1
|
Freynhagen R, Baron R, Huygen F, Perrot S. Narrative review of the efficacy and safety of the high-concentration (179mg) capsaicin patch in peripheral neuropathic pain with recommendations for clinical practice and future research. Pain Rep 2025; 10:e1235. [PMID: 39898296 PMCID: PMC11781771 DOI: 10.1097/pr9.0000000000001235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/06/2024] [Accepted: 11/10/2024] [Indexed: 02/04/2025] Open
Abstract
High-concentration capsaicin patch (HC capsaicin patch) is a locally acting treatment option for adults with peripheral neuropathic pain (pNeP) of various etiologies. Numerous clinical trials, post hoc analyses, and meta-analyses have investigated the efficacy and tolerability of the HC capsaicin patch. Despite this extensive body of research, a comprehensive narrative review covering publications on different pNeP conditions is lacking. This narrative review aims to fill the gap by analyzing 52 studies, including randomized controlled trials and real-world evidence. The results show that the HC capsaicin patch consistently provides pain relief and improves quality of life for several pNeP conditions, with increasing benefits seen with repeated treatments. It was found to be superior to placebo and comparable to standard care, regardless of the origin of the pain. Early initiation of therapy appears to improve efficacy, although patients with more prolonged pain also benefit. While the exact mechanisms of action are still unclear, there is evidence to suggest a potential benefit from nerve regeneration in some conditions. However, limited information exists regarding the alteration of treatment intervals and the variation in the size of the painful area upon re-treatment. The review also identifies variability in response rates for different types of pNeP and a lack of reliable predictors of treatment success, indicating a need for further research. In conclusion, the HC capsaicin patch is effective and well tolerated across a range of pNeP conditions, with increasing efficacy upon retreatment. It is a valuable treatment option, although more research is needed to refine its clinical use and explore its full therapeutic potential.
Collapse
Affiliation(s)
- Rainer Freynhagen
- Center for Anesthesiology, Intensive Care & Pain Medicine, Pain Center Starnberger See, Benedictus Hospitals, Tutzing and Feldafing, Germany
- Department of Anaesthesiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Ralf Baron
- Department of Neurology, Neurological Pain Research and Therapy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Frank Huygen
- Center of Pain Medicine Erasmus Medical Center, Rotterdam, the Netherlands
- Center of Pain Medicine, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Serge Perrot
- Centre d'Evaluation et de Traitement de la Douleur, Hôpital Cochin, Université Paris Cité, INSERM U987, Paris, France
- CETD and INSERM U987, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| |
Collapse
|
2
|
Pan H, Hu W, Zhou C, Jian J, Xu J, Lu C, Quan G, Wu C, Pan X, Peng T. Microneedle-Mediated Treatment of Obesity. Pharmaceutics 2025; 17:248. [PMID: 40006614 PMCID: PMC11859603 DOI: 10.3390/pharmaceutics17020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity has become a major public health threat, as it can cause various complications such as diabetes, cardiovascular disease, sleep apnea, cancer, and osteoarthritis. The primary anti-obesity therapies include dietary control, physical exercise, surgical interventions, and drug therapy; however, these treatments often have poor therapeutic efficacy, significant side effects, and unavoidable weight rebound. As a revolutionized transdermal drug delivery system, microneedles (MNs) have been increasingly used to deliver anti-obesity therapeutics to subcutaneous adipose tissue or targeted absorption sites, significantly enhancing anti-obese effects. Nevertheless, there is still a lack of a review to comprehensively summarize the latest progress of MN-mediated treatment of obesity. This review provides an overview of the application of MN technology in obesity, focusing on the delivery of various therapeutics to promote the browning of white adipose tissue (WAT), suppress adipogenesis, and improve metabolic function. In addition, this review presents detailed examples of the integration of MN technology with iontophoresis (INT) or photothermal therapy (PTT) to promote drug penetration into deeper dermis and exert synergistic anti-obese effects. Furthermore, the challenges and prospects of MN technology used for obesity treatment are also discussed, which helps to guide the design and optimization of MNs. Overall, this review provides insight into the development and clinical translation of MN technology for the treatment of obesity.
Collapse
Affiliation(s)
- Huanhuan Pan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Wanshan Hu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Chunxian Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Jubo Jian
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Jing Xu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Chao Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Guilan Quan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| | - Chuanbin Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
- Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Affiliated Jiangmen Traditional Chinese Medicine Hospital of Jinan University, Jiangmen 529031, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tingting Peng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative Drugs, College of Pharmacy, Jinan University, Guangzhou 511436, China; (H.P.); (W.H.); (C.Z.); (J.J.); (J.X.); (C.L.); (G.Q.); (C.W.)
| |
Collapse
|
3
|
Ward J, Grinstead A, Kemp A, Kersten P, Schmid A, Ridehalgh C. A Meta-analysis Exploring the Efficacy of Neuropathic Pain Medication for Low Back Pain or Spine-Related Leg Pain: Is Efficacy Dependent on the Presence of Neuropathic Pain? Drugs 2024; 84:1603-1636. [PMID: 39455546 PMCID: PMC7616789 DOI: 10.1007/s40265-024-02085-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Highly variable pain mechanisms in people with low back pain or spine-related leg pain might contribute to inefficacy of neuropathic pain medication. This meta-analysis aimed to determine how neuropathic pain is identified in clinical trials for people taking neuropathic pain medication for low back pain or spine-related leg pain and whether subgrouping based on the presence of neuropathic pain influences efficacy. METHODS EMBASE, MEDLINE, Cochrane Central, CINAHL [EBSCO], APA PsycINFO, ClinicalTrials.gov, and the World Health Organization International Clinical Trials Registry were searched from inception to 14 May, 2024. Randomized and crossover trials comparing first-line neuropathic pain medication for people with low back pain or spine-related leg pain to placebo or usual care were included. Two independent authors extracted data. Random-effects meta-analyses of all studies combined, and pre-planned subgroup meta-analyses based on the certainty of neuropathic pain (according to the neuropathic pain Special Interest Group [NeuPSIG] neuropathic pain grading criteria) were completed. Certainty of evidence was judged using the grading of recommendations assessment development and evaluation [GRADE] framework. RESULTS Twenty-seven included studies reported on 3619 participants. Overall, 33% of studies were judged unlikely to include people with neuropathic pain, 26% remained unclear. Only 41% identified people with possible, probable, or definite neuropathic pain. For pain, general analyses revealed only small effects at short term (mean difference [MD] - 9.30 [95% confidence interval [CI] - 13.71, - 4.88], I2 = 87%) and medium term (MD - 5.49 [95% CI - 7.24, - 3.74], I2 = 0%). Subgrouping at short term revealed studies including people with definite or probable neuropathic pain showed larger effects on pain (definite; MD - 16.65 [95% CI - 35.95, 2.65], I2 = 84%; probable; MD - 10.45 [95% CI - 14.79, - 6.12], I2 = 20%) than studies including people with possible (MD - 5.50 [95% CI - 20.52, 9.52], I2 = 78%), unlikely (MD - 6.67 [95% CI - 10.58, 2.76], I2 = 0%), or unclear neuropathic pain (MD - 8.93 [95% CI - 20.57, 2.71], I2 = 96%). Similarly, general analyses revealed negligible effects on disability at short term (MD - 3.35 [95% CI - 9.00, 2.29], I2 = 93%) and medium term (MD - 4.06 [95% CI - 5.63, - 2.48], I2 = 0%). Sub-grouping at short term revealed larger effects in studies including people with definite/probable neuropathic pain (MD - 9.25 [95% CI - 12.59, - 5.90], I2 = 2%) compared with those with possible/unclear/unlikely neuropathic pain (MD -1.57 [95% CI - 8.96, 5.82] I2 = 95%). Medium-term outcomes showed a similar trend, but were limited by low numbers of studies. Certainty of evidence was low to very low for all outcomes. CONCLUSIONS Most studies using neuropathic pain medication for low back pain or spine-related leg pain fail to adequately consider the presence of neuropathic pain. Meta-analyses suggest neuropathic pain medication may be most effective in people with low back pain or spine-related leg pain with a definite/probable neuropathic pain component. However, the low to very low certainty of evidence and poor identification of neuropathic pain in most studies prevent firm recommendations.
Collapse
Affiliation(s)
- Jennifer Ward
- Kent Community NHS Foundation Trust, Sevenoaks Hospital, Hospital Road, Sevenoaks, Kent, TN11 3PG, 07973534272, Consultant physiotherapist
| | - Anthony Grinstead
- Sussex Community NHS Foundation Trust, Trust HQ Brighton General Hospital Elm Grove Brighton BN2 3EW, physiotherapist
| | - Amy Kemp
- University Hospital Sussex, Worthing Hospital, Lyndhurst Road, BN11 2DH, physiotherapist
| | - Paula Kersten
- University of Suffolk, 19 Neptune Quay, Ipswich, IP4 1QJ, UK
| | - Annina Schmid
- Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, OxfordOX3 9DU, UK
| | - Colette Ridehalgh
- School of Life Course & Population Sciences Faculty of Life Sciences & Medicine King’s College London Guy’s Campus, Addison House SE1 1UL, London, UK
- School of Sport and Health Science, University of Brighton, Robert Dodd Building, 49 Darley road, EastbourneBN20 7UR, UK Department of Clinical Neuroscience, Brighton and Sussex Medical School, Trafford Centre, University of Sussex, Falmer, BrightonBN1 9RY, UK
| |
Collapse
|
4
|
Hughes S, Vollert J, Freeman R, Forstenpointner J. Quantitative Sensory Testing - From bench to bedside. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:67-90. [PMID: 39580222 DOI: 10.1016/bs.irn.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
The methodology of Quantitative Sensory Testing (QST) comprises standardized testing procedures, which provide information of the integrity of the somatosensory nervous system. Over the years, different protocols have been established, which utilize similar but distinct testing procedures. They pursue the same overall objective to identify loss or gain of function of the respective sensory parameter to better understand the degree of abnormal nervous function and thereby improve patient care in the long-term. Laboratory-based QST protocols, which apply highly standardized testing procedures in pre-defined order and body regions, are considered as the gold standard in sensory testing. However, those protocols often require specifically trained personal, high equipment investment, and are time consuming. Thus, in recent years several attempts have been made to simplify testing protocols as well as reduce high costs of testing equipment such as thermal probe systems. These attempts have culminated in an array of sensory bedside testing protocols subserving the need for protocols that are easy to implement in and provide a standardized assessment within clinical trials. While laboratory and bedside QST that focus on static responses of single stimuli, protocols for testing dynamic QST focus on the functional response to pain also exist. Conditioned pain modulation (CPM) is often applied, which offers the ability to study endogenous inhibition of pain. All of these mentioned methodologies are considered as psychophysical measures and thus rely heavily on the cooperation of the patient or participant. In this chapter we provide an overview of QST along three main lines: (i) laboratory QST, (ii) bedside QST and (iii) dynamic QST. In addition, we discuss advantages and pitfalls of each modality. While we discuss along these lines, it should be noted that methodologies are overlapping: some bedside tests are similar or identical to lab-QST, many lab-QST protocols include a dynamic component, and assessment of dynamic QST requires to start with static assessments.
