1
|
Brycht M, Poltorak L, Baluchová S, Sipa K, Borgul P, Rudnicki K, Skrzypek S. Electrochemistry as a Powerful Tool for Investigations of Antineoplastic Agents: A Comprehensive Review. Crit Rev Anal Chem 2024; 54:1017-1108. [PMID: 35968923 DOI: 10.1080/10408347.2022.2106117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Cancer is most frequently treated with antineoplastic agents (ANAs) that are hazardous to patients undergoing chemotherapy and the healthcare workers who handle ANAs in the course of their duties. All aspects related to hazardous oncological drugs illustrate that the monitoring of ANAs is essential to minimize the risks associated with these drugs. Among all analytical techniques used to test ANAs, electrochemistry holds an important position. This review, for the first time, comprehensively describes the progress done in electrochemistry of ANAs by means of a variety of bare or modified (bio)sensors over the last four decades (in the period of 1982-2021). Attention is paid not only to the development of electrochemical sensing protocols of ANAs in various biological, environmental, and pharmaceutical matrices but also to achievements of electrochemical techniques in the examination of the interactions of ANAs with deoxyribonucleic acid (DNA), carcinogenic cells, biomimetic membranes, peptides, and enzymes. Other aspects, including the enantiopurity studies, differentiation between single-stranded and double-stranded DNA without using any label or tag, studies on ANAs degradation, and their pharmacokinetics, by means of electrochemical techniques are also commented. Finally, concluding remarks that underline the existence of a significant niche for the basic electrochemical research that should be filled in the future are presented.
Collapse
Affiliation(s)
- Mariola Brycht
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Lukasz Poltorak
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Simona Baluchová
- Faculty of Science, Department of Analytical Chemistry, UNESCO Laboratory of Environmental Electrochemistry, Charles University, Prague 2, Czechia
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, The Netherlands
| | - Karolina Sipa
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Paulina Borgul
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Konrad Rudnicki
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| | - Sławomira Skrzypek
- Faculty of Chemistry, Department of Inorganic and Analytical Chemistry, University of Lodz, Lodz, Poland
| |
Collapse
|
2
|
Xi L, Chen Y, Zhang X, Liu M, Li J, Xiao D, Dramou P, He H. Less interference fluorescence analytical strategy: Bridging substance-triggered ratiometric sensor with convenient preparation and application. Talanta 2024; 275:126102. [PMID: 38692043 DOI: 10.1016/j.talanta.2024.126102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/03/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024]
Abstract
High interference and narrow application range are key of bottleneck of recent fluorescence analysis methods, which limit their wide application in the sensing field. Therefore, to overcome these disadvantages, a ratiometric fluorescence sensing system utilizing berberine (BER) and silver nanoclusters protected by dihydrolipoic acid (DHLA-AgNCs) was constructed for the first time in this work, to achieve determination of BER and daunorubicin (Dau). BER aqueous solution (non-planar conformation) has no fluorescence emission. When it was mixed with DHLA-AgNCs, the conformation of BER became planar, producing fluorescence emission at 515 nm besides the fluorescence emission peak of DHLA-AgNCs at 653 nm. With the increase of BER concentration added in system, the fluorescence intensity of BER (planar conformation) at 515 nm increased obviously and the fluorescence intensity of DHLA-AgNCs decreased slightly. Therefore, the dual emission fluorescence sensing system was constructed based on a fluorescence substance and non fluorescence substance, to achieve determination of BER. Meanwhile, based on the bridging effect of BER and fluorescence resonance energy transfer effect from Dau, the altering of two peaks intensity was utilized to achieve determination of Dau. Thus, this dual emission sensing system can not only be used for fluorescence analysis of BER and its analogues, but also based on the bridging effect of BER, allowing the determination of Dau and its analogues that could not be directly measured with silver nanoclusters, expanding the application range of traditional dual emission detection systems. Meanwhile, this system has strong anti-interference ability and low toxicity to the human body and less pollution to the sample and environment. This provides a new direction and universal research strategy for the construction of new fluorescence sensing systems in the future for the analysis of target substances that cannot be directly detected with conventional fluorescence analysis methods.
