1
|
Adelantado C, Jordens J, Voorspoels S, Velimirovic M, Tirez K. Assessment of Electrophoretic Mobility Determination in Nanoparticle Analysis: Two Parallel Techniques Converging in a Distinctive Parameter. Electrophoresis 2025:e202400132. [PMID: 40302395 DOI: 10.1002/elps.202400132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 03/27/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025]
Abstract
A critical comparison of the main parameters playing a role in measurement of electrophoretic mobility of plastic nanoparticles (NPs) by CE and laser Doppler velocimetry (LDV) techniques in NP suspensions is herein presented, accompanied by a discussion about potential impact on different mobility values observed. Capillary material and dynamic or permanent coating of the inner capillary wall, capillary dimensions, EOF variability, BGE temperature, Joule heating, and presence of species potentially interacting with analyzed NPs are underlined as possible causes of the different performance of the above two techniques. It is of importance to get an insight into the reasons behind experimental conditions and operating features to opt for one technique or the other based on research interests. In the end, it is intended to present a knowledge expansion about two parallel paths that converge in a distinctive parameter of an enormous relevance in CE, effective electrophoretic mobility, not achievable by other techniques, and discuss practical considerations in experimental design.
Collapse
Affiliation(s)
| | - Jan Jordens
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | | | | | - Kristof Tirez
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| |
Collapse
|
2
|
Rahm M, Keppel P, Šlachtová V, Dzijak R, Dračínský M, Bellová S, Reyes-Gutiérrez PE, Štěpánová S, Raffler J, Tloušťová E, Mertlíková-Kaiserová H, Mikula H, Vrabel M. Sulfonated Hydroxyaryl-Tetrazines with Increased pK a for Accelerated Bioorthogonal Click-to-Release Reactions in Cells. Angew Chem Int Ed Engl 2025; 64:e202411713. [PMID: 39298292 DOI: 10.1002/anie.202411713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 09/21/2024]
Abstract
Bioorthogonal reactions that enable switching molecular functions by breaking chemical bonds have gained prominence, with the tetrazine-mediated cleavage of trans-cyclooctene caged compounds (click-to-release) being particularly noteworthy for its high versatility, biocompatibility, and fast reaction rates. Despite several recent advances, the development of highly reactive tetrazines enabling quantitative elimination from trans-cyclooctene linkers remains challenging. In this study, we present the synthesis and application of sulfo-tetrazines, a class of derivatives featuring phenolic hydroxyl groups with increased acidity constants (pKa). This unique property leads to accelerated elimination and complete release of the caged molecules within minutes. Moreover, the inclusion of sulfonate groups provides a valuable synthetic handle, enabling further derivatization into sulfonamides, modified with diverse substituents. Significantly, we demonstrate the utility of sulfo-tetrazines in efficiently activating fluorogenic compounds and prodrugs in living cells, offering exciting prospects for their application in bioorthogonal chemistry.
Collapse
Affiliation(s)
- Michal Rahm
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
- University of Chemistry and Technology, Department of Chemistry of Natural Compounds, Technická 5, 166 28, Prague 6, Czech Republic
| | - Patrick Keppel
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Veronika Šlachtová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Rastislav Dzijak
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Simona Bellová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Paul E Reyes-Gutiérrez
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Jakob Raffler
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Eva Tloušťová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Helena Mertlíková-Kaiserová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| | - Hannes Mikula
- Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9, 1060, Vienna, Austria
| | - Milan Vrabel
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 16000, Prague 6, Czech Republic
| |
Collapse
|
3
|
Radek Štoček J, Blahut J, Chalupná S, Čejka J, Štěpánová S, Kašička V, Hušák M, Dračínský M. The Hydrogen-Bond Continuum in the Salt/Cocrystal Systems of Quinoline and Chloro-Nitrobenzoic Acids. Chemistry 2024; 30:e202402946. [PMID: 39176441 DOI: 10.1002/chem.202402946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 08/24/2024]
Abstract
This study investigates the hydrogen-bond geometry in six two-component solid systems composed of quinoline and chloro-nitrobenzoic acids. New X-ray diffraction studies were conducted using both the conventional independent-atom model and the more recent Hirshfeld atom-refinement method, with the latter providing precise hydrogen-atom positions. The systems can be divided into salts (the hydrogen atom transferred to the quinoline nitrogen), cocrystals (the hydrogen atom retained by the acid), and intermediate structures. Solid-state NMR experiments corroborated the X-ray diffraction-derived H-N distances. DFT calculations, using five functionals including hybrid B3LYP and PBE0, showed varying energy profiles for the hydrogen bonds, with notable differences across functionals. These calculations revealed different preferences for salt or cocrystal structures, depending on the functional used. Path-integral molecular dynamics simulations incorporating nuclear quantum effects demonstrated significant hydrogen-atom delocalization, forming a hydrogen-bond continuum, and provided average N-H distances in excellent agreement with experimental results. This comprehensive experimental and theoretical approach highlights the complexity of multicomponent solids. The study emphasizes that the classification into salts or cocrystals is frequently inadequate, as the hydrogen atom is often significantly delocalized in the hydrogen bond. This insight is crucial for understanding and predicting the behavior of such systems in pharmaceutical applications.