Collapse
Affiliation(s)
- Sam Hughes
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Jan Vollert
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Roy Freeman
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States
| | - Julia Forstenpointner
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig Holstein, Campus Kiel, Kiel, Germany.
| |
Collapse
|
5
|
Uragami S, Osumi M, Sumitani M, Fuyuki M, Igawa Y, Iki S, Koga M, Tanaka Y, Sato G, Morioka S. Prognosis of Pain After Stroke During Rehabilitation Depends on the Pain Quality. Phys Ther 2024; 104:pzae055. [PMID: 38567849 DOI: 10.1093/ptj/pzae055] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/24/2023] [Accepted: 04/01/2024] [Indexed: 07/13/2024]
Abstract
OBJECTIVE Pain after a stroke interferes with daily life and the rehabilitation process. This study aimed to clarify the prognosis of pain in subgroups of patients with pain after a stroke using pain quality data. METHODS The study included 85 patients with pain after stroke undergoing exercise-based rehabilitation. Items of the Neuropathic Pain Symptom Inventory (NPSI) were used, and patients with pain after stroke were clustered according to their scores of NPSI. Other clinical assessments, such as physical and psychological conditions, were assessed by interviews and questionnaires, and then these were compared among subgroups in a cross-sectional analysis. Longitudinal pain intensity in each subgroup was recorded during 12 weeks after the stroke and the patients' pain prognoses were compared between subgroups. RESULTS Four distinct subgroups were clustered: cluster 1 (cold-evoked pain and tingling), cluster 2 (tingling only), cluster 3 (pressure-evoked pain), and cluster 4 (deep muscle pain with a squeezing and pressure sensation). The cross-sectional analysis showed varying clinical symptoms among the subgroups, with differences in the prevalence of joint pain, limited range of motion, somatosensory dysfunction, and allodynia. There were no significant differences in pain intensity at baseline among the subgroups. A longitudinal analysis showed divergent prognoses of pain intensity among the subgroups. The pain intensity in cluster 4 was significantly alleviated, which suggested that musculoskeletal pain could be reduced with conventional exercise-based rehabilitation. However, the pain intensity of patients in clusters 1 and 2 remained over 12 weeks. CONCLUSION The study classified patients into clinically meaningful subgroups using pain quality data and provided insight into their prognosis of pain. The findings could be useful for guiding personalized rehabilitation strategies for pain management. IMPACT Assessment of pain quality in patients with pain after stroke leads to personalized rehabilitation for pain management.
Collapse
Affiliation(s)
- Shinji Uragami
- Graduate School of Health Science, Kio University, Nara, Japan
- Department of Rehabilitation, Hoshigaoka Medical Center, Osaka, Japan
| | - Michihiro Osumi
- Graduate School of Health Science, Kio University, Nara, Japan
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| | - Masahiko Sumitani
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Masanori Fuyuki
- Graduate School of Health Science, Kio University, Nara, Japan
| | - Yuki Igawa
- Graduate School of Health Science, Kio University, Nara, Japan
| | - Shinya Iki
- Department of Pain and Palliative Medicine, The University of Tokyo Hospital, Tokyo, Japan
- Department of Rehabilitation Medicine, Kawaguchi Neurosurgery Rehabilitation Clinic, Osaka, Japan
| | - Masayuki Koga
- Graduate School of Health Science, Kio University, Nara, Japan
| | - Yoichi Tanaka
- School of Rehabilitation, Hyogo University of Health Sciences, Kobe, Japan
| | - Gosuke Sato
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| | - Shu Morioka
- Graduate School of Health Science, Kio University, Nara, Japan
- Neurorehabilitation Research Center, Kio University, Nara, Japan
| |
Collapse
|
6
|
Ferland S, Wang F, De Koninck Y, Ferrini F. An improved conflict avoidance assay reveals modality-specific differences in pain hypersensitivity across sexes. Pain 2024; 165:1304-1316. [PMID: 38277178 PMCID: PMC11090034 DOI: 10.1097/j.pain.0000000000003132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024]
Abstract
ABSTRACT Abnormal encoding of somatosensory modalities (ie, mechanical, cold, and heat) are a critical part of pathological pain states. Detailed phenotyping of patients' responses to these modalities have raised hopes that analgesic treatments could one day be tailored to a patient's phenotype. Such precise treatment would require a profound understanding of the underlying mechanisms of specific pain phenotypes at molecular, cellular, and circuitry levels. Although preclinical pain models have helped in that regard, the lack of a unified assay quantifying detailed mechanical, cold, and heat pain responses on the same scale precludes comparing how analgesic compounds act on different sensory phenotypes. The conflict avoidance assay is promising in that regard, but testing conditions require validation for its use with multiple modalities. In this study, we improve upon the conflict avoidance assay to provide a validated and detailed assessment of all 3 modalities within the same animal, in mice. We first optimized testing conditions to minimize the necessary amount of training and to reduce sex differences in performances. We then tested what range of stimuli produce dynamic stimulus-response relationships for different outcome measures in naive mice. We finally used this assay to show that nerve injury produces modality-specific sex differences in pain behavior. Our improved assay opens new avenues to study the basis of modality-specific abnormalities in pain behavior.
Collapse
Affiliation(s)
| | - Feng Wang
- CERVO Brain Research Centre, Québec, QC, Canada
- Faculty of Dentistry, Université Laval, Québec, QC, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Francesco Ferrini
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Vollert J, Fardo F, Attal N, Baron R, Bouhassira D, Enax-Krumova EK, Freynhagen R, Hansson P, Jensen TS, Kersebaum D, Maier C, Pogatzki-Zahn E, Rice AS, Sachau J, Schaldemose EL, Segerdahl M, Sendel M, Tölle TR, Finnerup NB, Treede RD. Paradoxical heat sensation as a manifestation of thermal hypesthesia: a study of 1090 patients with lesions of the somatosensory system. Pain 2024; 165:216-224. [PMID: 37578447 PMCID: PMC10723641 DOI: 10.1097/j.pain.0000000000003014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 08/15/2023]
Abstract
ABSTRACT Paradoxical heat sensation (PHS) is the perception of warmth when the skin is cooled. Paradoxical heat sensation rarely occurs in healthy individuals but more frequently in patients suffering from lesions or disease of the peripheral or central nervous system. To further understand mechanisms and epidemiology of PHS, we evaluated the occurrence of PHS in relation to disease aetiology, pain levels, quantitative sensory testing parameters, and Neuropathic Pain Symptom Inventory (NPSI) items in patients with nervous system lesions. Data of 1090 patients, including NPSI scores from 404 patients, were included in the analysis. We tested 11 quantitative sensory testing parameters for thermal and mechanical detection and pain thresholds, and 10 NPSI items in a multivariate generalised linear model with PHS, aetiology, and pain (yes or no) as fixed effects. In total, 30% of the neuropathic patients reported PHS in contrast to 2% of healthy individuals. The frequency of PHS was not linked to the presence or intensity of pain. Paradoxical heat sensation was more frequent in patients living with polyneuropathy compared with central or unilateral peripheral nerve lesions. Patients who reported PHS demonstrated significantly lower sensitivity to thermal perception, with lower sensitivity to normally painful heat and cold stimuli. Neuropathic Pain Symptom Inventory scores were lower for burning and electric shock-like pain quality for patients with PHS. Our findings suggest that PHS is associated with loss of small thermosensory fibre function normally involved in cold and warm perception. Clinically, presence of PHS could help screening for loss of small fibre function as it is straightforward to measure or self-reported by patients.
Collapse
Affiliation(s)
- Jan Vollert
- Pain Research, MSk Lab, Department of Surgery and Cancer, Imperial College, London, United Kingdom
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Münster, Germany
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience MCTN, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg, Germany
| | - Francesca Fardo
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Nadine Attal
- INSERM U-987, Centre d'Evaluation et de Traitement de la Douleur, CHU Ambroise Paré, Boulogne-Billancourt, France, Université Versailles-Saint-Quentin, Versailles, France
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Didier Bouhassira
- INSERM U-987, Centre d'Evaluation et de Traitement de la Douleur, CHU Ambroise Paré, Boulogne-Billancourt, France, Université Versailles-Saint-Quentin, Versailles, France
| | - Elena K. Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil gGmbH, Ruhr-University Bochum, Bochum, Germany
| | - Rainer Freynhagen
- Department of Anaesthesiology, Critical Care Medicine, Pain Therapy and Palliative Care, Pain Center Lake Starnberg, Benedictus Hospital, Tutzing, Germany
- Department of Anaesthesiology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Per Hansson
- Department of Pain Management and Research, Division of Emergencies and Critical Care, Oslo University Hospital, Oslo, Norway
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Troels S. Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Dilara Kersebaum
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Christoph Maier
- University Hospital of Pediatrics and Adolescent Medicine, Ruhr-University Bochum, Bochum, Germany
| | - Esther Pogatzki-Zahn
- Department of Anaesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Münster, Germany
| | - Andrew S.C. Rice
- Pain Research, MSk Lab, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Ellen L. Schaldemose
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Märta Segerdahl
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- MS Medical Consulting, Stockholm, Sweden
| | - Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| | - Thomas R. Tölle
- Department of Neurology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Nanna B. Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Rolf-Detlef Treede
- Department of Neurophysiology, Mannheim Center for Translational Neuroscience MCTN, Medical Faculty Mannheim, Ruprecht Karls University, Heidelberg, Germany
| |
Collapse
|
8
|
Bouhassira D, Attal N. Personalized treatment of neuropathic pain: Where are we now? Eur J Pain 2023; 27:1084-1098. [PMID: 37114461 DOI: 10.1002/ejp.2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/07/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND The treatment of neuropathic pain remains a major unmet need that the development of personalized and refined treatment strategies may contribute to address. DATABASE In this narrative review, we summarize the various approaches based on objective biomarkers or clinical markers that could be used. RESULTS In principle, the validation of objective biomarkers would be the most robust approach. However, although promising results have been reported demonstrating a potential value of genomics, anatomical or functional markers, the clinical validation of these markers has only just begun. Thus, most of the strategies documented to date have been based on the development of clinical markers. In particular, many studies have suggested that the identification of specific subgroups of patients presenting with specific combinations of symptoms and signs would be a relevant approach. Two main approaches have been used to identify relevant sensory profiles: quantitative sensory testing and specific patients reported outcomes based on description of pain qualities. CONCLUSION We discuss here the advantages and limitations of these approaches, which are not mutually exclusive. SIGNIFICANCE Recent data indicate that various new treatment strategies based on predictive biological and/or clinical markers could be helpful to better personalized and therefore improve the management of neuropathic pain.
