1
|
Balasubramanian K, Karuppiah C, Alagarsamy S, Mohandoss S, Arunachalam P, Govindasamy C, Velmurugan M, Yang CC, Lee HJ, Ramaraj SK. Highly sensitive detection of environmental toxic fenitrothion in fruits and water using a porous graphene oxide nanosheets based disposable sensor. ENVIRONMENTAL RESEARCH 2024; 259:119500. [PMID: 38950814 DOI: 10.1016/j.envres.2024.119500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/03/2024]
Abstract
Monitoring fenitrothion (FNT) residues in food and the environment is crucial due to its high environmental toxicity. In this study, we developed a sensitive, reliable electrochemical method for detecting FNT by using screen-printed carbon electrodes (SPCE) modified with porous graphene oxide (PGO) nanosheets. PGO surface properties have been meticulously characterized using advanced spectroscopic techniques. Electrochemical impedance spectroscopy and cyclic voltammetry were used to test the electrochemical properties of the PGO-modified sensor. The PGO-modified sensor exhibited remarkable sensitivity, achieving a detection limit as low as 0.061 μM and a broad linear range of 0.02-250 μM. Enhanced performance is due to PGO's high surface area and excellent electrocatalytic properties, which greatly improved electron transfer. Square wave voltammetry was used to demonstrate the sensor's efficacy as a real-time, on-site monitoring tool for FNT residues in fruit and water. The outstanding performance of the PGO/SPCE sensor underscores its applicability in ensuring food safety and environmental protection.
Collapse
Affiliation(s)
- Kavitha Balasubramanian
- PG and Research Department of Chemistry, Thiagarajar College affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Chelladurai Karuppiah
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea.
| | - Saranvignesh Alagarsamy
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Prabhakarn Arunachalam
- Department of Chemistry, College of Science, King Saud University, P.O. Box. 2455, Riyadh, 11451, Saudi Arabia
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Murugan Velmurugan
- Department of Chemistry, K. Ramakrishnan College of Technology, Samayapuram, Tiruchirappalli, 621112, Tamil Nadu, India
| | - Chun-Chen Yang
- Battery Research center of Green Energy, Ming Chi University of Technology, New Taipei City, 24301, Taiwan
| | - Hye Jin Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, 80 Daehakro, Buk-gu, Daegu-city, 41566, Republic of Korea.
| | - Sayee Kannan Ramaraj
- PG and Research Department of Chemistry, Thiagarajar College affiliated to Madurai Kamaraj University, Madurai, Tamil Nadu, India.
| |
Collapse
|
2
|
Gopika MG, Gopidas S, Jayan GS, Arathy PS, Saraswathyamma B. Unveiling thiol biomarkers: Glutathione and cysteamine. Clin Chim Acta 2024; 563:119915. [PMID: 39134217 DOI: 10.1016/j.cca.2024.119915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
The physiological and clinical importance of Glutathione and Cysteamine is emphasized by their participation in a range of conditions, such as diabetes, cancer, renal failure, Parkinson's disease, and hypothyroidism. This necessitates the requirement for accessible, expedited, and cost-efficient testing that can facilitate clinical diagnosis and treatment options. This article examines numerous techniques used to detect both glutathione and cysteamine. The discussed methods include electroanalytical techniques such as voltammetry and amperometry, which are examined for their sensitivity and ability to provide real-time analysis. Furthermore, this study investigates the accuracy of gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) in measuring the concentrations of glutathione and cysteamine. Additionally, the potential of new nanotechnology-based methods, such as plasmonic nanoparticles and quantum dots, to improve the sensitivity of detecting glutathione and cysteamine is emphasized.