Collapse
Affiliation(s)
- Jakub Radek Štoček
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, 128 40, Prague 2, Czech Republic
| | - Jan Blahut
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| | - Simona Chalupná
- Department of Solid State Chemistry, University of Chemistry and Technology, Technická 5, Praha 6, 166 28, Czech Republic
| | - Jan Čejka
- Department of Solid State Chemistry, University of Chemistry and Technology, Technická 5, Praha 6, 166 28, Czech Republic
| | - Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| | - Michal Hušák
- Department of Solid State Chemistry, University of Chemistry and Technology, Technická 5, Praha 6, 166 28, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| |
Collapse
|
4
|
Bastien G, Severa L, Škuta M, Santos Hurtado C, Rybáček J, Šolínová V, Císařová I, Kašička V, Kaleta J. Triptycene-Based Tripodal Molecular Platforms. Chemistry 2024; 30:e202401889. [PMID: 39282809 DOI: 10.1002/chem.202401889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 10/09/2024]
Abstract
Molecular platforms are essential components of various surface-mounted molecular devices. Here, we document the synthesis of two universal triptycene-based tripodal pedestals featuring terminal alkynes in the axial position. We showcase their versatility by incorporating them into the structures of diverse functional molecules such as unidirectional light-driven molecular motors, photoswitches, and Brownian molecular rotors using standard cross-coupling reactions. We also present their fundamental physical properties, including acidity constants, data from differential scanning calorimetry, and crystallographic analysis of two parent and five derived structures. Finally, and importantly, we demonstrate that the photochemical properties of selected photoswitch representatives remain uncompromised when fused with tripods.
Collapse
Affiliation(s)
- Guillaume Bastien
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| | - Lukáš Severa
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| | - Martin Škuta
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| | - Carina Santos Hurtado
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| | - Jiří Rybáček
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| | - Veronika Šolínová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 128 40, Prague 2, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| | - Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| |
Collapse
|
5
|
Štěpánová S, Břehová P, Kašička V. The separation of cyclic diadenosine diphosphorothioate and the diastereomers of its difluorinated derivative and the estimation of the binding constants and ionic mobilities of their complexes with 2-hydroxypropyl-β-cyclodextrin by affinity capillary electrophoresis. Electrophoresis 2024; 45:1000-1009. [PMID: 38195812 DOI: 10.1002/elps.202300191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/31/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024]
Abstract
The incorporation of phosphorothioate linkages has recently been extensively employed in therapeutic oligonucleotides. For their separation and quality control, new high-efficient and high-sensitive analytical methods are needed. In this work, a new affinity capillary electrophoresis method has been developed and applied for the separation of a potential anticancer drug, 2',3'-cyclic diadenosine diphosphorothioate (Rp, Rp) (ADU-S100), and three recently newly synthesized diastereomers of its difluorinated derivative, 3',3'-cyclic di(2'-fluoro, 2'-deoxyadenosine phosphorothioate). The separation was performed in the various background electrolytes (BGEs) within a pH range 5-9 using several native and derivatized cyclodextrins (CDs) as chiral additives of the BGE. Relatively good separations were obtained with β-, γ-, and 2-hydroxypropyl-γ-CDs in some of the BGEs tested. However, the best separation was achieved using the 2-hydroxypropyl-β-CD chiral selector at 43.5 mM average concentration in the BGE composed of 40 mM Tris, 40 mM tricine, pH 8.1. Under these conditions, all the previous four cyclic dinucleotides (CDNs) were baseline separated within 4 min. Additionally, the average apparent binding constants and the average actual ionic mobilities of the complexes of all four CDNs with 2-hydroxypropyl-β-CD in the above BGE were determined. The formed complexes were found to be relatively weak, with the average apparent binding constants in the range of 12.2-94.1 L mol-1 and with the actual ionic mobilities spanning the interval (-7.8 to -12.7) × 10-9 m2 V-1 s-1. The developed method can be applied for the separation, analysis, and characterization of the above and similar CDNs.
