1
|
Priscillal JD, Sheu JK, Wang SF. Nanoengineered electrochemical sensor for sensitive detection of carbendazim in environmental waters using Er 3NbO 7/f-CNF nanocomposite. ENVIRONMENTAL RESEARCH 2024; 263:119927. [PMID: 39304015 DOI: 10.1016/j.envres.2024.119927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024]
Abstract
Water contamination by agricultural chemicals is a pressing environmental issue today. Carbendazim (CBZ), a potent fungicide with broad-spectrum antifungal properties and significant toxicity, poses substantial risks to ecosystems and human health. This study introduces an advanced electrochemical sensor by modifying screen-printed carbon electrodes (SPCEs) with a nanocomposite of erbium niobate (Er3NbO7) and functionalized carbon nanofibers (f-CNF). The Er3NbO7/f-CNF nanocomposite enhances electrochemical performance through its high surface area, excellent electrical conductivity, and catalytic activity. This synergy results in exceptional attributes such as a low detection limit of 6.0 nmolL-1, low quantification limit of 19.98 nmolL-1, sensitivity of 3.522 μAμ(molL-1)-1.cm-2, and precision of 0.05%. The sensor demonstrates a wide linear range from 0.2 to 222 μmolL-1, combined with high selectivity and robust stability, making it suitable for precise CBZ detection. Successful deployment in environmental monitoring underscores its versatility and effectiveness in safeguarding human health and ecological balance, establishing it as a pivotal tool in environmental protection efforts.
Collapse
Affiliation(s)
| | - Jinn-Kong Sheu
- Department of Photonics, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 106, Taiwan.
| |
Collapse
|
2
|
Rahman A, Khondoker MAH. Effect of Treatment Methods on Material Properties and Performance of Sawdust-Concrete and Sawdust-Polymer Composites. Polymers (Basel) 2024; 16:3289. [PMID: 39684033 DOI: 10.3390/polym16233289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
The circular economic approach in polymer composite research has gained acceptance for offering low-cost, high-performance solutions. Sawdust-derived composites have drawn interest as alternatives in concrete and composite fabrication, addressing housing shortages and resource depletion. Sawdust concrete (SDC) and sawdust polymer composites (SDPC) are key areas under investigation, with SDC additionally aiding in carbon reduction in building materials. However, challenges arise due to sawdust's inherent hydrophilicity, porosity, and lower strength. This study introduces a novel approach by identifying specific chemical treatments, including alkali and silane, which effectively enhance sawdust's compressive and tensile strengths, moisture resistance, and durability, optimizing it for structural applications. The study evaluates SDC's compressive strength based on treatment type, concentration, and curing time, examining physical properties such as water absorption, moisture sensitivity, and fiber-matrix adhesion. The unique contribution lies in a detailed optimization analysis, revealing conditions under which sawdust reaches structural-grade performance, expanding its potential in sustainable construction. For SPDC, tensile strength improvements are assessed under various chemical compositions, showing that specific polymers form stronger fiber-matrix bonds for greater stability. Morphological studies further explore fiber-matrix compatibility, hydrophobicity, and failure mechanisms. By advancing the understanding of treatment efficacy, this review positions sawdust as a viable, low-cost material alternative, establishing a foundation for sustainable innovation in construction and bio-composite research. These findings contribute to sawdust's potential as a practical, eco-friendly building material.