Collapse
Affiliation(s)
- M G Gopika
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Surya Gopidas
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Gokul S Jayan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - P S Arathy
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India
| | - Beena Saraswathyamma
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri Campus, Clappana P O, Kollam, Kerala 690525, India.
| |
Collapse
|
3
|
Mahmoud AM, Mahnashi MH, El-Wekil MM. Ratiometric sensing interface for glutathione determination based on electro-polymerized copper-coordinated molecularly imprinted layer supported on silver/porous carbon hybrid. Anal Chim Acta 2023; 1272:341498. [PMID: 37355332 DOI: 10.1016/j.aca.2023.341498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/26/2023]
Abstract
A novel molecularly imprinted ratiometric-based sensor was designed for highly selective and ultrasensitive electrochemical detection of glutathione (GSH). The sensor consists of porous carbon co-doped with nitrogen and sulfur formed on the surface of graphite electrode (N, S@PC/GE). Silver nanoparticles (Ag) were grown on the surface of N, S@PC/GE to improve the conductivity/surface area of the sensor and represent an internal reference signal for ratiometric response. The monomer (pyrrole-4-carboxylic acid, Py-COOH) was electro-polymerized on the surface of Ag/N, S@PC/GE in the presence of Cu (II) to form Cu-MIP@Ag/N, S@PC/GE. Addition of GSH decreased the signal of Ag at 0.18 V (oxidation of Ag) due to coordination complexation, while the signal response at 0.83 V (oxidation of Ag-GSH complex) was increased. Under optimum conditions, the ratio response (IGSH/IAg) was increased with increasing the concentration of GSH in the range of 0.01-500 nM with a detection limit (S/N = 3) of 0.003 nM. The electrochemical sensor exhibits many advantages including low LOD, high selectivity, good reproducibility, and satisfactory stability. The sensor was successfully applied to determine GSH in dietary supplements and human serum samples with recoveries % ranged from 97.4 to 101.8% and relative standard deviation % (RSD %) did not exceed 3.8%. This research paper introduces new information for the construction of molecular imprinted ratiometric-based electrochemical sensors for highly selective and sensitive detection of (bio) molecules.
Collapse
Affiliation(s)
- Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mater H Mahnashi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| |
Collapse
|
4
|
Ziyatdinova G, Gimadutdinova L. Recent Advances in Electrochemical Sensors for Sulfur-Containing Antioxidants. MICROMACHINES 2023; 14:1440. [PMID: 37512751 PMCID: PMC10384414 DOI: 10.3390/mi14071440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Sulfur-containing antioxidants are an important part of the antioxidant defense systems in living organisms under the frame of a thiol-disulfide equilibrium. Among them, l-cysteine, l-homocysteine, l-methionine, glutathione, and α-lipoic acid are the most typical representatives. Their actions in living systems are briefly discussed. Being electroactive, sulfur-containing antioxidants are interesting analytes to be determined using various types of electrochemical sensors. Attention is paid to the chemically modified electrodes with various nanostructured coverages. The analytical capabilities of electrochemical sensors for sulfur-containing antioxidant quantification are summarized and discussed. The data are summarized and presented on the basis of the electrode surface modifier applied, i.e., carbon nanomaterials, metal and metal oxide nanoparticles (NPs) and nanostructures, organic mediators, polymeric coverage, and mixed modifiers. The combination of various types of nanomaterials provides a wider linear dynamic range, lower limits of detection, and higher selectivity in comparison to bare electrodes and sensors based on the one type of surface modifier. The perspective of the combination of chromatography with electrochemical detection providing the possibility for simultaneous determination of sulfur-containing antioxidants in a complex matrix has also been discussed.