Collapse
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Břehová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
6
|
Štěpánová S, Andris E, Gutten O, Buděšínský M, Dejmek M, Břehová P, Rulíšek L, Kašička V. Acidity constants and protonation sites of cyclic dinucleotides determined by capillary electrophoresis, quantum chemical calculations, and NMR spectroscopy. Electrophoresis 2024; 45:687-705. [PMID: 38059733 DOI: 10.1002/elps.202300232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/11/2023] [Accepted: 11/18/2023] [Indexed: 12/08/2023]
Abstract
Cyclic dinucleotides (CDNs) are important second messengers in bacteria and eukaryotes. Detailed characterization of their physicochemical properties is a prerequisite for understanding their biological functions. Herein, we examine acid-base and electromigration properties of selected CDNs employing capillary electrophoresis (CE), density functional theory (DFT), and nuclear magnetic resonance (NMR) spectroscopy to provide benchmark pKa values, as well as to unambiguously determine the protonation sites. Acidity constants (pKa) of the NH+ moieties of adenine and guanine bases and actual and limiting ionic mobilities of CDNs were determined by nonlinear regression analysis of the pH dependence of their effective electrophoretic mobilities measured by CE in aqueous background electrolytes in a wide pH range (0.98-11.48), at constant temperature (25°C), and constant ionic strength (25 mM). The thermodynamic pKa values were found to be in the range 3.31-4.56 for adenine and 2.28-3.61 for guanine bases, whereas the pKa of enol group of guanine base was in the range 10.21-10.40. Except for systematic shifts of ∼2 pKa, the pKa values calculated by the DFT-D3//COSMO-RS composite protocol that included large-scale conformational sampling and "cross-morphing" were in a relatively good agreement with the pKas determined by CE and predict N1 atom of adenine and N7 atom of guanine as the protonation sites. The protonation of the N1 atom of adenine and N7 atom of guanine in acidic background electrolytes (BGEs) and the dissociation of the enol group of guanine in alkaline BGEs was confirmed also by NMR spectroscopy.
Collapse
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Erik Andris
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Gutten
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Miloš Buděšínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petra Břehová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Lubomír Rulíšek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
7
|
Severa L, Santos Hurtado C, Rončević I, Mašát M, Bastien G, Štoček JR, Dračínský M, Houska V, Kaletová E, Garza DJ, Císařová I, Cimatu KLA, Bastl Z, Kaleta J. Regular Arrays of Rod-Shaped Molecular Photoswitches: Synthesis, Preparation, Characterization, and Selective Photoswitching within Mono- and Bilayer Systems. Chemistry 2024; 30:e202302828. [PMID: 37858965 DOI: 10.1002/chem.202302828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/21/2023]
Abstract
We assembled photoresponsive mono- and bilayer systems with well-defined properties from rod-shaped molecules equipped with different photoswitches. Using properly chosen chromophores (diarylethene-based switch and unidirectional light-driven molecular motor), we then selectively targeted layers made of the same types of photoswitches using appropriate monochromatic light. UV-vis analysis confirmed smooth and unrestricted photoisomerization. To achieve this, we synthesized a new class of triptycene-based molecular pedestals adept at forming sturdy Langmuir-Blodgett films on a water-air interface. The films were smoothly transferred to gold and quartz surfaces. Repeated deposition afforded bilayer systems: one layer containing diarylethene-based photoswitches and the other a unidirectional light-driven molecular motor. Structural analysis of both mono- and bilayer systems revealed the molecules to be tilted with carboxylic functions pointing to the surface. At least two different polymorphs differing in monolayer thickness and tilt angle (~40° and ~60°) were identified on the gold surface.