Collapse
Affiliation(s)
- Didier Bouhassira
- Inserm U987, UVSQ-Paris-Saclay University, Ambroise Pare Hospital, Boulogne-Billancourt, France
| | - Nadine Attal
- Inserm U987, UVSQ-Paris-Saclay University, Ambroise Pare Hospital, Boulogne-Billancourt, France
| |
Collapse
|
9
|
Sendel M, Dunst A, Forstenpointner J, Hüllemann P, Baron R. Capsaicin treatment in neuropathic pain: axon reflex vasodilatation after 4 weeks correlates with pain reduction. Pain 2023; 164:534-542. [PMID: 35857438 DOI: 10.1097/j.pain.0000000000002735] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Capsaicin, an agonist at the transient receptor potential vanilloid 1, is used for the topical treatment of peripheral neuropathic pain. Reversible receptor defunctionalization and degeneration and subsequent regeneration of cutaneous nociceptors are discussed as its mechanism of action. Here, we hypothesize an accelerated functional recovery of a subclass of nociceptive afferents, the peptidergic vasoactive nociceptors, as the potential cause of capsaicin analgesia. In this noninterventional exploratory trial, 23 patients with peripheral neuropathic pain were treated with one topical high-concentration capsaicin application. Baseline pain ratings, comorbidities, and quality of life were assessed. Functional laser speckle contrast analysis (heat-evoked neurogenic vasodilatation to assess functional properties of peptidergic nociceptors) and quantitative sensory testing were performed in the affected skin. Four weeks after treatment, functional laser speckle contrast analysis and questionnaires were repeated. Telephone interviews were conducted at weeks 2, 10, and 12. Topical capsaicin treatment induced a significant reduction in pain intensity with a maximum at 4 weeks. At the same time, heat-evoked neurogenic vasodilatation was on average similar to pretreatment values. Half of the patients not only showed a functional recovery but also an improvement in vasodilatation, indicating regeneration of nerve fibers. Patients with improved heat-evoked neurogenic vasodilatation at week 4 showed a greater pain reduction than those with deterioration. The degree of vasodilatation significantly correlated with pain reduction. These findings suggest that (1) regeneration of peptidergic nociceptors may be the mechanism behind capsaicin-induced analgesia and (2) that a disease-modifying effect of capsaicin on these fibers already occurs 4 weeks after application.
Collapse
Affiliation(s)
- Manon Sendel
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | | | | | | | | |
Collapse
|
10
|
Kim HJ, Yoon KB, Kang M, Yang YS, Kim SH. Subgrouping patients with zoster-associated pain according to sensory symptom profiles: A cluster analysis. Front Neurol 2023; 14:1137453. [PMID: 36873449 PMCID: PMC9981999 DOI: 10.3389/fneur.2023.1137453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/06/2023] [Indexed: 02/19/2023] Open
Abstract
Background and goal of study Patients with zoster-associated pain exhibit a variety of sensory symptoms and forms of pain and complain of different pain patterns. The purpose of this study is to subgroup patients with zoster-associated pain who visited a hospital using painDETECT sensory symptom scores, analyze their respective characteristics and pain-related data, and compare similarities and differences among the groups. Materials and methods The characteristics of 1,050 patients complaining of zoster-associated pain and pain-related data were reviewed retrospectively. To identify subgroups of patients with zoster-associated pain according to sensory symptom profiles, a hierarchical cluster analysis was performed based on the responses to a painDETECT questionnaire. Demographics and pain-related data were compared among all subgroups. Results and discussion Patients with zoster-associated pain were classified into 5 subgroups according to the distribution of sensory profiles, with each subgroup exhibiting distinct differences in the expression of sensory symptoms. Patients in cluster 1 complained of burning sensations, allodynia, and thermal sensitivity, but felt numbness less strongly. Cluster 2 and 3 patients complained of burning sensations and electric shock-like pain, respectively. Cluster 4 patients complained of most sensory symptoms at similar intensities and reported relatively strong prickling pain. Cluster 5 patients suffered from both burning and shock-like pains. Patient ages and the prevalence of cardiovascular disease were significantly lower in cluster 1. Patients in clusters 1 and 4 reported longer pain duration compared with those in clusters 2 and 3. However, no significant differences were found with respect to sex, body mass index, diabetes mellitus, mental health problems, and sleep disturbance. Pain scores, distribution of dermatomes and gabapentinoid use were also similar among the groups. Conclusions Five different subgroups of patients with zoster-associated pain were identified on the basis of sensory symptoms. A subgroup of younger patients with longer pain duration showed specific and distinct symptoms, such as burning sensations and allodynia. Unlike patients with acute or subacute pain, patients with chronic pain were associated with diverse sensory symptom profiles.
Collapse
Affiliation(s)
- Hee Jung Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyung Bong Yoon
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Misun Kang
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yun Seok Yang
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Shin Hyung Kim
- Department of Anesthesiology and Pain Medicine, Anesthesia and Pain Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
11
|
Mathieu S, Couderc M, Glace B, Malochet-Guinamand S, Pickering ME, Soubrier M, Tournadre A. Transdermal capsaicin in hand osteoarthritis: A preliminary study. Joint Bone Spine 2022; 90:105508. [PMID: 36526229 DOI: 10.1016/j.jbspin.2022.105508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Sylvain Mathieu
- Service de Rhumatologie, CHU Gabriel Montpied, 63000 Clermont-Ferrand, France.
| | - Marion Couderc
- Service de Rhumatologie, CHU Gabriel Montpied, 63000 Clermont-Ferrand, France
| | - Baptiste Glace
- Service de Rhumatologie, CH Jacques Lacarin, 03000 Vichy, France
| | | | - Marie-Eva Pickering
- Service de Rhumatologie, CHU Gabriel Montpied, 63000 Clermont-Ferrand, France
| | - Martin Soubrier
- Service de Rhumatologie, CHU Gabriel Montpied, 63000 Clermont-Ferrand, France
| | - Anne Tournadre
- Service de Rhumatologie, CHU Gabriel Montpied, 63000 Clermont-Ferrand, France
| |
Collapse
|
12
|
Malewicz NM, Rattray Z, Oeck S, Jung S, Escamilla-Rivera V, Chen Z, Tang X, Zhou J, LaMotte RH. Topical Capsaicin in Poly(lactic-co-glycolic)acid (PLGA) Nanoparticles Decreases Acute Itch and Heat Pain. Int J Mol Sci 2022; 23:5275. [PMID: 35563669 PMCID: PMC9101161 DOI: 10.3390/ijms23095275] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Capsaicin, the hot pepper agent, produces burning followed by desensitization. To treat localized itch or pain with minimal burning, low capsaicin concentrations can be repeatedly applied. We hypothesized that alternatively controlled release of capsaicin from poly(lactic-co-glycolic acid) (PLGA) nanoparticles desensitizes superficially terminating nociceptors, reducing burning. METHODS Capsaicin-loaded PLGA nanoparticles were prepared (single-emulsion solvent evaporation) and characterized (size, morphology, capsaicin loading, encapsulation efficiency, in vitro release profile). Capsaicin-PLGA nanoparticles were applied to murine skin and evaluated in healthy human participants (n = 21) for 4 days under blinded conditions, and itch and nociceptive sensations evoked by mechanical, heat stimuli and pruritogens cowhage, β-alanine, BAM8-22 and histamine were evaluated. RESULTS Nanoparticles (loading: 58 µg capsaicin/mg) released in vitro 23% capsaicin within the first hour and had complete release at 72 h. In mice, 24 h post-application Capsaicin-PLGA nanoparticles penetrated the dermis and led to decreased nociceptive behavioral responses to heat and mechanical stimulation (desensitization). Application in humans produced a weak to moderate burning, dissipating after 3 h. A loss of heat pain up to 2 weeks was observed. After capsaicin nanoparticles, itch and nociceptive sensations were reduced in response to pruritogens cowhage, β-alanine or BAM8-22, but were normal to histamine. CONCLUSIONS Capsaicin nanoparticles could be useful in reducing pain and itch associated with pruritic diseases that are histamine-independent.
Collapse
Affiliation(s)
- Nathalie M. Malewicz
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St, New Haven, CT 06510, USA; (S.J.); (V.E.-R.)
- Clinics for Anesthesiology, Intensive Care and Pain Medicine, Medical Faculty of Ruhr-University Bochum, BG University Hospital Bergmannsheil, 44789 Bochum, Germany
| | - Zahra Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
| | - Sebastian Oeck
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA;
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, 45147 Essen, Germany
| | - Sebastian Jung
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St, New Haven, CT 06510, USA; (S.J.); (V.E.-R.)
- ZEMOS Center for Solvation Science, Ruhr University Bochum, 44801 Bochum, Germany
| | - Vicente Escamilla-Rivera
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St, New Haven, CT 06510, USA; (S.J.); (V.E.-R.)
- Department of Otolaryngology—Head and Neck Surgery, College of Medicine, The University of Arizona, Tucson, AZ 85724, USA
| | - Zeming Chen
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA; (Z.C.); (X.T.); (J.Z.)
| | - Xiangjun Tang
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA; (Z.C.); (X.T.); (J.Z.)
| | - Jiangbing Zhou
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA; (Z.C.); (X.T.); (J.Z.)
| | - Robert H. LaMotte
- Department of Anesthesiology, Yale University School of Medicine, 330 Cedar St, New Haven, CT 06510, USA; (S.J.); (V.E.-R.)
| |
Collapse
|
13
|
Ocay DD, Larche CL, Betinjane N, Jolicoeur A, Beaulieu MJ, Saran N, Ouellet JA, Ingelmo PM, Ferland CE. Phenotyping Chronic Musculoskeletal Pain in Male and Female Adolescents: Psychosocial Profiles, Somatosensory Profiles and Pain Modulatory Profiles. J Pain Res 2022; 15:591-612. [PMID: 35250304 PMCID: PMC8892739 DOI: 10.2147/jpr.s352607] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Purpose A major limitation in treatment outcomes for chronic pain is the heterogeneity of the population. Therefore, a personalized approach to the assessment and treatment of children and adolescents with chronic pain conditions is needed. The objective of the study was to subgroup pediatric patients with chronic MSK pain that will be phenotypically different from each other based on their psychosocial profile, somatosensory function, and pain modulation. Patients and Methods This observational cohort study recruited 302 adolescents (10–18 years) with chronic musculoskeletal pain and 80 age-matched controls. After validated self-report questionnaires on psychosocial factors were completed, quantitative sensory tests (QST) and conditioned pain modulation (CPM) were performed. Results Three psychosocial subgroups were identified: adaptive pain (n=125), high pain dysfunctional (n=115), high somatic symptoms (n=62). Based on QST, four somatosensory profiles were observed: normal QST (n=155), thermal hyperalgesia (n=98), mechanical hyperalgesia (n=34) and sensory loss (n=15). Based on CPM and temporal summation of pain (TSP), four distinct groups were formed, dysfunctional central processing group (n=27) had suboptimal CPM and present TSP, dysfunctional inhibition group (n=136) had suboptimal CPM and absent TSP, facilitation group (n=18) had optimal CPM and present TSP, and functional central processing (n=112) had optimal CPM and absent TSP. A significant association between the psychosocial and somatosensory profiles. However, no association was observed between the psychosocial or somatosensory profiles and pain modulatory profiles. Conclusion Our results provide evidence that adolescents with chronic musculoskeletal pain are a heterogenous population comprising subgroups that may reflect distinct mechanisms and may benefit from different treatment approaches. The combination of screening self-reported questionnaires, QST, and CPM facilitate subgrouping of adolescents with chronic MSK pain in the clinical context and may ultimately contribute to personalized therapy.