Collapse
Affiliation(s)
- Guzel Ziyatdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Liliya Gimadutdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| |
Collapse
|
5
|
Facile fabrication of a superior electrochemical sensor with anti-fouling properties for sensitive and selective determination of glutathione. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
6
|
Dual-signal intrinsic self-calibration ratio electrochemical sensor for glutathione based on silver nanoparticle decorated Prussian Blue analog. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Xu Z, Li P, Chen H, Zhu X, Zhang Y, Liu M, Yao S. Picomolar glutathione detection based on the dual-signal self-calibration electrochemical sensor of ferrocene-functionalized copper metal-organic framework via solid-state electrochemistry of cuprous chloride. J Colloid Interface Sci 2022; 628:798-806. [PMID: 36029594 DOI: 10.1016/j.jcis.2022.08.107] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/08/2022] [Accepted: 08/16/2022] [Indexed: 11/19/2022]
Abstract
Chemical biosensing techniques are essential for food analysis and disease diagnosis. Nanomaterials with redox activity show great potential in electrochemical analysis, acting as signal labels or signal amplification unit, which can reflect the targets concentration in foods and biological samples. Here, an ultra-sensitive dual-signal intrinsic self-calibration electrochemical platform for GSH was firstly fabricated based on the novel electroactive nanomaterial of ferrocene-functionalized copper metal-organic framework (Fc-Cu-MOF). Due to the solid-state electrochemical property of cuprous chloride (CuCl), a sharp characteristic peak with an increased signal appears with the coexistence of chloride ions in solution. The stronger specific affinity between Cu+ and GSH than that of Cu+ and Cl- triggers a "crowding effect" that causes the current signal of CuCl decrease greatly. Meanwhile, the peak current of ferrocene keeps unchanged as an internal reference. Based on the ratio of the peak current variation (ΔICu/ΔIFc) as the signal output, Fc-Cu-MOF modified electrode showed wider linear range in 0.1 nM -1 μM for GSH with the detection limit as low as 0.025 nM. And the sensor was successfully applied in the determination of GSH with excellent recoveries in various real samples such as food and serum samples, providing good prospect in application of bioanalysis and food screening.
Collapse
Affiliation(s)
- Zhenjuan Xu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Peipei Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Haoyu Chen
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Xiaohua Zhu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Youyu Zhang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Meiling Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China.
| | - Shouzhuo Yao
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| |
Collapse
|
8
|
Cai Y, Chen J, Liu X, Hu S, Wang Z. Synthesis of C–N@GC Nanomaterial Derived from Core-Shell ZIF-8@ZIF-67 and Its Application in the Detection of L-Cysteine. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024422140035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Elancheziyan M, Theyagarajan K, Ponnusamy VK, Thenmozhi K, Senthilkumar S. Porous graphene oxide based disposable non-enzymatic electrochemical sensor for the determination of nicotinamide adenine dinucleotide. MICRO AND NANO ENGINEERING 2022. [DOI: 10.1016/j.mne.2022.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Highly selective and sensitive electrochemical determination of cysteine based on complexation with gold nanoparticle–modified copper-based metal organic frameworks. Anal Bioanal Chem 2022; 414:2343-2353. [DOI: 10.1007/s00216-021-03852-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/14/2021] [Accepted: 12/14/2021] [Indexed: 02/06/2023]
|
11
|
Design and fabrication of low potential NADH-sensor based on poly(caffeic acid)@multi-walled carbon nanotubes. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
12
|
Maheshwari H, Vilà N, Herzog G, Walcarius A. Selective Detection of Cysteine at a Mesoporous Silica Film Electrode Functionalized with Ferrocene in the Presence of Glutathione. ChemElectroChem 2020. [DOI: 10.1002/celc.202000396] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Himanshu Maheshwari
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) UMR 7564Université de Lorraine - CNRS 405 Rue de Vandoeuvre 54600 Villers-lès-Nancy France
| | - Neus Vilà
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) UMR 7564Université de Lorraine - CNRS 405 Rue de Vandoeuvre 54600 Villers-lès-Nancy France
| | - Grégoire Herzog
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) UMR 7564Université de Lorraine - CNRS 405 Rue de Vandoeuvre 54600 Villers-lès-Nancy France
| | - Alain Walcarius
- Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME) UMR 7564Université de Lorraine - CNRS 405 Rue de Vandoeuvre 54600 Villers-lès-Nancy France
| |
Collapse
|
13
|
Li J, Zhang L. 3D pothole-rich hierarchical carbon framework-encapsulated Ni nanoparticles for highly selective nonenzymatic cysteine detection. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.135126] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Yang B, Li X, An J, Zhang H, Liu M, Cheng Y, Ding B, Li Y. Designing an "Off-On" Fluorescence Sensor Based on Cluster-Based Ca II-Metal-Organic Frameworks for Detection of l-Cysteine in Biological Fluids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9885-9895. [PMID: 31268335 DOI: 10.1021/acs.langmuir.9b01479] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Recently, luminescent metal-organic framework (MOF) materials have attracted considerable attention in fluorescence sensing. In this essay, we prepared a new cluster-based CaII-MOFs {[Ca1.5(μ8-HL1)(DMF)2]·DMF}n (1) with good water dispersibility, excellent photoluminescence properties (FL quantum yield of 20.37%) and great fluorescence stability. Further, it was employed to design as an "off-on" fluorescence sensor for sensitive detection of l-cysteine. This proposed strategy was that fluorescence of CaII-MOFs 1 was quenched for providing a low fluorescence background by the introduction of Pb2+ forming the CaII-MOFs 1/Pb2+ hybrid system. The quenching effect could be ascribed to the static quenching mechanism because of the formation of ground-state complexes and coordination interactions between the free carboxyl of H4L1 ligands of CaII-MOFs 1 and Pb2+. Then, with the addition of l-cysteine into the CaII-MOFs 1/Pb2+ hybrid system, the fluorescence signal was immediately restored. This result was because the Pb2+ was gradually released from the hybrid system by chelation interactions between the -SH groups of l-cysteine and Pb2+. This method received a relative wide linear range varying from 0.05 to 40 μM and a low detection limit of 15 nM for detection of l-cysteine. This proposed strategy was also successfully applied to detect l-cysteine in human serum samples with satisfactory recoveries from 95.9 to 101.5%.
Collapse
Affiliation(s)
- Bin Yang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Xinshu Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Jundan An
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Huimin Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Manman Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Yue Cheng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Bin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| | - Yan Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , 393 Binshui West Road , Tianjin 300387 , P. R. China
| |
Collapse
|
15
|
Zhang W, zong L, Liu S, pei S, Zhang Y, Ding X, Jiang B, Zhang Y. An electrochemical sensor based on electro-polymerization of caffeic acid and Zn/Ni-ZIF-8–800 on glassy carbon electrode for the sensitive detection of acetaminophen. Biosens Bioelectron 2019; 131:200-206. [DOI: 10.1016/j.bios.2019.01.069] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/14/2019] [Accepted: 01/27/2019] [Indexed: 01/27/2023]
|
16
|
Hanko M, Švorc Ľ, Planková A, Mikuš P. Overview and recent advances in electrochemical sensing of glutathione - A review. Anal Chim Acta 2019; 1062:1-27. [PMID: 30947984 DOI: 10.1016/j.aca.2019.02.052] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
The present paper is aimed at providing an overview of the recent advances in the electrochemical sensing of glutathione (GSH), an important electrochemically and biologically active molecule, for the period 2012-2018. Herein, the analytical performances of newly developed electrochemical methods, procedures and protocols for GSH sensing are comprehensively and critically discussed with respect to the type of method, electrodes used (new electrode modifications, advanced materials and formats), sample matrices, and basic validation parameters obtained (limit of detection, linear dynamic range, precision, selectivity/evaluation of interferences). This paper considers electrochemical methods used alone as well as the hyphenated methods with electrochemical detection (ECD), such as HPLC-ECD or CE-ECD. The practical applicability of the platforms developed for GSH detection and quantification is mostly focused on pharmaceutical and biomedical analysis. The most significant electrochemical approaches for GSH detection in multicomponent analyte samples and multicomponent matrices and for real-time in vivo GSH analysis are highlighted. The great variability in the electrochemical techniques, electrode approaches, and obtainable performance parameters, discussed in this review, brought new insights not only on current GSH and glutathione disulfide (GSSG) determinations, but, along with this, on the advances in electrochemical analysis from a more general point of view.