Collapse
Affiliation(s)
- Lukáš Severa
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Carina Santos Hurtado
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Igor Rončević
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Milan Mašát
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Guillaume Bastien
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Jakub Radek Štoček
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Václav Houska
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Eva Kaletová
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| | - Danielle John Garza
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University Prague, Hlavova 2030, 128 40, Prague 2, Czech Republic
| | | | - Zdeněk Bastl
- J. Heyrovský Institute of Physical Chemistry of the, Czech Academy of Sciences, Dolejškova 2155/3, 182 23, Prague 8, Czech Republic
| | - Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry of the, Czech Academy of Sciences, Flemingovo nám. 2, 160 00, Prague, Czech Republic
| |
Collapse
|
8
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2021-mid-2023). Electrophoresis 2024; 45:165-198. [PMID: 37670208 DOI: 10.1002/elps.202300152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/07/2023]
Abstract
This review article brings a comprehensive survey of developments and applications of high-performance capillary and microchip electromigration methods (zone electrophoresis in a free solution or in sieving media, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, micropreparation, and physicochemical characterization of peptides in the period from 2021 up to ca. the middle of 2023. Progress in the study of electromigration properties of peptides and various aspects of their analysis, such as sample preparation, adsorption suppression, electroosmotic flow regulation, and detection, are presented. New developments in the particular capillary electromigration methods are demonstrated, and several types of their applications are reported. They cover qualitative and quantitative analysis of synthetic or isolated peptides and determination of peptides in complex biomatrices, peptide profiling of biofluids and tissues, and monitoring of chemical and enzymatic reactions and physicochemical changes of peptides. They include also amino acid and sequence analysis of peptides, peptide mapping of proteins, separation of stereoisomers of peptides, and their chiral analyses. In addition, micropreparative separations and physicochemical characterization of peptides and their interactions with other (bio)molecules by the above CE methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
9
|
Stefanik O, Majerova P, Kovac A, Mikus P, Piestansky J. Capillary electrophoresis in the analysis of therapeutic peptides-A review. Electrophoresis 2024; 45:120-164. [PMID: 37705480 DOI: 10.1002/elps.202300141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Therapeutic peptides are a growing class of innovative drugs with high efficiency and a low risk of adverse effects. These biomolecules fall within the molecular mass range between that of small molecules and proteins. However, their inherent instability and potential for degradation underscore the importance of reliable and effective analytical methods for pharmaceutical quality control, therapeutic drug monitoring, and compliance testing. Liquid chromatography-mass spectrometry (LC-MS) has long time been the "gold standard" conventional method for peptide analysis, but capillary electrophoresis (CE) is increasingly being recognized as a complementary and, in some cases, superior, highly efficient, green, and cost-effective alternative technique. CE can separate peptides composed of different amino acids owing to differences in their net charge and size, determining their migration behavior in an electric field. This review provides a comprehensive overview of therapeutic peptides that have been used in the clinical environment for the last 25 years. It describes the properties, classification, current trends in development, and clinical use of therapeutic peptides. From the analytical point of view, it discusses the challenges associated with the analysis of therapeutic peptides in pharmaceutical and biological matrices, as well as the evaluation of CE as a whole and the comparison with LC methods. The article also highlights the use of microchip electrophoresis, nonaqueous CE, and nonconventional hydrodynamically closed CE systems and their applications. Overall, the article emphasizes the importance of developing new CE-based analytical methods to ensure the high quality, safety, and efficacy of therapeutic peptides in clinical practice.
Collapse
Affiliation(s)
- Ondrej Stefanik
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Andrej Kovac
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Mikus
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| | - Juraj Piestansky
- Toxicological and Antidoping Center, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovak Republic
- Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovak Republic
| |
Collapse
|
10
|
Lenčo J, Jadeja S, Naplekov DK, Krokhin OV, Khalikova MA, Chocholouš P, Urban J, Broeckhoven K, Nováková L, Švec F. Reversed-Phase Liquid Chromatography of Peptides for Bottom-Up Proteomics: A Tutorial. J Proteome Res 2022; 21:2846-2892. [PMID: 36355445 DOI: 10.1021/acs.jproteome.2c00407] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The performance of the current bottom-up liquid chromatography hyphenated with mass spectrometry (LC-MS) analyses has undoubtedly been fueled by spectacular progress in mass spectrometry. It is thus not surprising that the MS instrument attracts the most attention during LC-MS method development, whereas optimizing conditions for peptide separation using reversed-phase liquid chromatography (RPLC) remains somewhat in its shadow. Consequently, the wisdom of the fundaments of chromatography is slowly vanishing from some laboratories. However, the full potential of advanced MS instruments cannot be achieved without highly efficient RPLC. This is impossible to attain without understanding fundamental processes in the chromatographic system and the properties of peptides important for their chromatographic behavior. We wrote this tutorial intending to give practitioners an overview of critical aspects of peptide separation using RPLC to facilitate setting the LC parameters so that they can leverage the full capabilities of their MS instruments. After briefly introducing the gradient separation of peptides, we discuss their properties that affect the quality of LC-MS chromatograms the most. Next, we address the in-column and extra-column broadening. The last section is devoted to key parameters of LC-MS methods. We also extracted trends in practice from recent bottom-up proteomics studies and correlated them with the current knowledge on peptide RPLC separation.