Collapse
Affiliation(s)
- Liping Xi
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Yue Chen
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoni Zhang
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Meiru Liu
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianhui Li
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China
| | - Deli Xiao
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China.
| | - Pierre Dramou
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China.
| | - Hua He
- Department of Chemistry, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Biomedical Functional Materials, China Pharmaceutical University, Nanjing, 211198, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
3
|
Goida A, Rogov A, Kuzin Y, Porfireva A, Evtugyn G. Impedimetric DNA Sensors for Epirubicin Detection Based on Polythionine Films Electropolymerized from Deep Eutectic Solvent. SENSORS (BASEL, SWITZERLAND) 2023; 23:8242. [PMID: 37837072 PMCID: PMC10575168 DOI: 10.3390/s23198242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023]
Abstract
An electrochemically active polymer, polythionine (PTN), was synthesized in natural deep eutectic solvent (NADES) via multiple potential scans and characterized using cyclic voltammetry and electrochemical impedance spectroscopy (EIS). NADES consists of citric acid monohydrate, glucose, and water mixed in the molar ratio of 1:1:6. Electrodeposited PTN film was then applied for the electrostatic accumulation of DNA from salmon sperm and used for the sensitive detection of the anticancer drug epirubicin. Its reaction with DNA resulted in regular changes in the EIS parameters that made it possible to determine 1.0-100 µM of epirubicin with the limit of detection (LOD) of 0.3 µM. The DNA sensor developed was successfully applied for the detection of epirubicin in spiked samples of artificial and natural urine and saliva, with recovery ranging from 90 to 109%. The protocol of the DNA sensor assembling utilized only one drop of reactants and was performed with a minimal number of steps. Together with a simple measurement protocol requiring 100 µL of the sample, this offers good opportunities for the further use of the DNA sensor in monitoring the drug level in biological samples, which is necessary in oncology treatment and for the pharmacokinetics studies of new antitumor drugs.
Collapse
Affiliation(s)
- Anastasia Goida
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (A.G.); (Y.K.); (A.P.)
| | - Alexey Rogov
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia;
| | - Yurii Kuzin
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (A.G.); (Y.K.); (A.P.)
| | - Anna Porfireva
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (A.G.); (Y.K.); (A.P.)
| | - Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia; (A.G.); (Y.K.); (A.P.)
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russia
| |
Collapse
|
4
|
ERDEM A, ŞENTÜRK H, YILDIZ E, MARAL M, YILDIRIM A, BOZOĞLU A, KIVRAK B, AY NC. Electrochemical DNA biosensors developed for the monitoring of biointeractions with drugs: a review. Turk J Chem 2023; 47:864-887. [PMID: 38173734 PMCID: PMC10760829 DOI: 10.55730/1300-0527.3584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
The interaction of drugs with DNA is important for the discovery of novel drug molecules and for understanding the therapeutic effects of drugs as well as the monitoring of side effects. For this reason, many studies have been carried out to investigate the interactions of drugs with nucleic acids. In recent years, a large number of studies have been performed to electrochemically detect drug-DNA interactions. The fast, sensitive, and accurate results of electrochemical techniques have resulted in a leading role for their implementation in this field. By means of electrochemical techniques, it is possible not only to demonstrate drug-DNA interactions but also to quantitatively analyze drugs. In this context, electrochemical biosensors for drug-DNA interactions have been examined under different headings including anticancer, antiviral, antibiotic, and central nervous system drugs as well as DNA-targeted drugs. An overview of the studies related to electrochemical DNA biosensors developed for the detection of drug-DNA interactions that were reported in the last two decades in the literature is presented herein along with their applications and they are discussed together with their future perspectives.
Collapse
Affiliation(s)
- Arzum ERDEM
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Huseyin ŞENTÜRK
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Esma YILDIZ
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Meltem MARAL
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Ayla YILDIRIM
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Aysen BOZOĞLU
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Burak KIVRAK
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| | - Neslihan Ceren AY
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, İzmir,
Turkiye
| |
Collapse
|
5
|
Noman AA, Dash JN, Maruf MAA, Xin C, Tam HY, Yu C. Label-Free DNA Detection Using Etched Tilted Bragg Fiber Grating-Based Biosensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:7019. [PMID: 37631556 PMCID: PMC10457823 DOI: 10.3390/s23167019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023]
Abstract
A label-free-based fiber optic biosensor based on etched tilted Bragg fiber grating (TFBG) is proposed and practically demonstrated. Conventional phase mask technic has been utilized to inscribe tilted fiber Bragg grating with a tilt angle of 10°, while the etching has been accomplished with hydrofluoric acid. A composite of polyethylenimine (PEI)/poly(acrylic acid) (PAA) has been thermally deposited on the etched TFBG, followed by immobilization of probe DNA (pDNA) on this deposited layer. The hybridization of pDNA with the complementary DNA (cDNA) has been monitored using wavelength-dependent interrogation. The reproducibility of the probes has been demonstrated by fabricating three identical probes and their response has been investigated for cDNA concentration ranging from 0 μM to 3 μM. The maximum sensitivity has been found to be 320 pm/μM, with the detection limit being 0.65 μM. Furthermore, the response of the probes towards non-cDNA has also been investigated in order to establish its specificity.