Collapse
Affiliation(s)
- Arafater Rahman
- Industrial System Engineering, University of Regina, 3737 Wascana Pkwy, Regina, SK S4S, Canada
| | | |
Collapse
|
3
|
Vadia FY, Malek NI, Kailasa SK. Synthesis of Carbon Dots from Peltophorum Pterocarpum Flowers for Selective Fluorescence Detection of Carbendazim. J Fluoresc 2024:10.1007/s10895-024-03919-y. [PMID: 39227544 DOI: 10.1007/s10895-024-03919-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024]
Abstract
In this study, carbon dots (CDs) were synthesized from Peltophorum pterocarpum flowers as the precursor material using the hydrothermal method. The fluorescence emission spectra of the resulting Peltophorum pterocarpum CDs (PP-CDs) exhibited excitation-independent behavior, showing the fluorescence emission peak at 410 nm when excited at 330 nm. This method is simple, rapid and well consistent with the green chemistry and sustainable analytical method development. The as-synthesized PP-CDs acted as a promising fluorescent probe for detecting carbendazim (CBZ) via aggregation-induced emission mechanism, showing a linear response to CBZ concentrations ranging from 1 to 30 μM, with a detection limit of 5.41 nM. This method was successfully applied to quantify CBZ in food samples, achieving excellent recoveries of 99% with a relative standard deviation (RSD) of less than 2%.
Collapse
Affiliation(s)
- Foziya Yusuf Vadia
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India
| | - Naved I Malek
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India
| | - Suresh Kumar Kailasa
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat, 395 007, India.
| |
Collapse
|
4
|
Manasa G, Mahamiya V, Chakraborty B, Rout CS. 2D/1D VSe 2/MWCNT hybrid-based electrochemical sensor for carbendazim quantification of environmental, food, and biological samples. Mikrochim Acta 2024; 191:540. [PMID: 39150580 DOI: 10.1007/s00604-024-06619-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024]
Abstract
For the first time the sensitive determination of carbendatim (CRB) is reported utilizing a well-designed sensing architecture based on vanadium diselenide-multiwalled carbon nanotube (VSMC). FTIR, XRD, FESEM, EDS, and EIS were employed to evaluate the sensor's structural integrity, and the results demonstrated the successful integration of nanomaterials, resulting in a robust and sensitive electrochemical sensor. Cyclic voltammetry (CV) and chronoamperometric (CA) investigations showed that the sensor best performed at pH 8.0 (BRB) with an excellent detection limit of 9.80 nM with a wide linear range of 0.1 to 10.0 µM. A more thermodynamically viable oxidation of CRB was observed at the VSMC/GCE, with a shift of 200 mV in peak potential towards the less positive side compared with the unmodified GCE. In addition, the sensor demonstrated facile heterogeneous electron transfer, favorable anti-fouling traits in the presence of a wide range of interferents, good stability, and reproducible analytical performance. Finally, the developed sensor was validated for real-time quantification of CRB from spiked water, food, and bio-samples, which depicted acceptable recoveries (98.6 to 101.5%) with RSD values between 0.35 and 2.23%. Further, to derive the possible sensing mechanism, the valence orbitals projected density of states (PDOS) for C, H, and N atoms of an isolated CRB molecule, VSe2 + CNT and VSe2 + CNT + CRB were calculated using density functional theory (DFT) calculations. The dominant charge transfer from the valence 2p-orbitals of the C and N atoms of CRB to CNT is responsible for the electrochemical sensing of CRB molecules.
Collapse
Affiliation(s)
- G Manasa
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura Road, Bangalore, 562112, Karnataka, India
| | - Vikram Mahamiya
- The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, 34151, Italy
| | - Brahmananda Chakraborty
- High Pressure and Synchrotron Radiation Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain (Deemed-to-Be University), Jain Global Campus, Kanakapura Road, Bangalore, 562112, Karnataka, India.
| |
Collapse
|
5
|
Nehru R, Chen CW, Dong CD. A review of smart electrochemical devices for pesticide detection in agricultural food and runoff contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173360. [PMID: 38777059 DOI: 10.1016/j.scitotenv.2024.173360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
In the evolving field of food and agriculture, pesticide utilization is inevitable for food production and poses an increasing threat to the ecosystem and human health. This review systematically investigates and provides a comprehensive overview of recent developments in smart electrochemical devices for detecting pesticides in agricultural food and runoff contaminants. The focus encompasses recent progress in lab-scale and portable electrochemical sensors, highlighting their significance in agricultural pesticide monitoring. This review compares these sensors comprehensively and provides a scientific guide for future sensor development for infield agricultural pesticide monitoring and food safety. Smart devices address challenges related to power consumption, low cost, wearability, and portability, contributing to the advancement of agricultural sustainability. By elucidating the intricate details of these smart devices, this review offers a comprehensive discussion and roadmap for future research aimed at cost-effective, flexible, and smart handy devices, including novel electrocatalysts, to foster the development of next-generation agricultural sensor technology, opportunity and future direction for food security.