Collapse
Affiliation(s)
- Don Daniel Ocay
- Department of Experimental Surgery, McGill University, Montreal, QC, Canada
- Department of Clinical Research, Shriners Hospitals for Children Canada, Montreal, QC, Canada
| | - Cynthia L Larche
- Department of Clinical Research, Shriners Hospitals for Children Canada, Montreal, QC, Canada
| | - Natalie Betinjane
- Department of Clinical Research, Shriners Hospitals for Children Canada, Montreal, QC, Canada
| | - Alexandre Jolicoeur
- Department of Clinical Research, Shriners Hospitals for Children Canada, Montreal, QC, Canada
| | - Marie Josee Beaulieu
- Department of Clinical Research, Shriners Hospitals for Children Canada, Montreal, QC, Canada
| | - Neil Saran
- Department of Pediatric Orthopedics, McGill University, Montreal, QC, Canada
| | - Jean A Ouellet
- Department of Pediatric Orthopedics, McGill University, Montreal, QC, Canada
| | - Pablo M Ingelmo
- Edwards Family Interdisciplinary Center for Complex Pain, Montreal Children’s Hospital, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Research Institute-McGill University Health Centre, Montreal, QC, Canada
- Alan Edwards Research Center for Pain, McGill University, Montreal, QC, Canada
| | - Catherine E Ferland
- Department of Experimental Surgery, McGill University, Montreal, QC, Canada
- Department of Clinical Research, Shriners Hospitals for Children Canada, Montreal, QC, Canada
- Department of Anesthesia, McGill University, Montreal, QC, Canada
- Research Institute-McGill University Health Centre, Montreal, QC, Canada
- Alan Edwards Research Center for Pain, McGill University, Montreal, QC, Canada
- Correspondence: Catherine E Ferland, Shriners Hospitals for Children-Canada, 1003, Decarie Blvd, Montreal, H4A 0A9, Canada, Tel +1 514 842-4464, extension 7177,Fax +1 514 842-8664, Email
| |
Collapse
|
14
|
Ocay DD, Loewen A, Premachandran S, Ingelmo PM, Saran N, Ouellet JA, Ferland CE. Psychosocial and psychophysical assessment in pediatric patients and young adults with chronic back pain: a cluster analysis. Eur J Pain 2022; 26:855-872. [PMID: 35090183 PMCID: PMC9304192 DOI: 10.1002/ejp.1912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Identifying subgroups with different clinical profiles may inform tailored management and improve outcomes. The objective of this study was to identify psychosocial and psychophysical profiles of children and adolescents with chronic back pain. Methods One hundred and ninety‐eight patients with chronic back pain were recruited for the study. Pain assessment was mainly conducted in the form of an interview and with the use of validated pain‐related questionnaires assessing their psychosocial factors and disability. All patients underwent mechanical and thermal quantitative sensory tests assessing detection and pain thresholds, and conditioned pain modulation efficacy. Results Hierarchal clustering partitioned our patients into three clusters accounting for 34.73% of the total variation of the data. The adaptive cluster represented 45.5% of the patients and was characterized to display high thermal and pressure pain thresholds. The high somatic symptoms cluster, representing 19.2% of patients, was characterized to use more sensory, affective, evaluative and temporal descriptors of pain, more likely to report their pain as neuropathic of nature, report a more functional disability, report symptoms of anxiety and depression and report poor sleep quality. The pain‐sensitive cluster, representing 35.4% of the cohort, displayed deep tissue sensitivity and thermal hyperalgesia. Conclusions This study identified clinical profiles of children and adolescents experiencing chronic back pain based on specific psychophysical and psychosocial characteristics highlighting that chronic pain treatment should address underlying nociceptive and non‐nociceptive mechanisms. Significance To our current knowledge, this study is the first to conduct cluster analysis with youth experiencing chronic back pain and displays clinical profiles based on specific physical and psychosocial characteristics. This study highlights that in a clinical context, chronic pain assessment should include multiple elements contributing to pain which can be assessed in a clinical context and addressed when pathoanatomical symptoms are unidentifiable.
Collapse
Affiliation(s)
- D D Ocay
- Department of Experimental Surgery, McGill University, Montreal, Quebec, Canada.,Department of Clinical Research, Shriners Hospitals for Children Canada, Montreal, Quebec, Canada
| | - A Loewen
- Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - S Premachandran
- Department of Experimental Surgery, McGill University, Montreal, Quebec, Canada.,Department of Clinical Research, Shriners Hospitals for Children Canada, Montreal, Quebec, Canada
| | - P M Ingelmo
- Chronic Pain Services, Montreal Children's Hospital, Montreal, Quebec, Canada.,Department of Anesthesia, McGill University, Montreal, Quebec, Canada
| | - N Saran
- Department of Pediatric Orthopedics, McGill University, Montreal, Quebec, Canada
| | - J A Ouellet
- Department of Pediatric Orthopedics, McGill University, Montreal, Quebec, Canada
| | - C E Ferland
- Department of Experimental Surgery, McGill University, Montreal, Quebec, Canada.,Department of Clinical Research, Shriners Hospitals for Children Canada, Montreal, Quebec, Canada.,Department of Anesthesia, McGill University, Montreal, Quebec, Canada.,Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
15
|
Abstract
Managing chronic pain remains a major unmet clinical challenge. Patients can be treated with a range of interventions, but pharmacotherapy is the most common. These include opioids, antidepressants, calcium channel modulators, sodium channel blockers, and nonsteroidal anti-inflammatory drugs. Many of these drugs target a particular mechanism; however, chronic pain in many diseases is multifactorial and induces plasticity throughout the sensory neuroaxis. Furthermore, comorbidities such as depression, anxiety, and sleep disturbances worsen quality of life. Given the complexity of mechanisms and symptoms in patients, it is unsurprising that many fail to achieve adequate pain relief from a single agent. The efforts to develop novel drug classes with better efficacy have not always proved successful; a multimodal or combination approach to analgesia is an important strategy in pain control. Many patients frequently take more than one medication, but high-quality evidence to support various combinations is often sparse. Ideally, combining drugs would produce synergistic action to maximize analgesia and reduce side effects, although sub-additive and additive analgesia is still advantageous if additive side-effects can be avoided. In this review, we discuss pain mechanisms, drug actions, and the rationale for mechanism-led treatment selection.Abbreviations: COX - cyclooxygenase, CGRP - calcitonin gene-related peptide, CPM - conditioned pain modulation, NGF - nerve growth factor, NNT - number needed to treat, NMDA - N-methyl-d-aspartate, NSAID - nonsteroidal anti-inflammatory drugs, TCA - tricyclic antidepressant, SNRI - serotonin-noradrenaline reuptake inhibitor, QST - quantitative sensory testing.
Collapse
Affiliation(s)
- Ryan Patel
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, UK
| |
Collapse
|
16
|
A Review of the Clinical and Therapeutic Implications of Neuropathic Pain. Biomedicines 2021; 9:biomedicines9091239. [PMID: 34572423 PMCID: PMC8465811 DOI: 10.3390/biomedicines9091239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
Understanding neuropathic pain presents several challenges, given the various mechanisms underlying its pathophysiological classification and the lack of suitable tools to assess its diagnosis. Furthermore, the response of this pathology to available drugs is still often unpredictable, leaving the treatment of neuropathic pain still questionable. In addition, the rise of personalized treatments further extends the ramified classification of neuropathic pain. While a few authors have focused on neuropathic pain clustering, by analyzing, for example, the presence of specific TRP channels, others have evaluated the presence of alterations in microRNAs to find tailored therapies. Thus, this review aims to synthesize the available evidence on the topic from a clinical perspective and provide a list of current demonstrations on the treatment of this disease.
Collapse
|
17
|
Sensory defunctionalization induced by 8% topical capsaicin treatment in a model of ultraviolet-B-induced cutaneous hyperalgesia. Exp Brain Res 2021; 239:2873-2886. [PMID: 34302514 DOI: 10.1007/s00221-021-06170-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Subpopulations of primary nociceptors (C- and Aδ-fibers), express the TRPV1 receptor for heat and capsaicin. During cutaneous inflammation, these afferents may become sensitized, leading to primary hyperalgesia. It is known that TRPV1+ nociceptors are involved in heat hyperalgesia; however, their involvement in mechanical hyperalgesia is unclear. This study explored the contribution of capsaicin-sensitive nociceptors in the development of mechanical and heat hyperalgesia in humans following ultraviolet-B (UVB) irradiation. Skin areas in 18 healthy volunteers were randomized to treatment with 8% capsaicin/vehicle patches for 24 h. After patches removal, one capsaicin-treated area and one vehicle area were irradiated with 2xMED (minimal erythema dose) of UVB. 1, 3 and 7 days post-UVB exposure, tests were performed to evaluate the development of UVB-induced cutaneous hyperalgesia: thermal detection and pain thresholds, pain sensitivity to supra-threshold heat stimuli, mechanical pain threshold and sensitivity, touch pleasantness, trans-epidermal water loss (TEWL), inflammatory response, pigmentation and micro-vascular reactivity. Capsaicin pre-treatment, in the UVB-irradiated area (Capsaicin + UVB area), increased heat pain thresholds (P < 0.05), and decreased supra-threshold heat pain sensitivity (P < 0.05) 1, 3 and 7 days post-UVB irradiation, while mechanical hyperalgesia resulted unchanged (P > 0.2). No effects of capsaicin were reported on touch pleasantness (P = 1), TEWL (P = 0.31), inflammatory response and pigmentation (P > 0.3) or micro-vascular reactivity (P > 0.8) in response to the UVB irradiation. 8% capsaicin ablation predominantly defunctionalizes TRPV1+-expressing cutaneous nociceptors responsible for heat pain transduction, suggesting that sensitization of these fibers is required for development of heat hyperalgesia following cutaneous UVB-induced inflammation but they are likely only partially necessary for the establishment of robust primary mechanical hyperalgesia.
Collapse
|
18
|
The predictive value of quantitative sensory testing: a systematic review on chronic postoperative pain and the analgesic effect of pharmacological therapies in patients with chronic pain. Pain 2021; 162:31-44. [PMID: 32701654 DOI: 10.1097/j.pain.0000000000002019] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Studies have suggested that quantitative sensory testing (QST) might hold a predictive value for the development of chronic postoperative pain and the response to pharmacological interventions. This review systematically summarizes the current evidence on the predictive value of QST for chronic postoperative pain and the effect of pharmacological interventions. The main outcome measures were posttreatment pain intensity, pain relief, presence of moderate-to-severe postoperative pain, responders of 30% and 50% pain relief, or validated questionnaires on pain and disability. A systematic search of MEDLINE and EMBASE yielded 25 studies on surgical interventions and 11 on pharmacological interventions. Seventeen surgical and 11 pharmacological studies reported an association between preoperative or pretreatment QST and chronic postoperative pain or analgesic effect. The most commonly assessed QST modalities were pressure stimuli (17 studies), temporal summation of pain (TSP, 14 studies), and conditioned pain modulation (CPM, 16 studies). Of those, the dynamic QST parameters TSP (50%) and CPM (44%) were most frequently associated with chronic postoperative pain and analgesic effects. A large heterogeneity in methods for assessing TSP (n = 4) and CPM (n = 7) was found. Overall, most studies demonstrated low-to-moderate levels of risk of bias in study design, attrition, prognostic factors, outcome, and statistical analyses. This systematic review demonstrates that TSP and CPM show the most consistent predictive values for chronic postoperative pain and analgesic effect, but the heterogeneous methodologies reduce the generalizability and hence call for methodological guidelines.