Collapse
Affiliation(s)
- Juraj Lenčo
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Siddharth Jadeja
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Denis K Naplekov
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Oleg V Krokhin
- Department of Internal Medicine, Manitoba Centre for Proteomics and Systems Biology, University of Manitoba, 799 JBRC, 715 McDermot Avenue, WinnipegR3E 3P4, Manitoba, Canada
| | - Maria A Khalikova
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Petr Chocholouš
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - Jiří Urban
- Department of Chemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00Brno, Czech Republic
| | - Ken Broeckhoven
- Department of Chemical Engineering (CHIS), Faculty of Engineering, Vrije Universiteit Brussel, Pleinlaan 2, 1050Brussel, Belgium
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| | - František Švec
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203/8, 500 05Hradec Králové, Czech Republic
| |
Collapse
|
11
|
Kašička V. Peptide mapping of proteins by capillary electromigration methods. J Sep Sci 2022; 45:4245-4279. [PMID: 36200755 DOI: 10.1002/jssc.202200664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
This review article provides a wide overview of important developments and applications of capillary electromigration methods in the area of peptide mapping of proteins in the period 1997-mid-2022, including review articles on this topic. It deals with all major aspects of peptide mapping by capillary electromigration methods: i) precleavage sample preparation involving purification, preconcentration, denaturation, reduction and alkylation of protein(s) to be analyzed, ii) generation of peptide fragments by off-line or on-line enzymatic and/or chemical cleavage of protein(s), iii) postcleavage preparation of the generated peptide mixture for capillary electromigration separation, iv) separation of the complex peptide mixtures by one-, two- and multidimensional capillary electromigration methods coupled with mass spectrometry detection, and v) a large application of peptide mapping for variable purposes, such as qualitative analysis of monoclonal antibodies and other protein biopharmaceuticals, monitoring of posttranslational modifications, determination of primary structure and investigation of function of proteins in biochemical and clinical research, characterization of proteins of variable origin as well as for protein and peptide identification in proteomic and peptidomic studies.
Collapse
Affiliation(s)
- Václav Kašička
- Electromigration Methods, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
12
|
Kaletová E, Santos Hurtado C, Císařová I, Teat SJ, Kaleta J. Triptycene-Based Molecular Rods for Langmuir-Blodgett Monolayers. Chempluschem 2022; 87:e202200023. [PMID: 35195369 DOI: 10.1002/cplu.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/04/2022] [Indexed: 11/06/2022]
Abstract
Herein we introduce fully modular synthesis leading to three representative examples of rigid molecular rods that are intended to form sturdy monolayers on various surfaces. These molecules contain two triptycene units that are designed to interlock into a compact "double-decker" structure. Two of the three final products provided suitable crystals for X-ray diffraction (analyzed on synchrotron), allowing deeper insight into packing in the 3-D crystal lattice. The acidity of all three compounds were determined by capillary electrophoresis, and the pKa values ranged between 2.06-2.53. All three rigid rods easily formed Langmuir-Blodgett monolayers (LBMs) on the water-air interfaces, with the area per molecule equal to 55-59 Å2 /molecule, suggesting tight intermolecular packing. The thickness of all three films reached ∼19 Å after transfer to a gold (111) surface, meaning that individual molecules are tilted maximally 38° from the axis perpendicular to the surface. The structure of one of these films on a gold (111) surface was visualized by AFM. These geometrically unique molecules represent promising platforms with a wide scope of applicability in the supramolecular architecture.
Collapse
Affiliation(s)
- Eva Kaletová
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| | - Carina Santos Hurtado
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry Faculty of Science, Charles University in Prague, Hlavova 2030, 12840, Prague 2, Czech Republic
| | - Simon J Teat
- Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry of the CAS, Flemingovo nám. 2, 160 00, Prague 6, Czech Republic
| |
Collapse
|
13
|
Pietruś W, Kafel R, Bojarski AJ, Kurczab R. Hydrogen Bonds with Fluorine in Ligand-Protein Complexes-the PDB Analysis and Energy Calculations. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031005. [PMID: 35164270 PMCID: PMC8838457 DOI: 10.3390/molecules27031005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/25/2022] [Accepted: 01/29/2022] [Indexed: 12/30/2022]
Abstract
Fluorine is a common substituent in medicinal chemistry and is found in up to 50% of the most profitable drugs. In this study, a statistical analysis of the nature, geometry, and frequency of hydrogen bonds (HBs) formed between the aromatic and aliphatic C-F groups of small molecules and biological targets found in the Protein Data Bank (PDB) repository was presented. Interaction energies were calculated for those complexes using three different approaches. The obtained results indicated that the interaction energy of F-containing HBs is determined by the donor-acceptor distance and not by the angles. Moreover, no significant relationship between the energies of HBs with fluorine and the donor type was found, implying that fluorine is a weak HB acceptor for all types of HB donors. However, the statistical analysis of the PDB repository revealed that the most populated geometric parameters of HBs did not match the calculated energetic optima. In a nutshell, HBs containing fluorine are forced to form due to the stronger ligand-receptor neighboring interactions, which make fluorine the "donor's last resort".