Collapse
Affiliation(s)
- Raja Nehru
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
6
|
Xiao X, Li L, Deng H, Zhong Y, Deng W, Xu Y, Chen Z, Zhang J, Hu X, Wang Y. Biomass-derived 2D carbon materials: structure, fabrication, and application in electrochemical sensors. J Mater Chem B 2023; 11:10793-10821. [PMID: 37910389 DOI: 10.1039/d3tb01910a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Biomass, a renewable hydrocarbon, is one of the favorable sources of advanced carbon materials owing to its abundant resources and diverse molecular structures. Biomass-based two-dimensional carbon nanomaterials (2D-BC) have attracted extensive attention due to their tunable structures and properties, and have been widely used in the design and fabrication of electrochemical sensing platforms. This review embarks on the thermal conversion process of biomass from different sources and the synthesis strategy of 2D-BC materials. The affinity between 2D-BC structure and properties is emphasized. The recent progress in 2D-BC-based electrochemical sensors for health and environmental monitoring is also presented. Finally, the challenges and future development directions related to such materials are proposed in order to promote their further application in the field of electrochemical sensing.
Collapse
Affiliation(s)
- Xuanyu Xiao
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Lei Li
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Hui Deng
- Rotex Co., Ltd., Chengdu, Sichuan 610043, China
| | - Yuting Zhong
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Wei Deng
- Department of Orthopedics Pidu District People's Hospital, The Third Affiliated Hospital of Chengdu Medical College Chengdu, Sichuan, 611730, China
| | - Yuanyuan Xu
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Zhiyu Chen
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Jieyu Zhang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| | - Xuefeng Hu
- West China School of Basic Medical Sciences & Forensic Medicine Sichuan University, Chengdu, 610044, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials & College of Biomedical Engineering, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
7
|
Crapnell RD, Adarakatti PS, Banks CE. Electroanalytical overview: the sensing of carbendazim. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4811-4826. [PMID: 37721714 DOI: 10.1039/d3ay01053h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Carbendazim is a broad-spectrum systemic fungicide that is used to control various fungal diseases in agriculture, horticulture, and forestry. Carbendazim is also used in post-harvest applications to prevent fungal growth on fruits and vegetables during storage and transportation. Carbendazim is regulated in many countries and banned in others, thus, there is a need for the sensing of carbendazim to ensure that high levels are avoided which can result in potential health risks. One approach is the use of electroanalytical sensors which present a rapid, but highly selective and sensitive output, whilst being economical and providing portable sensing platforms to support on-site analysis. In this minireview, we report on the electroanalytical sensing of carbendazim overviewing recent advances, helping to elucidate the electrochemical mechanism and provide conclusions and future perspectives of this field.
Collapse
Affiliation(s)
- Robert D Crapnell
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Prashanth S Adarakatti
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| | - Craig E Banks
- Faculty of Science and Engineering, Manchester Metropolitan University, Chester Street, Manchester M1 5GD, UK.