Collapse
Affiliation(s)
- Abdullah Al Noman
- Department of Electronic and Information Engineering, Photonics Research Institute, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China;
| | - Jitendra Narayan Dash
- Department of Electrical Engineering, Photonics Research Institute, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (J.N.D.); (H.-Y.T.)
| | - Md Abdullah Al Maruf
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China;
| | - Cheng Xin
- Department of Electrical Engineering, Photonics Research Institute, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (J.N.D.); (H.-Y.T.)
| | - Hwa-Yam Tam
- Department of Electrical Engineering, Photonics Research Institute, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China; (J.N.D.); (H.-Y.T.)
| | - Changyuan Yu
- Department of Electronic and Information Engineering, Photonics Research Institute, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Hung Hom, Hong Kong SAR, China;
| |
Collapse
|
6
|
Kulikova T, Shamagsumova R, Rogov A, Stoikov I, Padnya P, Shiabiev I, Evtugyn G. Electrochemical DNA-Sensor Based on Macrocyclic Dendrimers with Terminal Amino Groups and Carbon Nanomaterials. SENSORS (BASEL, SWITZERLAND) 2023; 23:4761. [PMID: 37430675 DOI: 10.3390/s23104761] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023]
Abstract
The assembling of thiacalix[4]arene-based dendrimers in cone, partial cone, and 1,3-alternate configuration on the surface of a glassy carbon electrode coated with carbon black or multiwalled carbon nanotubes has been characterized using cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. Native and damaged DNA were electrostatically accumulated on the modifier layer. The influence of the charge of the redox indicator and of the macrocycle/DNA ratio was quantified and the roles of the electrostatic interactions and of the diffusional transfer of the redox indicator to the electrode interface indicator access were established. The developed DNA sensors were tested on discrimination of native, thermally denatured, and chemically damaged DNA and on the determination of doxorubicin as the model intercalator. The limit of detection of doxorubicin established for the biosensor based on multi-walled carbon nanotubes was equal to 1.0 pM with recovery from spiked human serum of 105-120%. After further optimization of the assembling directed towards the stabilization of the signal, the developed DNA sensors can find application in the preliminary screening of antitumor drugs and thermal damage of DNA. They can also be applied for testing potential drug/DNA nanocontainers as future delivery systems.
Collapse
Affiliation(s)
- Tatjana Kulikova
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Rezeda Shamagsumova
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Alexey Rogov
- Interdisciplinary Center of Analytical Microscopy, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Ivan Stoikov
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Pavel Padnya
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Igor Shiabiev
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Gennady Evtugyn
- A.M. Butlerov' Chemistry Institute, Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| |
Collapse
|
7
|
Kulikova T, Shiabiev I, Padnya P, Rogov A, Evtugyn G, Stoikov I, Porfireva A. Impedimetric DNA Sensor Based on Electropolymerized N-Phenylaminophenothiazine and Thiacalix[4]arene Tetraacids for Doxorubicin Determination. BIOSENSORS 2023; 13:bios13050513. [PMID: 37232875 DOI: 10.3390/bios13050513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Electrochemical DNA sensors are highly demanded for fast and reliable determination of antitumor drugs and chemotherapy monitoring. In this work, an impedimetric DNA sensor has been developed on the base of a phenylamino derivative of phenothiazine (PhTz). A glassy carbon electrode was covered with electrodeposited product of PhTz oxidation obtained through multiple scans of the potential. The addition of thiacalix[4]arene derivatives bearing four terminal carboxylic groups in the substituents of the lower rim improved the conditions of electropolymerization and affected the performance of the electrochemical sensor depending on the configuration of the macrocyclic core and molar ratio with PhTz molecules in the reaction medium. Following that, the deposition of DNA by physical adsorption was confirmed by atomic force microscopy and electrochemical impedance spectroscopy. The redox properties of the surface layer obtained changed the electron transfer resistance in the presence of doxorubicin due to its intercalating DNA helix and influencing charge distribution on the electrode interface. This made it possible to determine 3 pM-1 nM doxorubicin in 20 min incubation (limit of detection 1.0 pM). The DNA sensor developed was tested on a bovine serum protein solution, Ringer-Locke's solution mimicking plasma electrolytes and commercial medication (doxorubicin-LANS) and showed a satisfactory recovery rate of 90-105%. The sensor could find applications in pharmacy and medical diagnostics for the assessment of drugs able to specifically bind to DNA.