Collapse
Affiliation(s)
- Michal Hanko
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Ľubomír Švorc
- Slovak University of Technology in Bratislava, Faculty of Chemical and Food Technology, Institute of Analytical Chemistry, Radlinského 9, SK-812 37, Bratislava, Slovak Republic
| | - Alexandra Planková
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic
| | - Peter Mikuš
- Comenius University in Bratislava, Faculty of Pharmacy, Department of Pharmaceutical Analysis and Nuclear Pharmacy, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic; Comenius University in Bratislava, Faculty of Pharmacy, Toxicological and Antidoping Center, Odbojárov 10, SK-832 32, Bratislava, Slovak Republic.
| |
Collapse
|
17
|
Singh M, Jaiswal N, Tiwari I, Foster CW, Banks CE. A reduced graphene oxide-cyclodextrin-platinum nanocomposite modified screen printed electrode for the detection of cysteine. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Electrochemical detection of dihydronicotinamide adenine dinucleotide using Al2O3-GO nanocomposite modified electrode. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2018.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
19
|
Selective electrochemical sensor based on the electropolymerized p-coumaric acid for the direct determination of l-cysteine. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.03.102] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
20
|
Bilgi M, Sahin EM, Ayranci E. Sensor and biosensor application of a new redox mediator: Rosmarinic acid modified screen-printed carbon electrode for electrochemical determination of NADH and ethanol. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
21
|
Ngamchuea K, Chaisiwamongkhol K, Batchelor-McAuley C, Compton RG. Chemical analysis in saliva and the search for salivary biomarkers – a tutorial review. Analyst 2018; 143:81-99. [DOI: 10.1039/c7an01571b] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A review of the uses of saliva biomarkers, detection methods and requirements for new biomarkers.
Collapse
Affiliation(s)
- Kamonwad Ngamchuea
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| | - Korbua Chaisiwamongkhol
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| | | | - Richard G. Compton
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| |
Collapse
|
22
|
Huang Y, Chen M, Li X, Zhang C. Voltammetric Separation and Determination of Glutathione and L-tyrosine with Chlorogenic Acid as an Electrocatalytic Mediator. ELECTROANAL 2017. [DOI: 10.1002/elan.201600688] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ying Huang
- College of Chemistry and Chemical Engineering; Fujian Normal University; Fuzhou Fujian 350007 China
| | - Mei Chen
- College of Chemistry and Chemical Engineering; Fujian Normal University; Fuzhou Fujian 350007 China
| | - Xiaofeng Li
- College of Chemistry and Chemical Engineering; Fujian Normal University; Fuzhou Fujian 350007 China
| | - Cuiyun Zhang
- College of Chemistry and Chemical Engineering; Fujian Normal University; Fuzhou Fujian 350007 China
| |
Collapse
|
23
|
Meloni GN, Bertotti M. Ring-disc Microelectrodes towards Glutathione Electrochemical Detection. ELECTROANAL 2016. [DOI: 10.1002/elan.201600574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Gabriel N. Meloni
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| | - Mauro Bertotti
- Department of Fundamental Chemistry; Institute of Chemistry; University of São Paulo; Av. Prof. Lineu Prestes, 748 05508-000 São Paulo, SP Brazil
| |
Collapse
|
24
|
Areias MCC, Shimizu K, Compton RG. Cysteine determination via adsorptive stripping voltammetry using a bare glassy carbon electrode. Analyst 2016; 141:5563-70. [PMID: 27419249 DOI: 10.1039/c6an01413e] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The electrochemical determination of cysteine is investigated by adsorptive stripping voltammetric detection of a copper-cysteine complex compound using a bare glassy carbon electrode. In acidic 0.1 M KNO3 solution (pH 4), the electrochemical oxidation of this complex compound generates a characteristic anodic peak ca. -0.17 V vs. a standard mercury/mercurous sulphate reference electrode. The voltammetric response is highly reproducible within 2.1% error (n = 3). A linear dynamic range is obtained for a cysteine concentration of 1.0 μM to 10.0 μM. The sensitivity of 0.18 ± 0.006 μA μM(-1) and the limit of detection of 0.03 μM (n = 3) make our methodology highly applicable for practical applications. Successful determination of cysteine concentration in the presence of glutathione has also been demonstrated by the sequential determination of the concentrations of total thiol and the tripeptide alone.