Collapse
|
14
|
Šolínová V, Štěpánová S, Jančařík A, Klívar J, Šámal M, Stará IG, Chocholoušová JV, Vacek J, Starý I, Kašička V. Nonaqueous capillary electrophoresis and quantum chemical calculations applied to investigation of acid-base and electromigration properties of azahelicenes. Electrophoresis 2021; 43:696-707. [PMID: 34933403 DOI: 10.1002/elps.202100331] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 11/07/2022]
Abstract
Nonaqueous capillary electrophoresis (NACE) using methanol (MeOH) as a solvent of the BGEs and quantum mechanical density functional theory (DFT) have been applied to determine the thermodynamic acidity (ionization) constants (pKa ) of mono- and diaza[5]helicenes, mono- and diaza[6]helicenes, and their dibenzo derivatives in MeOH and water. First, the mixed acidity constants, p K a , MeOH mix , of ionogenic pyridinium groups of azahelicenes and their derivatives in MeOH were obtained by nonlinear regression analysis of pH dependence of their effective electrophoretic mobilities. The effective mobilities were measured by NACE in a large series of methanolic BGEs within a wide conventional pH range (pHMeOH 1.6-12.0) and at ambient temperature (21-26°C) in a home-made CE device. Prior to mixed acidity constant calculation, the effective mobilities were corrected to reference temperature (25°C) and constant ionic strength (25 mM). Then, the mixed acidity constants were recalculated to the thermodynamic acidity constants pKa,MeOH by the Debye-Hückel theory of nonideality of electrolyte solutions. Finally, from the methanolic thermodynamic pKa,MeOH values, the aqueous thermodynamic p K a , H 2 O constants were estimated using the empirical relations between methanolic and aqueous acidity constants derived for structurally related pyridine derivatives. Depending on the number and position of the nitrogen atoms in their molecules, the analyzed azahelicenes were found to be weak to moderate bases with methanolic pKa,MeOH in the range 2.01-8.75 and with aqueous p K a , H 2 O in the range 1.67-8.28. The thermodynamic pKa,MeOH obtained by the DFT calculations were in a good agreement with those determined experimentally by NACE.
Collapse
Affiliation(s)
- Veronika Šolínová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Czech Republic
| | - Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Czech Republic
| | - Andrej Jančařík
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Czech Republic
| | - Jiří Klívar
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Czech Republic
| | - Michal Šámal
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Czech Republic
| | - Irena G Stará
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Czech Republic
| | | | - Jaroslav Vacek
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Czech Republic
| | - Ivo Starý
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Czech Republic
| |
Collapse
|
15
|
Salehpour N, Bayatloo MR, Nojavan S. Magnetic solid-phase extraction of high molecular weight peptides using stearic acid-functionalized magnetic hydroxyapatite nanocomposite: determination of some hypothalamic agents in biological samples. Anal Bioanal Chem 2021; 413:7609-7623. [PMID: 34668043 DOI: 10.1007/s00216-021-03725-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Abstract
Therapeutic peptides have an important effect on physiological function and human health, so it is momentous to quantify and detect low levels of these biomolecules in biological samples for treatment and diagnostic purposes. In the present study, an efficient magnetic solid-phase extraction (MSPE) method was developed based on stearic acid-functionalized magnetic hydroxyapatite nanocomposite (MHAP/SA) as a novel and cost-effective adsorbent for extraction of five hypothalamic-related peptides (goserelin, octreotide, triptorelin, somatostatin, and cetrorelix) from biological samples. To characterize the morphology and physicochemical properties of MHAP/SA, Fourier transform infrared spectroscopy (FT-IR), energy-dispersive X-ray spectroscopy (EDS), field emission scanning microscopy (FE-SEM), CHNS elemental analysis, Brunauer-Emmett-Teller (BET), and vibrating sample magnetometry (VSM) were applied. Under optimum conditions, the proposed method (MSPE-HPLC-UV) represented favorable linearity with R2 ≥ 0.9987, suitable intra- and inter-day precisions (RSD ≤ 6.9% and RSD ≤ 8.1%, respectively, n = 3), and limits of detection and quantification in the range of 0.75-1.12 ng mL-1 and 2.50-3.75 ng mL-1, respectively. Eventually, the proposed method was used for the extraction and quantification of target therapeutic peptides in plasma and urine samples, and satisfactory relative recoveries were achieved in the range of 90.6-110.3%.