Collapse
Affiliation(s)
- Tatjana Kulikova
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Igor Shiabiev
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Pavel Padnya
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Alexey Rogov
- Interdisciplinary Center of Analytical Microscopy of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Gennady Evtugyn
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| | - Ivan Stoikov
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| | - Anna Porfireva
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia
| |
Collapse
|
8
|
Evtugyn GA, Porfireva AV, Belyakova SV. Electrochemical DNA sensors for drug determination. J Pharm Biomed Anal 2022; 221:115058. [PMID: 36179503 DOI: 10.1016/j.jpba.2022.115058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
In this review, recent achievements in the development of the DNA biosensors developed for the drug determination have been presented with particular emphasis to the main principles of their assembling and signal measurement approaches. The design of the DNA sensors is considered with characterization of auxiliary components and their necessity for the biosensor operation. Carbon nanomaterials, metals and their complexes as well as electropolymerized polymers are briefly described in the assembly of DNA sensors. The performance of the DNA sensors is summarized within 2017-2022 for various drugs and factors influencing the sensitivity and selectivity of the response are discussed. Special attention is paid to the mechanism of the signal generation and possible drawbacks in the analysis of real samples.
Collapse
Affiliation(s)
- G A Evtugyn
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation; Analytical Chemistry Department of Chemical Technology Institute of Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russian Federation.
| | - A V Porfireva
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| | - S V Belyakova
- A.M. Butlerov' Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russian Federation
| |
Collapse
|
9
|
Wang W, Zhang Y, Liu D, Zhang H, Wang X, Zhou Y. Prediction of DNA-Binding Protein–Drug-Binding Sites Using Residue Interaction Networks and Sequence Feature. Front Bioeng Biotechnol 2022; 10:822392. [PMID: 35519609 PMCID: PMC9065339 DOI: 10.3389/fbioe.2022.822392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Identification of protein–ligand binding sites plays a critical role in drug discovery. However, there is still a lack of targeted drug prediction for DNA-binding proteins. This study aims at the binding sites of DNA-binding proteins and drugs, by mining the residue interaction network features, which can describe the local and global structure of amino acids, combined with sequence feature. The predictor of DNA-binding protein–drug-binding sites is built by employing the Extreme Gradient Boosting (XGBoost) model with random under-sampling. We found that the residue interaction network features can better characterize DNA-binding proteins, and the binding sites with high betweenness value and high closeness value are more likely to interact with drugs. The model shows that the residue interaction network features can be used as an important quantitative indicator of drug-binding sites, and this method achieves high predictive performance for the binding sites of DNA-binding protein–drug. This study will help in drug discovery research for DNA-binding proteins.
Collapse
Affiliation(s)
- Wei Wang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
- *Correspondence: Wei Wang, ; Dong Liu, ; Yun Zhou,
| | - Yu Zhang
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
| | - Dong Liu
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
- Key Laboratory of Artificial Intelligence and Personalized Learning in Education of Henan Province, College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
- *Correspondence: Wei Wang, ; Dong Liu, ; Yun Zhou,
| | - HongJun Zhang
- Computer Science and Technology, Anyang University, Anyang, China
| | - XianFang Wang
- Computer Science and Technology, Henan Institute of Technology, Xinxiang, China
| | - Yun Zhou
- College of Computer and Information Engineering, Henan Normal University, Xinxiang, China
- *Correspondence: Wei Wang, ; Dong Liu, ; Yun Zhou,
| |
Collapse
|
10
|
Electrochemical Sensing of Idarubicin—DNA Interaction Using Electropolymerized Azure B and Methylene Blue Mediation. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10010033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A highly sensitive electrochemical DNA sensor for detection of the chemotherapeutic drug idarubicin mediated by Methylene blue (MB) has been developed. DNA from fish sperm has been immobilized at the electropolymerized layers of Azure B. The incorporation of MB into the DNA layers substantially increased the sensor sensitivity. The concentration range for idarubicin determination by cyclic voltammetry was from 1 fM to 0.1 nM, with a limit of detection (LOD) of 0.3 fM. Electrochemical impedance spectroscopy (EIS) in the presence of a redox probe ([Fe(CN)6]3−/4−) allowed for the widening of a linear range of idarubicin detection from 1 fM to 100 nM, retaining LOD 0.3 fM. The DNA sensor has been tested in various real and artificial biological fluids with good recovery ranging between 90–110%. The sensor has been successfully used for impedimetric idarubicin detection in medical preparation Zavedos®. The developed DNA biosensor could be useful for the control of the level of idarubicin during cancer therapy as well as for pharmacokinetics studies.