Collapse
Affiliation(s)
- Madalena C C Areias
- Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Av. Jornalista Anibal Fernandes, s/no Cidade Universitária, Recife, PE CEP 50.740-560, Brazil
| | | | | |
Collapse
|
25
|
Li T, Xu J, Zhao L, Shen S, Yuan M, Liu W, Tu Q, Yu R, Wang J. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen. Talanta 2016; 159:356-364. [DOI: 10.1016/j.talanta.2016.06.044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 11/25/2022]
|
26
|
Eguílaz M, Gutierrez F, González-Domínguez JM, Martínez MT, Rivas G. Single-walled carbon nanotubes covalently functionalized with polytyrosine: A new material for the development of NADH-based biosensors. Biosens Bioelectron 2016; 86:308-314. [PMID: 27387261 DOI: 10.1016/j.bios.2016.06.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 12/28/2022]
Abstract
We report for the first time the use of single-walled carbon nanotubes (SWCNT) covalently functionalized with polytyrosine (Polytyr) (SWCNT-Polytyr) as a new electrode material for the development of nicotinamide adenine dinucleotide (NADH)-based biosensors. The oxidation of glassy carbon electrodes (GCE) modified with SWCNT-Polytyr at potentials high enough to oxidize the tyrosine residues have allowed the electrooxidation of NADH at low potentials due to the catalytic activity of the quinones generated from the primary oxidation of tyrosine without any additional redox mediator. The amperometric detection of NADH at 0.200V showed a sensitivity of (217±3)µAmM(-1)cm(-2) and a detection limit of 7.9nM. The excellent electrocatalytic activity of SWCNT-Polytyr towards NADH oxidation has also made possible the development of a sensitive ethanol biosensor through the immobilization of alcohol dehydrogenase (ADH) via Nafion entrapment, with excellent analytical characteristics (sensitivity of (5.8±0.1)µAmM(-1)cm(-2), detection limit of 0.67µM) and very successful application for the quantification of ethanol in different commercial beverages.
Collapse
Affiliation(s)
- Marcos Eguílaz
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Fabiana Gutierrez
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina
| | - Jose Miguel González-Domínguez
- Grupo de nanoestructuras de carbono y Nanotecnología, Departamento de Nanotecnología, Instituto de Carboquímica (CSIC), 50018 Zaragoza, Spain
| | - María T Martínez
- Grupo de nanoestructuras de carbono y Nanotecnología, Departamento de Nanotecnología, Instituto de Carboquímica (CSIC), 50018 Zaragoza, Spain.
| | - Gustavo Rivas
- INFIQC, Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, 5000 Córdoba, Argentina.
| |
Collapse
|
27
|
Areias MCC, Shimizu K, Compton RG. Voltammetric detection of glutathione: an adsorptive stripping voltammetry approach. Analyst 2016; 141:2904-10. [DOI: 10.1039/c6an00550k] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High sensitive detection of glutathione in presence of copper(ii) ions by cyclic voltammetry using a bare glassy carbon electrode is presented.
