2020; 22:24393-24398. [DOI: 10.1039/d0cp04827e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The VCD method was applied for searching the origin of chirality selection in the asymmetric catalysis by Cu(ii) complexes. When 1-phenyl-1,3-butanedionato was coordinated, it was transformed to a twisted chiral form under the steric control.
Collapse
Affiliation(s)
- Hisako Sato
- Graduate School of Science and Engineering
- Ehime University
- Matsuyama 790-8577
- Japan
| | - Kazuyoshi Takimoto
- Graduate School of Science and Engineering
- Ehime University
- Matsuyama 790-8577
- Japan
| | - Jun Yoshida
- Department of Chemistry
- Kitasato University
- Sagamihara 252-0329
- Japan
| | | |
Collapse
|