Collapse
|
19
|
Lawn T, Aman Y, Rukavina K, Sideris-Lampretsas G, Howard M, Ballard C, Ray Chaudhuri K, Malcangio M. Pain in the neurodegenerating brain: insights into pharmacotherapy for Alzheimer disease and Parkinson disease. Pain 2021; 162:999-1006. [PMID: 33239526 PMCID: PMC7977618 DOI: 10.1097/j.pain.0000000000002111] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/18/2020] [Accepted: 10/08/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Timothy Lawn
- Centre for Neuroimaging Sciences, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Yahyah Aman
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Katarina Rukavina
- The Maurice Wohl Clinical Neuroscience Institute, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - George Sideris-Lampretsas
- Wolfson Centre for Age Related Diseases, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | - Matthew Howard
- Centre for Neuroimaging Sciences, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| | | | - Kallol Ray Chaudhuri
- The Maurice Wohl Clinical Neuroscience Institute, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- Parkinson Foundation Centre of Excellence, King's College Hospital, London, United Kingdom
| | - Marzia Malcangio
- Wolfson Centre for Age Related Diseases, The Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
20
|
Capsaicin 8% patch Qutenza and other current treatments for neuropathic pain in chemotherapy-induced peripheral neuropathy (CIPN). Curr Opin Support Palliat Care 2021; 15:125-131. [PMID: 33905384 DOI: 10.1097/spc.0000000000000545] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Current oral treatments for neuropathic pain associated with chemotherapy-induced peripheral neuropathy (CIPN) have limited clinical efficacy, and undesirable side-effects. Topically delivered treatments have the advantage of avoiding CNS side-effects, while relieving pain. We have reviewed treatments of neuropathic pain associated with CIPN, focusing on the Capsaicin 8% patch, which can provide pain relief for up to 3 months or longer after a single 30-60-min application. RECENT FINDINGS Capsaicin 8% patch is a licensed treatment in the EU/UK for neuropathic pain and shown to be safe and effective in providing pain relief for patients with CIPN. Repeated daily oral or topical administrations are not required, as with other current treatments. The side-effects are transient and restricted to the time around patch application. New evidence suggests the Capsaicin 8% patch can promote the regeneration and restoration of skin nerve fibres in CIPN, in addition to the pain relief. SUMMARY The Capsaicin 8% patch is now often a preferred a treatment option for localised neuropathic pain conditions, including the feet and hands in patients with CIPN. Capsaicin 8% patch can be repeated three-monthly, if needed, for a year. In addition to pain relief, it may have a disease-modifying effect.
Collapse
|
21
|
Abstract
There is tremendous interpatient variability in the response to analgesic therapy
(even for efficacious treatments), which can be the source of great frustration
in clinical practice. This has led to calls for “precision
medicine” or personalized pain therapeutics (ie, empirically based
algorithms that determine the optimal treatments, or treatment combinations, for
individual patients) that would presumably improve both the clinical care of
patients with pain and the success rates for putative analgesic drugs in phase 2
and 3 clinical trials. However, before implementing this approach, the
characteristics of individual patients or subgroups of patients that increase or
decrease the response to a specific treatment need to be identified. The
challenge is to identify the measurable phenotypic characteristics of patients
that are most predictive of individual variation in analgesic treatment
outcomes, and the measurement tools that are best suited to evaluate these
characteristics. In this article, we present evidence on the most promising of
these phenotypic characteristics for use in future research, including
psychosocial factors, symptom characteristics, sleep patterns, responses to
noxious stimulation, endogenous pain-modulatory processes, and response to
pharmacologic challenge. We provide evidence-based recommendations for core
phenotyping domains and recommend measures of each domain.
Collapse
|
22
|
Abstract
Neuropathic pain (NeP) can result from sources as varied as nerve compression, channelopathies, autoimmune disease, and incision. By identifying the neurobiological changes that underlie the pain state, it will be clinically possible to exploit mechanism-based therapeutics for maximum analgesic effect as diagnostic accuracy is optimized. Obtaining sufficient knowledge regarding the neuroadaptive alterations that occur in a particular NeP state will result in improved patient analgesia and a mechanism-based, as opposed to a disease-based, therapeutic approach to facilitate target identification. This will rely on comprehensive disease pathology insight; our knowledge is vastly improving due to continued forward and back translational preclinical and clinical research efforts. Here we discuss the clinical aspects of neuropathy and currently used drugs whose mechanisms of action are outlined alongside their clinical use. Finally, we consider sensory phenotypes, patient clusters, and predicting the efficacy of an analgesic for neuropathy.
Collapse
Affiliation(s)
- Kirsty Bannister
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom;
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Anthony H Dickenson
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
23
|
Fight fire with fire: Neurobiology of capsaicin-induced analgesia for chronic pain. Pharmacol Ther 2020; 220:107743. [PMID: 33181192 DOI: 10.1016/j.pharmthera.2020.107743] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Capsaicin, the pungent ingredient in chili peppers, produces intense burning pain in humans. Capsaicin selectively activates the transient receptor potential vanilloid 1 (TRPV1), which is enriched in nociceptive primary afferents, and underpins the mechanism for capsaicin-induced burning pain. Paradoxically, capsaicin has long been used as an analgesic. The development of topical patches and injectable formulations containing capsaicin has led to application in clinical settings to treat chronic pain conditions, such as neuropathic pain and the potential to treat osteoarthritis. More detailed determination of the neurobiological mechanisms of capsaicin-induced analgesia should provide the logical rationale for capsaicin therapy and help to overcome the treatment's limitations, which include individual differences in treatment outcome and procedural discomfort. Low concentrations of capsaicin induce short-term defunctionalization of nociceptor terminals. This phenomenon is reversible within hours and, hence, likely does not account for the clinical benefit. By contrast, high concentrations of capsaicin lead to long-term defunctionalization mediated by the ablation of TRPV1-expressing afferent terminals, resulting in long-lasting analgesia persisting for several months. Recent studies have shown that capsaicin-induced Ca2+/calpain-mediated ablation of axonal terminals is necessary to produce long-lasting analgesia in a mouse model of neuropathic pain. In combination with calpain, axonal mitochondrial dysfunction and microtubule disorganization may also contribute to the longer-term effects of capsaicin. The analgesic effects subside over time in association with the regeneration of the ablated afferent terminals. Further determination of the neurobiological mechanisms of capsaicin-induced analgesia should lead to more efficacious non-opioidergic analgesic options with fewer adverse side effects.
Collapse
|
24
|
Huygen F, Kern KU, Pérez C. Expert Opinion: Exploring the Effectiveness and Tolerability of Capsaicin 179 mg Cutaneous Patch and Pregabalin in the Treatment of Peripheral Neuropathic Pain. J Pain Res 2020; 13:2585-2597. [PMID: 33116801 PMCID: PMC7569173 DOI: 10.2147/jpr.s263054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/31/2020] [Indexed: 11/23/2022] Open
Abstract
Background and Objective Treatment of peripheral neuropathic pain (PNP) remains a challenge. In the absence of clear predictors of response, clinical decision-making involves trial and error. While many classes of pharmacological agent are used and have shown efficacy, one of the most commonly used first-line treatments is pregabalin. However, in the 60% of PNP cases in which the pain is localized, a local treatment may be more suitable. This article will summarize the evidence for the relative effectiveness and tolerability of the capsaicin 179 mg patch and pregabalin in the treatment of PNP and highlight the expert opinion of the authors based on their own clinical experiences. Results When compared in a head-to-head trial in patients with PNP, capsaicin 179 mg patch provided non-inferior pain relief compared with an optimized dose of pregabalin, as well as a reduction in dynamic mechanical allodynia, faster onset of action, fewer systemic side effects, and greater treatment satisfaction. Adverse events associated with capsaicin patch are mainly application site reactions, compared with systemic and central nervous system effects with pregabalin. Studies indicate that capsaicin 179 mg patch is associated with a lower burden of therapy than pregabalin in terms of improved tolerability, lack of a daily pill burden, lack of drug-drug interactions, and increased regimen flexibility. Conclusion In localized neuropathic pain, evidence supports a pragmatic approach of using a local treatment before considering a systemic treatment. For treatment selection, the patient profile (eg, concomitant medication use, age) and the treatments' efficacy and tolerability profiles should be considered.
Collapse
Affiliation(s)
- Frank Huygen
- Department of Anesthesiology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - Kai-Uwe Kern
- Institute for Pain Medicine/Pain Practice Wiesbaden, Wiesbaden, Germany
| | | |
Collapse
|
25
|
Li R, Lan Y, Chen C, Cao Y, Huang Q, Ho CT, Lu M. Anti-obesity effects of capsaicin and the underlying mechanisms: a review. Food Funct 2020; 11:7356-7370. [PMID: 32820787 DOI: 10.1039/d0fo01467b] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Obesity and overweight have become serious health problems in the world and are linked to a variety of metabolic disorders. Phytochemicals with a weight-loss effect have been widely studied for the past few decades. Capsaicin is the major bioactive component in red chili peppers with many beneficial functions. Its anti-obesity effects have been evaluated extensively using different model systems, including cell models, animal models and human subjects. In this paper, anti-obesity effects of capsaicin are reviewed and the underlying mechanisms are characterized.
Collapse
Affiliation(s)
- Run Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Chengyu Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ 08901, USA.
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
26
|
Can self-reported pain characteristics and bedside test be used for the assessment of pain mechanisms? An analysis of results of neuropathic pain questionnaires and quantitative sensory testing. Pain 2020; 160:2093-2104. [PMID: 31162335 DOI: 10.1097/j.pain.0000000000001601] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hyperalgesia and allodynia are frequent in neuropathic pain. Some pain questionnaires such as the Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) and the Neuropathic Pain Scale (NPS) include self-assessment or bedside testing of hyperalgesia/allodynia. The aim of this study was to determine to what extent LANSS and NPS data are congruent with findings on quantitative sensory testing (QST). Self-reported presence of dynamic mechanical allodynia (DMA) and descriptors of hot, cold, or deep ongoing pain (the NPS and LANSS) as well as bedside findings of mechanical allodynia (LANSS) were compared with signs of DMA and thermal hyperalgesia on QST in 617 patients with neuropathic pain. Self-reported abnormal skin sensitivity (LANSS) showed a moderate concordance with DMA during bedside test (67.9%, κ = 0.391) or QST (52.8%, κ = 0.165). Receiver operating curve analysis for self-reported DMA yielded similar area-under-the-curve values for the LANSS (0.65, confidence interval: 0.59%-0.97%) and NPS (0.71, confidence interval: 0.66%-0.75%) with high sensitivity but low specificity. Self-reported deep pain intensity was higher in patients with blunt pressure hyperalgesia, but not in patients with DMA or thermal hyperalgesia. No correlations were observed between self-reported hot or cold pain quality and thermal hyperalgesia on QST. Self-reported abnormal skin sensitivity has a high sensitivity to identify patients with DMA, but its low specificity indicates that many patients mean something other than DMA when reporting this symptom. Self-reported deep pain is related to deep-tissue hypersensitivity, but thermal qualities of ongoing pain are not related to thermal hyperalgesia. Questionnaires mostly evaluate the ongoing pain experience, whereas QST mirrors sensory functions. Therefore, both methods are complementary for pain assessment.