Collapse
Affiliation(s)
- Madalena C. C. Areias
- Departamento de Química Fundamental
- Centro de Ciências Exatas e da Natureza
- Universidade Federal de Pernambuco
- Brazil - CEP 50.740-560
| | - Kenichi Shimizu
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| | - Richard G. Compton
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| |
Collapse
|
28
|
Beitollahi H, Gholami A, Ganjali MR. Preparation, characterization and electrochemical application of Ag–ZnO nanoplates for voltammetric determination of glutathione and tryptophan using modified carbon paste electrode. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:107-12. [DOI: 10.1016/j.msec.2015.07.034] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 07/11/2015] [Accepted: 07/14/2015] [Indexed: 11/16/2022]
|
29
|
Electrocatalytic activity of activated niclosamide on multi-walled carbon nanotubes glassy carbon electrode toward NADH oxidation. J Solid State Electrochem 2015. [DOI: 10.1007/s10008-015-2862-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Lee PT, Compton RG. Precursor Modified Electrodes: Electrochemical Detection of Captopril. ELECTROANAL 2015. [DOI: 10.1002/elan.201500093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Development of an Electrochemical Sensor for NADH Determination Based on a Caffeic Acid Redox Mediator Supported on Carbon Black. CHEMOSENSORS 2015. [DOI: 10.3390/chemosensors3020118] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Xu H, Xiao J, Liu B, Griveau S, Bedioui F. Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene. Biosens Bioelectron 2015; 66:438-44. [DOI: 10.1016/j.bios.2014.12.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/07/2014] [Accepted: 12/02/2014] [Indexed: 11/24/2022]
|
33
|
Sensitive amperometric determination of methimazole based on the electrocatalytic effect of rutin/multi-walled carbon nanotube film. Bioelectrochemistry 2015; 101:66-74. [DOI: 10.1016/j.bioelechem.2014.07.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 07/09/2014] [Accepted: 07/14/2014] [Indexed: 11/20/2022]
|
34
|
Lee PT, Thomson JE, Karina A, Salter C, Johnston C, Davies SG, Compton RG. Selective electrochemical determination of cysteine with a cyclotricatechylene modified carbon electrode. Analyst 2015; 140:236-42. [DOI: 10.1039/c4an01835d] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the selective electrochemical detection of cysteine in the presence of homocysteine and glutathione with the use of an electrode modified with cyclotricatechylene (CTC).
Collapse
Affiliation(s)
- Patricia T. Lee
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| | - James E. Thomson
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
| | - Athanasia Karina
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
| | - Chris Salter
- Department of Materials
- University of Oxford
- Oxford
- UK
| | | | - Stephen G. Davies
- Department of Chemistry
- Chemistry Research Laboratory
- University of Oxford
- Oxford
- UK
| | - Richard G. Compton
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford
- UK
| |
Collapse
|
35
|
The use of screen-printed electrodes in a proof of concept electrochemical estimation of homocysteine and glutathione in the presence of cysteine using catechol. SENSORS 2014; 14:10395-411. [PMID: 24926695 PMCID: PMC4118355 DOI: 10.3390/s140610395] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 06/05/2014] [Accepted: 06/10/2014] [Indexed: 11/18/2022]
Abstract
Screen printed electrodes were employed in a proof of concept determination of homocysteine and glutathione using electrochemically oxidized catechol via a 1,4-Michael addition reaction in the absence and presence of cysteine, and each other. Using cyclic voltammetry, the Michael reaction introduces a new adduct peak which is analytically useful in detecting thiols. The proposed procedure relies on the different rates of reaction of glutathione and homocysteine with oxidized catechol so that at fast voltage scan rates only homocysteine is detected in cyclic voltammetry. At slower scan rates, both glutathione and homocysteine are detected. The combination of the two sets of data provides quantification for homocysteine and glutathione. The presence of cysteine is shown not to interfere provided sufficient high concentrations of catechol are used. Calibration curves were determined for each homocysteine and glutathione detection; where the sensitivities are 0.019 μA·μM−1 and 0.0019 μA·μM−1 and limit of detections are ca. 1.2 μM and 0.11 μM for homocysteine and glutathione, respectively, within the linear range. This work presents results with potential and beneficial use in re-useable and/or disposable point-of-use sensors for biological and medical applications.
Collapse
|
36
|
|
37
|
A surface-enhanced Raman scattering method for detection of trace glutathione on the basis of immobilized silver nanoparticles and crystal violet probe. Anal Chim Acta 2014; 816:41-9. [DOI: 10.1016/j.aca.2014.01.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 01/19/2014] [Accepted: 01/24/2014] [Indexed: 12/30/2022]
|
38
|
Lotfi Zadeh Zhad HR, Lai RY. A Hg(ii)-mediated “signal-on” electrochemical glutathione sensor. Chem Commun (Camb) 2014; 50:8385-7. [DOI: 10.1039/c4cc03329a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
Lee PT, Ward KR, Tschulik K, Chapman G, Compton RG. Electrochemical Detection of Glutathione Using a Poly(caffeic acid) Nanocarbon Composite Modified Electrode. ELECTROANAL 2013. [DOI: 10.1002/elan.201300486] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|