Collapse
Affiliation(s)
- Niloofar Salehpour
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, 1983969411, Tehran, Iran
| | - Mohammad Reza Bayatloo
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, 1983969411, Tehran, Iran
| | - Saeed Nojavan
- Department of Analytical Chemistry and Pollutants, Shahid Beheshti University, G. C., Evin, 1983969411, Tehran, Iran.
| |
Collapse
|
16
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
17
|
Le TP, Rončević I, Dračínský M, Císařová I, Šolínová V, Kašička V, Kaleta J. Polyhalogenated Bicyclo[1.1.1]pentane-1,3-dicarboxylic Acids. J Org Chem 2021; 86:10303-10319. [PMID: 34269057 DOI: 10.1021/acs.joc.1c01020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein we report the highly selective radical chlorination of 2,2-difluorobicyclo[1.1.1]pentane-1,3-dicarboxylic acid. Together with radical hydrodechlorination by TMS3SiH, four new bicyclo[1.1.1]pentane cages carrying two fluorine and one to three chlorine atoms in bridge positions have been obtained. The exact positions of all halogen atoms have been confirmed by X-ray diffraction. The acidity constants (pKa) for all new derivatives have been determined by capillary electrophoresis, and these experimental values show excellent agreement with pKas predicted by DFT methods. Extensive DFT calculations have been used to rationalize the selective formation of four out of nine possible F2Cl1-4 isomers of bridge-halogenated bicyclo[1.1.1]pentanes and to obtain relative strain energies for all possible isomers.
Collapse
Affiliation(s)
- Thi Phuong Le
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Igor Rončević
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 12840 Prague 2, Czech Republic
| | - Veronika Šolínová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| | - Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 160 00 Prague 6, Czech Republic
| |
Collapse
|
18
|
Čepa A, Dejmková V, Lešetický L, Jelínek I, Smrček S, Štícha M, Jašprová J, Urbanová M, Goncharova I, Dračínský M, Procházková E, Ostrow DJ, Vítek L. Physico-chemical characterization of bilirubin-10-sulfonate and comparison of its acid-base behavior with unconjugated bilirubin. Sci Rep 2021; 11:12896. [PMID: 34145377 PMCID: PMC8213708 DOI: 10.1038/s41598-021-92377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 06/09/2021] [Indexed: 11/10/2022] Open
Abstract
Unconjugated bilirubin (UCB) is the end-product of heme catabolism in the intravascular compartment. Although beneficial for human health when mildly elevated in the body, when present at greater than a critical threshold concentration, UCB exerts toxic effects that are related to its physico-chemical properties, particularly affecting the central nervous system. The aim of the present study was to characterize bilirubin-10-sulfonate (ranarubin), a naturally occurring bile pigment, including determination of its mixed acidity constants (pKa*). Thanks to the presence of the sulfonic acid moiety, this compound is more polar compared to UCB, which might theoretically solve the problem with an accurate determination of the UCB pKa* values of its propionic acid carboxylic groups. Bilirubin-10-sulfonate was synthesized by modification of a previously described procedure; and its properties were studied by mass spectrometry (MS), nuclear magnetic resonance (NMR), infrared (IR), and circular dichroism (CD) spectroscopy. Determination of pKa* values of bilirubin-10-sulfonate and UCB was performed by capillary electrophoresis with low pigment concentrations in polar buffers. The identity of the synthesized bilirubin-10-sulfonate was confirmed by MS, and the pigment was further characterized by NMR, IR, and CD spectroscopy. The pKa values of carboxylic acid moieties of bilirubin-10-sulfonate were determined to be 5.02, whereas those of UCB were determined to be 9.01. The physico-chemical properties of bilirubin-10-sulfonate were partially characterized with low pKa* values compared to those of UCB, indicating that bilirubin-10-sulfonate cannot be used as a surrogate pigment for UCB chemical studies. In addition, using a different methodological approach, the pKa* values of UCB were found to be in a mildly alkaline region, confirming the conclusions of a recent critical re-evaluation of this specific issue.