| |
Collapse
|
8
|
Onfray C, Thiam A. Biomass-Derived Carbon-Based Electrodes for Electrochemical Sensing: A Review. MICROMACHINES 2023; 14:1688. [PMID: 37763851 PMCID: PMC10538108 DOI: 10.3390/mi14091688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/22/2023] [Accepted: 08/27/2023] [Indexed: 09/29/2023]
Abstract
The diverse composition of biomass waste, with its varied chemical compounds of origin, holds substantial potential in developing low-cost carbon-based materials for electrochemical sensing applications across a wide range of compounds, including pharmaceuticals, dyes, and heavy metals. This review highlights the latest developments and explores the potential of these sustainable electrodes in electrochemical sensing. Using biomass sources, these electrodes offer a renewable and cost-effective route to fabricate carbon-based sensors. The carbonization process yields highly porous materials with large surface areas, providing a wide variety of functional groups and abundant active sites for analyte adsorption, thereby enhancing sensor sensitivity. The review classifies, summarizes, and analyses different treatments and synthesis of biomass-derived carbon materials from different sources, such as herbaceous, wood, animal and human wastes, and aquatic and industrial waste, used for the construction of electrochemical sensors over the last five years. Moreover, this review highlights various aspects including the source, synthesis parameters, strategies for improving their sensing activity, morphology, structure, and functional group contributions. Overall, this comprehensive review sheds light on the immense potential of biomass-derived carbon-based electrodes, encouraging further research to optimize their properties and advance their integration into practical electrochemical sensing devices.
Collapse
Affiliation(s)
- Christian Onfray
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile
| | - Abdoulaye Thiam
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación, Universidad Tecnológica Metropolitana, Santiago 8940577, Chile
| |
Collapse
|
9
|
Prabhu K, Malode SJ, Shetti NP. Carbon-Based Electrochemical Sensor for the Detection and Degradation of Persistent Toxic Carbendazim in Soil and Water Sample. Electrocatalysis (N Y) 2022. [DOI: 10.1007/s12678-022-00777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Beigmoradi F, Rohani Moghadam M, Bazmandegan-Shamili A, Masoodi HR. Electrochemical sensor based on molecularly imprinted polymer coating on metal–organic frameworks for the selective and sensitive determination of carbendazim. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Zou Y, Zhou X, Xie L, Tang H, Yan F. Vertically-Ordered Mesoporous Silica Films Grown on Boron Nitride-Graphene Composite Modified Electrodes for Rapid and Sensitive Detection of Carbendazim in Real Samples. Front Chem 2022; 10:939510. [PMID: 35903187 PMCID: PMC9314778 DOI: 10.3389/fchem.2022.939510] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 12/14/2022] Open
Abstract
Carbendazim (CBZ), a kind of widely used pesticide, is harmful to human health and environmental ecology. Therefore, it is of great importance to detect CBZ in real samples. Herein we report the stable growth of vertically-ordered mesoporous silica films (VMSF) on the glassy carbon electrode (GCE) using boron nitride-reduced graphene oxide (BN-rGO) nanocomposite as an adhesive and electroactive layer. Oxygen-containing groups of rGO and 2D planar structure of BN-rGO hybrid favor the stable growth of VMSF via the electrochemically assisted self-assembly (EASA) method. Combining the good electrocatalytic activity of BN-rGO and the enrichment effect of VMSF, the proposed VMSF/BN-rGO/GCE can detect CBZ with high sensitivity (3.70 μA/μM), a wide linear range (5 nM–7 μM) and a low limit of detection (2 nM). Furthermore, due to the inherent anti-fouling and anti-interference capacity of VMSF, direct and rapid electrochemical analyses of CBZ in pond water and grape juice samples are also achieved without the use of complicated sample treatment processes.
Collapse
Affiliation(s)
- Yanqi Zou
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xiaoyu Zhou
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
| | - Liuhong Xie
- The First Clinical Faculty of Guangxi University of Chinese Medicine, Nanning, China
| | - Hongliang Tang
- Affiliated Fangchenggang Hospital, Guangxi University of Chinese Medicine, Fangchenggang, China
- *Correspondence: Hongliang Tang, ; Fei Yan,
| | - Fei Yan
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Hongliang Tang, ; Fei Yan,
| |
Collapse
|