Collapse
|
27
|
Abstract
Neuropathic pain caused by a lesion or disease of the somatosensory nervous system is a common chronic pain condition with major impact on quality of life. Examples include trigeminal neuralgia, painful polyneuropathy, postherpetic neuralgia, and central poststroke pain. Most patients complain of an ongoing or intermittent spontaneous pain of, for example, burning, pricking, squeezing quality, which may be accompanied by evoked pain, particular to light touch and cold. Ectopic activity in, for example, nerve-end neuroma, compressed nerves or nerve roots, dorsal root ganglia, and the thalamus may in different conditions underlie the spontaneous pain. Evoked pain may spread to neighboring areas, and the underlying pathophysiology involves peripheral and central sensitization. Maladaptive structural changes and a number of cell-cell interactions and molecular signaling underlie the sensitization of nociceptive pathways. These include alteration in ion channels, activation of immune cells, glial-derived mediators, and epigenetic regulation. The major classes of therapeutics include drugs acting on α2δ subunits of calcium channels, sodium channels, and descending modulatory inhibitory pathways.
Collapse
Affiliation(s)
- Nanna Brix Finnerup
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Rohini Kuner
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Troels Staehelin Jensen
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Neurology, Aarhus University Hospital, Aarhus, Denmark; and Department of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
28
|
van Neerven SGA, Mouraux A. Capsaicin-Induced Skin Desensitization Differentially Affects A-Delta and C-Fiber-Mediated Heat Sensitivity. Front Pharmacol 2020; 11:615. [PMID: 32508630 PMCID: PMC7248294 DOI: 10.3389/fphar.2020.00615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Localized neuropathic pain can be relieved following the topical application of high-concentration capsaicin. This clinical effect is thought to be related to the temporary desensitization of capsaicin- and heat-sensitive epidermal nociceptors. The objective of the present study was to examine whether the changes in thermal sensitivity induced by high-concentration topical capsaicin can be explained entirely by desensitization of capsaicin-sensitive afferents. For this purpose, we characterized, in 20 healthy human volunteers, the time course and spatial extent of the changes in sensitivity to thermal stimuli preferentially activating heat-sensitive A-fiber nociceptors, heat-sensitive C-fiber afferents, and cool-sensitive A-fiber afferents. The volar forearm was treated with a high-concentration capsaicin patch for 1 h. Transient heat, warm and cold stimuli designed to activate Aδ- and C-fiber thermonociceptors, C-fiber warm receptors, and Aδ-fiber cold receptors were applied to the skin before and after treatment at days 1, 3, and 7. Reaction times, intensity ratings, and quality descriptors were collected. The stimuli were applied both within the capsaicin-treated skin and around the capsaicin-treated skin to map the changes in thermal sensitivity. We found that topical capsaicin selectively impairs heat sensitivity without any concomitant changes in cold sensitivity. Most interestingly, we observed a differential effect on the sensitivity to thermal inputs conveyed by Aδ- and C-fibers. Reduced sensitivity to Aδ-fiber-mediated heat was restricted to the capsaicin-treated skin, whereas reduced sensitivity to C-fiber-mediated heat extended well beyond the treated skin. Moreover, the time course of the reduced sensitivity to C-fiber-mediated input was more prolonged than the reduced sensitivity to Aδ-fiber-mediated input.
Collapse
Affiliation(s)
| | - André Mouraux
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| |
Collapse
|
29
|
Gordon-Williams R, Farquhar-Smith P. Recent advances in understanding chemotherapy-induced peripheral neuropathy. F1000Res 2020; 9. [PMID: 32201575 PMCID: PMC7076330 DOI: 10.12688/f1000research.21625.1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a common cause of pain and poor quality of life for those undergoing treatment for cancer and those surviving cancer. Many advances have been made in the pre-clinical science; despite this, these findings have not been translated into novel preventative measures and treatments for CIPN. This review aims to give an update on the pre-clinical science, preventative measures, assessment and treatment of CIPN.
Collapse
Affiliation(s)
- Richard Gordon-Williams
- Department of Pain Medicine, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| | - Paul Farquhar-Smith
- Department of Pain Medicine, The Royal Marsden NHS Foundation Trust, Fulham Road, London, SW3 6JJ, UK
| |
Collapse
|
30
|
Meyer-Frießem CH, Eitner LB, Kaisler M, Maier C, Vollert J, Westermann A, Zahn PK, Avila González CA. Perineural injection of botulinum toxin-A in painful peripheral nerve injury - a case series: pain relief, safety, sensory profile and sample size recommendation. Curr Med Res Opin 2019; 35:1793-1803. [PMID: 31148462 DOI: 10.1080/03007995.2019.1626228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Objectives: Subcutaneous injection of botulinum toxin-A (sBONT-A) is a novel treatment for peripheral neuropathic pain. While its analgesic effects are well documented, this treatment is often not comfortable and fails in patients who show signs of sensory loss but rarely allodynia. There are some case reports about perineural BONT-A injection (pBONT-A) which could be an alternative approach. Here we present a retrospective, open label case series of pBONT-A's efficacy and safety regarding neurological consequences involving changes in somatosensory profiles of both responders and non-responders. Methods: Sixty patients (53 ± 13years, 77% males) with PNI were treated with pBONT-A after a test injection with a local anesthetic, which prompted distinctive pain relief. Quantitative sensory testing (QST; DFNS protocol) and pain intensity were assessed before and ≥7 days post pBONT-A injection. Definition of response: satisfactory pain reduction of ≥30% NRS (numerical rating scale: 0 = no pain, 10 = worst pain) for ≥4 days. Statistics: Paired t-test, Mann-Whitney U-test, χ2 test. Results: A temporary weak paresis in one case was clinically verified. The QST -parameters remained unchanged, but patients with more frequent hyperalgesia signs reported less analgesia (p = .04). The pBONT-A injection prompted pain relief by 24.8% (NRS: 6.0 ± 1.7 vs. 4.5 ± 2.1; p < .0001); 57% (n = 34) were responders (NRS: 6.0 ± 1.6 vs. 3.4 ± 1.6, relief of 43.4%; p < .0001). Based on these results, we suggest that future parallel design trials on pBONT-A need to include at least 84 patients. Discussion: Ultrasound-guided pBONT-A injection seems to be a safe treatment leading to a sufficient pain relief for some months without sensory changes. Surprisingly, pBONT-A showed a pronounced analgesic effect also in patients without signs of hyperalgesia.
Collapse
Affiliation(s)
- Christine H Meyer-Frießem
- Department of Pain Medicine, Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
- Department of Anaesthesiology, Intensive Care, Palliative Care and Pain Medicine, Medical Faculty of Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
| | - Lynn B Eitner
- Department of Pain Medicine, Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
- Department of Neuropediatrics, Ruhr-University Bochum, University Children's Hospital , Bochum , Germany
| | - Miriam Kaisler
- Department of Pain Medicine, Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
| | - Christoph Maier
- Department of Pain Medicine, Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
- Department of Neuropediatrics, Ruhr-University Bochum, University Children's Hospital , Bochum , Germany
| | - Jan Vollert
- Department of Pain Medicine, Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
- Pain Research, Department of Surgery and Cancer, Imperial College , London , UK
- Neurophysiology, Center of Biomedicine and Medical Technology Mannheim CBTM, Medical Faculty Mannheim, Heidelberg University , Heidelberg , Germany
| | - Andrea Westermann
- Department of Pain Medicine, Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
| | - Peter K Zahn
- Department of Anaesthesiology, Intensive Care, Palliative Care and Pain Medicine, Medical Faculty of Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
| | - Carla A Avila González
- Department of Pain Medicine, Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
- Department of Anaesthesiology, Intensive Care, Palliative Care and Pain Medicine, Medical Faculty of Ruhr-University Bochum, Berufsgenossenschaftliches Universitätsklinikum Bergmannsheil gGmbH Bochum , Bochum , Germany
- Department of Anesthesiology, Intensive Care and Pain Medicine, Hessing Foundation , Augsburg , Germany
| |
Collapse
|
31
|
Liu J, Du J, Wang Y. CDK5 inhibits the clathrin-dependent internalization of TRPV1 by phosphorylating the clathrin adaptor protein AP2μ2. Sci Signal 2019; 12:12/585/eaaw2040. [PMID: 31186372 DOI: 10.1126/scisignal.aaw2040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Transient receptor potential vanilloid 1 (TRPV1), a nonselective, ligand-gated cation channel, responds to multiple noxious stimuli and is targeted by many kinases that influence its trafficking and activity. Studies on the internalization of TRPV1 have mainly focused on that induced by capsaicin or other agonists. Here, we report that constitutive internalization of TRPV1 occurred in a manner dependent on clathrin, dynamin, and adaptor protein complex 2 (AP2). The μ2 subunit of AP2 (AP2μ2) interacted directly with TRPV1 and was required for its constitutive internalization. Cyclin-dependent kinase 5 (CDK5) phosphorylated AP2μ2 at Ser45, which reduced the interaction between TRPV1 and AP2μ2, leading to decreased TRPV1 internalization. Intrathecal delivery of a cell-penetrating fusion peptide corresponding to the Cdk5 phosphorylation site in AP2μ2, which competed with AP2μ2 for phosphorylation by Cdk5, increased the abundance of TRPV1 on the surface of dorsal root ganglion neurons and reduced complete Freund's adjuvant (CFA)-induced inflammatory thermal hyperalgesia in rats. In addition to describing a mechanism of TRPV1 constitutive internalization and its inhibition by CDK5, these findings demonstrate that CDK5 promotes inflammatory thermal hyperalgesia by reducing TRPV1 internalization, providing previously unidentified insights into the search for drug targets to treat pain.
Collapse
Affiliation(s)
- Jiao Liu
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing 100191, China.,Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, the Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Junxia Du
- College of Biological Science and Engineering, Xingtai University, Xingtai 054001, Hebei Province, China
| | - Yun Wang
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, the Key Laboratory for Neuroscience of the Ministry of Education/National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China. .,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| |
Collapse
|
32
|
Designing and conducting proof-of-concept chronic pain analgesic clinical trials. Pain Rep 2019; 4:e697. [PMID: 31583338 PMCID: PMC6749910 DOI: 10.1097/pr9.0000000000000697] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023] Open
Abstract
Introduction: The evolution of pain treatment is dependent on successful development and testing of interventions. Proof-of-concept (POC) studies bridge the gap between identification of a novel target and evaluation of the candidate intervention's efficacy within a pain model or the intended clinical pain population. Methods: This narrative review describes and evaluates clinical trial phases, specific POC pain trials, and approaches to patient profiling. Results: We describe common POC trial designs and their value and challenges, a mechanism-based approach, and statistical issues for consideration. Conclusion: Proof-of-concept trials provide initial evidence for target use in a specific population, the most appropriate dosing strategy, and duration of treatment. A significant goal in designing an informative and efficient POC study is to ensure that the study is safe and sufficiently sensitive to detect a preliminary efficacy signal (ie, a potentially valuable therapy). Proof-of-concept studies help avoid resources wasted on targets/molecules that are not likely to succeed. As such, the design of a successful POC trial requires careful consideration of the research objective, patient population, the particular intervention, and outcome(s) of interest. These trials provide the basis for future, larger-scale studies confirming efficacy, tolerability, side effects, and other associated risks.