Collapse
|
11
|
Porfireva A, Plastinina K, Evtugyn V, Kuzin Y, Evtugyn G. Electrochemical DNA Sensor Based on Poly(Azure A) Obtained from the Buffer Saturated with Chloroform. SENSORS 2021; 21:s21092949. [PMID: 33922359 PMCID: PMC8122775 DOI: 10.3390/s21092949] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/17/2021] [Accepted: 04/21/2021] [Indexed: 01/09/2023]
Abstract
Electropolymerized redox polymers offer broad opportunities in detection of biospecific interactions of DNA. In this work, Azure A was electrochemically polymerized by multiple cycling of the potential in phosphate buffer saturated with chloroform and applied for discrimination of the DNA damage. The influence of organic solvent on electrochemical properties of the coating was quantified and conditions for implementation of DNA in the growing polymer film were assessed using cyclic voltammetry, quartz crystal microbalance, and electrochemical impedance spectroscopy. As shown, both chloroform and DNA affected the morphology of the polymer surface and electropolymerization efficiency. The electrochemical DNA sensor developed made it possible to distinguish native and thermally and chemically damaged DNA by changes in the charge transfer resistance and capacitance.
Collapse
Affiliation(s)
- Anna Porfireva
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.P.); (K.P.); (Y.K.)
| | - Kseniya Plastinina
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.P.); (K.P.); (Y.K.)
| | - Vladimir Evtugyn
- Interdisciplinary Center of Analytical Microscopy of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia;
| | - Yurii Kuzin
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.P.); (K.P.); (Y.K.)
| | - Gennady Evtugyn
- A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street, 420008 Kazan, Russia; (A.P.); (K.P.); (Y.K.)
- Analytical Chemistry Department of Chemical Technology Institute of Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
- Correspondence:
| |
Collapse
|
12
|
Piroozmand F, Mohammadipanah F, Faridbod F. Emerging biosensors in detection of natural products. Synth Syst Biotechnol 2020; 5:293-303. [PMID: 32954023 PMCID: PMC7484522 DOI: 10.1016/j.synbio.2020.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/23/2020] [Accepted: 08/25/2020] [Indexed: 01/10/2023] Open
Abstract
Natural products (NPs) are a valuable source in the food, pharmaceutical, agricultural, environmental, and many other industrial sectors. Their beneficial properties along with their potential toxicities make the detection, determination or quantification of NPs essential for their application. The advanced instrumental methods require time-consuming sample preparation and analysis. In contrast, biosensors allow rapid detection of NPs, especially in complex media, and are the preferred choice of detection when speed and high throughput are intended. Here, we review diverse biosensors reported for the detection of NPs. The emerging approaches for improving the efficiency of biosensors, such as microfluidics, nanotechnology, and magnetic beads, are also discussed. The simultaneous use of two detection techniques is suggested as a robust strategy for precise detection of a specific NP with structural complexity in complicated matrices. The parallel detection of a variety of NPs structures or biological activities in a mixture of extract in a single detection phase is among the anticipated future advancements in this field which can be achieved using multisystem biosensors applying multiple flow cells, sensing elements, and detection mechanisms on miniaturized folded chips.
Collapse
Affiliation(s)
- Firoozeh Piroozmand
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | - Farnoush Faridbod
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Electrochemical DNA Sensor Based on the Copolymer of Proflavine and Azure B for Doxorubicin Determination. NANOMATERIALS 2020; 10:nano10050924. [PMID: 32397677 PMCID: PMC7279264 DOI: 10.3390/nano10050924] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/05/2020] [Accepted: 05/08/2020] [Indexed: 01/31/2023]
Abstract
A DNA sensor has been developed for the determination of doxorubicin by consecutive electropolymerization of an equimolar mixture of Azure B and proflavine and adsorption of native DNA from salmon sperm on a polymer film. Electrochemical investigation showed a difference in the behavior of individual drugs polymerized and their mixture. The use of the copolymer offered some advantages, i.e., a higher roughness of the surface, a wider range of the pH sensitivity of the response, a denser and more robust film, etc. The formation of the polymer film and its redox properties were studied using scanning electron microscopy and electrochemical impedance spectroscopy. For the doxorubicin determination, its solution was mixed with DNA and applied on the polymer surface. After that, charge transfer resistance was assessed in the presence of [Fe(CN)6]3-/4- as the redox probe. Its value regularly grew with the doxorubicin concentration in the range from 0.03 to 10 nM (limit of detection 0.01 nM). The DNA sensor was tested on the doxorubicin preparations and spiked samples mimicking blood serum. The recovery was found to be 98-106%. The DNA sensor developed can find application for the determination of drug residues in blood and for the pharmacokinetics studies.
Collapse
|