Collapse
|
33
|
Stratification of neuropathic pain patients: the road to mechanism-based therapy? Curr Opin Anaesthesiol 2019; 31:562-568. [PMID: 30004953 DOI: 10.1097/aco.0000000000000642] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW It has been demonstrated that within one pain entity, patients may report highly heterogenic sensory signs and symptoms. Although mechanism might differ fundamentally between those patients, yet the treatment recommendations are uniform throughout all phenotypes. Therefore, the introduction of new stratification tools could pave the way to an individualized pain treatment. RECENT FINDINGS In the past, retrospective stratifications of patients successfully identified responders to certain pharmacological treatments. This indicated predictive validity and reliability of this classification tool in those patient subgroups. Further on, these observations have been confirmed in prospective studies. SUMMARY This review focusses on recent achievements in neuropathic pain and suggests a promising implementation of an individualized pharmacological therapy in the future.
Collapse
|
34
|
Sensitized vasoactive C-nociceptors: key fibers in peripheral neuropathic pain. Pain Rep 2019; 4:e709. [PMID: 30801047 PMCID: PMC6370139 DOI: 10.1097/pr9.0000000000000709] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 12/28/2022] Open
Abstract
Introduction Multiple mechanisms are involved in the development and persistence of neuropathic pain. Some patients with nerve damage will remain painless and develop a "loss of function" phenotype, whereas others develop painful neuropathies. Objectives The aim of this study is to investigate the role of a peripheral nervous system sensitization by analyzing patients with and without pain. Methods The topical application of capsaicin was investigated in peripheral nociceptors. Two groups of patients (painful vs painless) with length-dependent neuropathies and small-fiber impairment were tested. Quantitative sensory testing was assessed before and after topical application of 0.6% capsaicin in the affected skin. In addition, blood perfusion measurements and an axon reflex flare assessment were performed. Results Quantitative testing revealed that heat hyperalgesia was induced in all patients and volunteers (P < 0.01) without observing any significant differences between patient groups. By contrast, the extent of the axon reflex flare reaction (P < 0.01) as well as the blood perfusion (P < 0.05) was significantly greater in patients with pain than in neuropathy patients not experiencing pain. Conclusion Hyperexcitable vasoactive nociceptive C fibers might contribute to pain in peripheral neuropathies and therefore may serve as a key player in separating into a painless or painful condition.
Collapse
|
35
|
Dynamic of the somatosensory system in postherpetic neuralgia. Pain Rep 2018; 3:e668. [PMID: 30706032 PMCID: PMC6344136 DOI: 10.1097/pr9.0000000000000668] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/28/2018] [Accepted: 06/08/2018] [Indexed: 01/14/2023] Open
Abstract
Introduction: In postherpetic neuralgia (PHN) different types of patients can be distinguished regarding their predominant peripheral nociceptor function. Objective: The aim was to examine somatosensory profiles in the course of disease with special regard to the different subtypes existing in PHN. Methods: Twenty patients with PHN (7 men and 13 women, age 67 ± 9.6 years) were examined at baseline (disease duration 18.1 ± 26 months) and follow-up (31.6 ± 23.8 months later) with quantitative sensory testing (protocol of the German Research Network on Neuropathic Pain). Results: Fourteen (70%) PHN patients presented with impaired (iPHN) and 6 (30%) with preserved (pPHN) C-fiber function. Groups did not differ regarding age, disease duration, or pain intensity at baseline. Both groups did not differ regarding change in pain intensity (−0.5 ± 2.3 vs −1.7 ± 2.6 numerical rating scale, P = n.s.) at follow-up. Impaired PHN improved in thermal and mechanical detection thresholds as well as allodynia independent from change in pain intensity. By contrast, pPHN showed an increase in mechanical pain sensitivity (1.4 ± 2.5 vs −0.4 ± 2.2, P < 0.05) and a trend towards a stronger loss of detection (66% vs 33%, P = n.s.) on follow-up. Conclusion: Results demonstrate that patients with preserved C-fiber function are more predisposed to develop signs of central sensitization as demonstrated by an increased mechanical pain sensitivity. Impaired C-fiber function is able to improve even in chronic cases, but a functional loss is unlikely to play a role here. The knowledge of development of somatosensory profiles in the course of the disease offers possibilities to optimize a mechanism-based treatment.
Collapse
|
36
|
Lo Vecchio S, Andersen HH, Arendt-Nielsen L. The time course of brief and prolonged topical 8% capsaicin-induced desensitization in healthy volunteers evaluated by quantitative sensory testing and vasomotor imaging. Exp Brain Res 2018; 236:2231-2244. [DOI: 10.1007/s00221-018-5299-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 05/23/2018] [Indexed: 12/13/2022]
|
37
|
Capsaicin 8% Patch Repeat Treatment in Nondiabetic Peripheral Neuropathic Pain: A 52-Week, Open-Label, Single-Arm, Safety Study. Clin J Pain 2018; 33:921-931. [PMID: 28872473 DOI: 10.1097/ajp.0000000000000473] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES To investigate the long-term safety and tolerability of capsaicin 8% patch repeat treatment in nondiabetic patients with peripheral neuropathic pain. METHODS A prospective, open-label, observational study in patients with postherpetic neuralgia, posttraumatic or postsurgical nerve injury, HIV-associated distal sensory polyneuropathy, or other peripheral neuropathic pain, and average daily pain score ≥4, who received ≤6 capsaicin 8% patch treatments over 52 weeks according to clinical need (retreatment at 9 to 12 wk intervals). Sensory testing and analgesic effectiveness were assessed using "bedside tests" and Brief Pain Inventory (question 5). RESULTS Overall, 306 patients received treatment. Treatment-emergent adverse events (TEAEs) and drug-related TEAEs were reported by 252 (82.4%) and 207 (67.6%) patients. Application site pain was the most common drug-related TEAE (n=112, 36.6%); no drug-related serious TEAEs were reported. Sensory category shift analyses from baseline to end of study (EoS) in patients attending at least 2 sensory visits (n=278 for all tests except warm, n=277) found sensory deterioration/loss in at least 1 modality in 50.4% (n=140); deterioration/loss in 1, 2, 3, 4, or 5 modalities occurred in 26.6% (n=74), 14.0% (n=39), 5.8% (n=16), 2.5% (n=7), and 1.4% (n=4) cases. Newly emergent hyperesthesia or allodynia was apparent in 1.1% to 3.6% of the cases (depending on modality) by EoS. Between 25.2% and 32.0% of patients reported improvement in a sensory modality by EoS. Average daily pain was 6.6 and 4.7 at baseline and month 12. CONCLUSIONS Generally, capsaicin 8% patch repeat treatment over 52 weeks was well tolerated, with variable alteration in sensory function and minimal chance of complete sensory loss.
Collapse
|
38
|
Rice ASC, Finnerup NB, Kemp HI, Currie GL, Baron R. Sensory profiling in animal models of neuropathic pain: a call for back-translation. Pain 2018; 159:819-824. [PMID: 29300280 PMCID: PMC5911154 DOI: 10.1097/j.pain.0000000000001138] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Harriet I Kemp
- Pain Research, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Gillian L Currie
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitatsklinikum Schleswig-Holstein, Campus Kiel, Germany
| |
Collapse
|
39
|
Stratifying patients with peripheral neuropathic pain based on sensory profiles: algorithm and sample size recommendations. Pain 2018; 158:1446-1455. [PMID: 28595241 PMCID: PMC5515640 DOI: 10.1097/j.pain.0000000000000935] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Supplemental Digital Content is Available in the Text. Phenotype stratification of patients with peripheral neuropathic pain can be conducted with a novel algorithm based on sensory profiles. In a recent cluster analysis, it has been shown that patients with peripheral neuropathic pain can be grouped into 3 sensory phenotypes based on quantitative sensory testing profiles, which are mainly characterized by either sensory loss, intact sensory function and mild thermal hyperalgesia and/or allodynia, or loss of thermal detection and mild mechanical hyperalgesia and/or allodynia. Here, we present an algorithm for allocation of individual patients to these subgroups. The algorithm is nondeterministic—ie, a patient can be sorted to more than one phenotype—and can separate patients with neuropathic pain from healthy subjects (sensitivity: 78%, specificity: 94%). We evaluated the frequency of each phenotype in a population of patients with painful diabetic polyneuropathy (n = 151), painful peripheral nerve injury (n = 335), and postherpetic neuralgia (n = 97) and propose sample sizes of study populations that need to be screened to reach a subpopulation large enough to conduct a phenotype-stratified study. The most common phenotype in diabetic polyneuropathy was sensory loss (83%), followed by mechanical hyperalgesia (75%) and thermal hyperalgesia (34%, note that percentages are overlapping and not additive). In peripheral nerve injury, frequencies were 37%, 59%, and 50%, and in postherpetic neuralgia, frequencies were 31%, 63%, and 46%. For parallel study design, either the estimated effect size of the treatment needs to be high (>0.7) or only phenotypes that are frequent in the clinical entity under study can realistically be performed. For crossover design, populations under 200 patients screened are sufficient for all phenotypes and clinical entities with a minimum estimated treatment effect size of 0.5.
Collapse
|
40
|
Andersen HH, Akiyama T, Nattkemper LA, van Laarhoven A, Elberling J, Yosipovitch G, Arendt-Nielsen L. Alloknesis and hyperknesis—mechanisms, assessment methodology, and clinical implications of itch sensitization. Pain 2018; 159:1185-1197. [DOI: 10.1097/j.pain.0000000000001220] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
41
|
Capsaicin 8% patch reversibly reduces A-delta fiber evoked potential amplitudes. Pain Rep 2018; 3:e644. [PMID: 29756090 PMCID: PMC5902250 DOI: 10.1097/pr9.0000000000000644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/07/2018] [Accepted: 01/31/2018] [Indexed: 01/30/2023] Open
Abstract
The capsaicin 8% patch is a treatment option in patients with localized peripheral neuropathic pain. We provide first data on the effect of capsaicin on the electrophysiological properties of A-delta fibers. Introduction: The capsaicin 8% patch is a treatment option in patients with localized peripheral neuropathic pain. Better understanding of its mechanisms of action and knowledge on predictive biomarkers for a treatment response is warranted. Objectives: To use electrically evoked pain-related potentials for investigation of A-delta fiber conduction after capsaicin 8% patch treatment. Methods: We studied 11 healthy controls at the dorsal hand and the foot and 12 patients with neuropathic pain at the area affected by neuropathic pain before and 2 hours after application of a capsaicin 8% patch (Qutenza). Patients were additionally phenotyped using quantitative sensory testing and skin biopsy. Results: Peak-to-peak N1-P1 amplitudes (PPA) were reduced after Qutenza application by a median of 60% in 6/11 controls and by 33% in patients with neuropathic pain compared with baseline; they were increased in 3 controls that did not develop capsaicin-induced pain. Patients with elevated cold detection thresholds more often had reduced PPA after Qutenza than those with normal cold detection threshold. Patients with reduced PPA after capsaicin application and with capsaicin-induced pain were more likely to achieve pain reduction on Qutenza. Conclusion: The capsaicin 8% patch induces a reduction in A-delta PPA in healthy persons and in patients with neuropathic pain adding to the mechanistic understanding of its effect.
Collapse
|
42
|
Abstract
The low prevalence of erythromelalgia, classified as an orphan disease, poses diagnostic and therapeutic difficulties. The aim of this review is to be an update of the specialized bibliography. Erythromelalgia is an infrequent episodic acrosyndrome affecting mainly both lower limbs symmetrically with the classic triad of erythema, warmth and burning pain. Primary erythromelalgia is an autosomal dominant inherited disorder, while secondary is associated with myeloproliferative diseases, among others. In its etiopathogenesis, there are neural and vascular abnormalities that can be combined. The diagnosis is based on exhaustive clinical history and physical examination. Complications are due to changes in the skin barrier function, ischemia and compromise of cutaneous nerves. Because of the complexity of its pathogenesis, erythromelalgia should always be included in the differential diagnosis of conditions that cause chronic pain and/or peripheral edema. The prevention of crisis is based on a strict control of triggers and promotion of preventive measures. Since there is no specific and effective treatment, control should focus on the underlying disease. However, there are numerous topical and systemic therapies that patients can benefit from.
Collapse
|
43
|
Andersen HH, Arendt-Nielsen L, Yosipovitch G, Elberling J. A prospective case of postherpetic itch monitored by quantitative sensory testing for 1 year while undergoing 8% topical capsaicin treatments. ACTA ACUST UNITED AC 2017. [DOI: 10.1097/itx.0000000000000008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Cruccu G, Nurmikko TJ, Ernault E, Riaz FK, McBride WT, Haanpää M. Superiority of capsaicin 8% patch versus oral pregabalin on dynamic mechanical allodynia in patients with peripheral neuropathic pain. Eur J Pain 2017; 22:700-706. [PMID: 29194851 PMCID: PMC5887877 DOI: 10.1002/ejp.1155] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2017] [Indexed: 01/17/2023]
Abstract
Background Dynamic Mechanical Allodynia (DMA) is a typical symptom of neuropathic pain (NP). In a recent study, the capsaicin 8% patch was noninferior to pregabalin in overall peripheral NP relief. In this study, we report the comparison of the two treatments in relieving DMA. Methods In a randomized, open‐label, head‐to‐head, 8‐week study, 488 patients with peripheral NP were treated with the capsaicin 8% patch (one application) or an optimized dose of pregabalin. Assessments included the area and intensity of DMA, and the number of patients achieving complete resolution of DMA. Results At baseline, 253 patients in the capsaicin 8% patch group and 235 patients in the pregabalin group had DMA. From baseline to end of study, the change in DMA intensity was significantly in favour of the capsaicin 8% patch versus pregabalin [−0.63 (95% CI: −1.04, −0.23; p = 0.002)]. Similarly, the capsaicin 8% patch was superior to pregabalin in reducing the area of DMA [−39.5 cm2 (95% CI: −69.1, −10.0; p = 0.009)] from baseline to end of study. Overall, a greater proportion of patients had a complete resolution of allodynia with capsaicin 8% patch treatment compared with pregabalin treatment (24.1% vs. 12.3%; p = 0.001) at end of study. Conclusion Capsaicin 8% treatment was superior to pregabalin in reducing the intensity and area of DMA, and in the number of patients with complete resolution of DMA. Significance The superiority of a topical treatment over pregabalin in relieving DMA supports the view that both peripheral and central sensitization can mediate allodynia.
Collapse
Affiliation(s)
- G Cruccu
- Department of Neurology and Psychiatry, Sapienza University, Rome, Italy
| | - T J Nurmikko
- The Walton Centre NHS Foundation Trust, Liverpool, UK
| | - E Ernault
- Astellas Pharma Inc., Leiden, The Netherlands
| | - F K Riaz
- Astellas Pharma Inc., Chertsey, UK
| | - W T McBride
- Belfast Health and Social Care Trust, Belfast, Northern Ireland
| | - M Haanpää
- Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
45
|
Abstract
More than 1100 patients with neuropathic pain were examined using quantitative sensory testing. Independent of the etiology, 3 subtypes with distinct sensory profiles were identified and replicated. Patients with neuropathic pain are heterogeneous in etiology, pathophysiology, and clinical appearance. They exhibit a variety of pain-related sensory symptoms and signs (sensory profile). Different sensory profiles might indicate different classes of neurobiological mechanisms, and hence subgroups with different sensory profiles might respond differently to treatment. The aim of the investigation was to identify subgroups in a large sample of patients with neuropathic pain using hypothesis-free statistical methods on the database of 3 large multinational research networks (German Research Network on Neuropathic Pain (DFNS), IMI-Europain, and Neuropain). Standardized quantitative sensory testing was used in 902 (test cohort) and 233 (validation cohort) patients with peripheral neuropathic pain of different etiologies. For subgrouping, we performed a cluster analysis using 13 quantitative sensory testing parameters. Three distinct subgroups with characteristic sensory profiles were identified and replicated. Cluster 1 (sensory loss, 42%) showed a loss of small and large fiber function in combination with paradoxical heat sensations. Cluster 2 (thermal hyperalgesia, 33%) was characterized by preserved sensory functions in combination with heat and cold hyperalgesia and mild dynamic mechanical allodynia. Cluster 3 (mechanical hyperalgesia, 24%) was characterized by a loss of small fiber function in combination with pinprick hyperalgesia and dynamic mechanical allodynia. All clusters occurred across etiologies but frequencies differed. We present a new approach of subgrouping patients with peripheral neuropathic pain of different etiologies according to intrinsic sensory profiles. These 3 profiles may be related to pathophysiological mechanisms and may be useful in clinical trial design to enrich the study population for treatment responders.
Collapse
|
46
|
|
47
|
High-dose 8% capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy: single-center experience. Med Oncol 2017; 34:162. [PMID: 28819738 PMCID: PMC5561154 DOI: 10.1007/s12032-017-1015-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/28/2017] [Indexed: 11/09/2022]
Abstract
High-dose capsaicin patch is effective in treatment of neuropathic pain in HIV-associated neuropathy and diabetic neuropathy. There are no studies assessing effectiveness of high-dose capsaicin patch in treatment of chemotherapy-induced peripheral neuropathy. We sought to determine the effectiveness of treatment of pain associated with chemotherapy-induced peripheral neuropathy with high-dose capsaicin patch. Our study group consisted of 18 patients with clinically confirmed oxaliplatin-induced neuropathy. Baseline characteristic including underling disease, received cumulative dose of neurotoxic agent, neuropathic symptoms, prior treatment and initial pain level were recorded. Pain was evaluated with Numeric Rating Scale prior to treatment with high-dose capsaicin and after 1.8 day and after 8 and 12 weeks after introducing treatment. Patients were divided into two groups accordingly to the amount of neurotoxic agent that caused neuropathy (high sensitivity and low sensitivity group). Most frequent symptoms of chemotherapy-induced neuropathy were: pain (88.89%), paresthesis (100%), sock and gloves sensation (100%) and hypoesthesis (100%). Initial pain level was 7.45 ± 1.14. Mean cumulative dose of oxaliplatin after which patients developed symptoms was 648.07 mg/m2. Mean pain level after 12 weeks of treatment was 0.20 ± 0.41. When examined according to high and low sensitivity to neurotoxic agent patients with low sensitivity had higher pain reduction, especially after 8 days after introducing treatment (69.55 ± 12.09 vs. 49.40 ± 20.34%; p = 0.02) and after 12 weeks (96.96 ± 5.56 vs. 83.93 ± 18.59%; p = 0.04). High-dose capsaicin patch is an effective treatment for pain associated with chemotherapy-induced neuropathy in patients treated with oxaliplatin. Patients with lower sensitivity to neurotoxic agents have better response to treatment and pain reduction.
Collapse
|
48
|
|
49
|
Measurement Error of a Simplified Protocol for Quantitative Sensory Tests in Chronic Pain Patients. Reg Anesth Pain Med 2017; 42:660-668. [PMID: 28742627 DOI: 10.1097/aap.0000000000000640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND AND OBJECTIVES Large-scale application of Quantitative Sensory Tests (QST) is impaired by lacking standardized testing protocols. One unclear methodological aspect is the number of records needed to minimize measurement error. Traditionally, measurements are repeated 3 to 5 times, and their mean value is considered. When transferring QST to a clinical setting, reducing the number of records would be desirable to meet the time constraints encountered in a routine clinical environment and to reduce the testing burden to chronic pain patients. However, there might be a trade-off between measurement error and number of records. We determined the measurement error of a single versus the mean of 3 records of pressure pain detection threshold (PPDT), electrical pain detection threshold (EPDT), and nociceptive withdrawal reflex threshold (NWRT) in 429 chronic pain patients recruited in a routine clinical setting. METHODS We calculated intraclass correlation coefficients and performed a Bland-Altman analysis. RESULTS Intraclass correlation coefficients were all clearly greater than 0.75, and Bland-Altman analysis showed minute systematic errors with small point estimates and narrow 95% confidence intervals. Reducing the number of records from traditionally 3 to only 1 did not lead to relevant measurement error in PPDT, EPDT, or NWRT. CONCLUSIONS This study contributes to a standardized QST protocol, and based on the minimal measurement error of 1 single record of PPDT, EPDT, and NWRT, we submit to reduce the testing burden. This would allow saving time, resources, and patient discomfort.
Collapse
|
50
|
Smith SM, Dworkin RH, Turk DC, Baron R, Polydefkis M, Tracey I, Borsook D, Edwards RR, Harris RE, Wager TD, Arendt-Nielsen L, Burke LB, Carr DB, Chappell A, Farrar JT, Freeman R, Gilron I, Goli V, Haeussler J, Jensen T, Katz NP, Kent J, Kopecky EA, Lee DA, Maixner W, Markman JD, McArthur JC, McDermott MP, Parvathenani L, Raja SN, Rappaport BA, Rice ASC, Rowbotham MC, Tobias JK, Wasan AD, Witter J. The Potential Role of Sensory Testing, Skin Biopsy, and Functional Brain Imaging as Biomarkers in Chronic Pain Clinical Trials: IMMPACT Considerations. THE JOURNAL OF PAIN 2017; 18:757-777. [PMID: 28254585 PMCID: PMC5484729 DOI: 10.1016/j.jpain.2017.02.429] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 01/19/2017] [Accepted: 02/16/2017] [Indexed: 02/08/2023]
Abstract
Valid and reliable biomarkers can play an important role in clinical trials as indicators of biological or pathogenic processes or as a signal of treatment response. Currently, there are no biomarkers for pain qualified by the U.S. Food and Drug Administration or the European Medicines Agency for use in clinical trials. This article summarizes an Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials meeting in which 3 potential biomarkers were discussed for use in the development of analgesic treatments: 1) sensory testing, 2) skin punch biopsy, and 3) brain imaging. The empirical evidence supporting the use of these tests is described within the context of the 4 categories of biomarkers: 1) diagnostic, 2) prognostic, 3) predictive, and 4) pharmacodynamic. Although sensory testing, skin punch biopsy, and brain imaging are promising tools for pain in clinical trials, additional evidence is needed to further support and standardize these tests for use as biomarkers in pain clinical trials. PERSPECTIVE The applicability of sensory testing, skin biopsy, and brain imaging as diagnostic, prognostic, predictive, and pharmacodynamic biomarkers for use in analgesic treatment trials is considered. Evidence in support of their use and outlining problems is presented, as well as a call for further standardization and demonstrations of validity and reliability.
Collapse
|