Collapse
Affiliation(s)
- Adam Čepa
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Veronika Dejmková
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ladislav Lešetický
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Jelínek
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Stanislav Smrček
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Martin Štícha
- Department of Organic Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jana Jašprová
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Na Bojišti 3, Praha 2, 12000, Czech Republic
| | - Marie Urbanová
- University of Chemistry and Technology, Prague, Czech Republic
| | | | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Eliška Procházková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Donald J Ostrow
- GI/Hepatology Division, University of Washington School of Medicine, Seattle, WA, USA
| | - Libor Vítek
- Institute of Medical Biochemistry and Laboratory Diagnostics, 1st Faculty of Medicine, Charles University, Na Bojišti 3, Praha 2, 12000, Czech Republic. .,4th Department of Internal Medicine, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.
| |
Collapse
|
19
|
Šolínová V, Brynda J, Šícha V, Holub J, Grűner B, Kašička V. Determination of acidity constants, ionic mobilities, and hydrodynamic radii of carborane-based inhibitors of carbonic anhydrases by capillary electrophoresis. Electrophoresis 2021; 42:910-919. [PMID: 33405254 DOI: 10.1002/elps.202000298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/08/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022]
Abstract
Capillary electrophoresis (CE) has been applied for determination of the thermodynamic acidity constants (pKa ) of the sulfamidoalkyl and sulfonamidoalkyl groups, the actual and limiting ionic mobilities and hydrodynamic radii of important compounds, eight carborane-based inhibitors of carbonic anhydrases, which are potential new anticancer drugs. Two types of carboranes were investigated, (i) icosahedral cobalt bis(dicarbollide)(1-) ion with sulfamidoalkyl moieties, and (ii) 7,8-nido-dicarbaundecaborate with sulfonamidoalkyl side chains. First, the mixed acidity constants, pKa mix , of the sulfamidoalkyl and sulfonamidoalkyl groups of the above carboranes and their actual ionic mobilities were determined by nonlinear regression analysis of the pH dependences of their effective electrophoretic mobility measured by capillary electrophoresis in the pH range 8.00-12.25, at constant ionic strength (25 mM), and constant temperature (25°C). Second, the pKa mix were recalculated to the thermodynamic pKa s using the Debye-Hückel theory. The sulfamidoalkyl and sulfonamidoalkyl groups were found to be very weakly acidic with the pKa s in the range 10.78-11.45 depending on the type of carborane cluster and on the position and length of the alkyl chain on the carborane scaffold. These pKa s were in a good agreement with the pKa s (10.67-11.27) obtained by new program AnglerFish (freeware at https://echmet.natur.cuni.cz), which provides thermodynamic pKa s and limiting ionic mobilities directly from the raw CE data. The absolute values of the limiting ionic mobilities of univalent and divalent carborane anions were in the range 18.3-27.8 TU (Tiselius unit, 1 × 10-9 m2 /Vs), and 36.4-45.9 TU, respectively. The Stokes hydrodynamic radii of univalent and divalent carborane anions varied in the range 0.34-0.52 and 0.42-0.52 nm, respectively.
Collapse
Affiliation(s)
- Veronika Šolínová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| | - Jiří Brynda
- Institute of Molecular Genetics of the Czech Academy of Sciences, Prague 4, Czechia
| | - Václav Šícha
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež, Czechia
| | - Josef Holub
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež, Czechia
| | - Bohumír Grűner
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, Husinec-Řež, Czechia
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
20
|
Ansorge M, Gaš B, Boublík M, Malý M, Šteflová J, Hruška V, Vigh G. CE determination of the thermodynamic p
K
a
values and limiting ionic mobilities of 14 low molecular mass UV absorbing ampholytes for accurate characterization of the pH gradient in carrier ampholytes‐based IEF and its numeric simulation. Electrophoresis 2020; 41:514-522. [DOI: 10.1002/elps.201900381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Martin Ansorge
- Department of Physical and Macromolecular ChemistryFaculty of ScienceCharles University Prague Czech Republic
| | - Bohuslav Gaš
- Department of Physical and Macromolecular ChemistryFaculty of ScienceCharles University Prague Czech Republic
| | - Milan Boublík
- Department of Physical and Macromolecular ChemistryFaculty of ScienceCharles University Prague Czech Republic
| | - Michal Malý
- Department of Physical and Macromolecular ChemistryFaculty of ScienceCharles University Prague Czech Republic
| | - Jana Šteflová
- Department of Physical and Macromolecular ChemistryFaculty of ScienceCharles University Prague Czech Republic
- Agilent Technologies Deutschland GmbH Waldbronn Germany
| | | | - Gyula Vigh
- Chemistry DepartmentTexas A&M University College Station TX USA
| |
Collapse
|
21
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2017–mid 2019). Electrophoresis 2019; 41:10-35. [DOI: 10.1002/elps.201900269] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/08/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and BiochemistryCzech Academy of Sciences Prague 6 Czechia
| |
Collapse
|
22
|
Kaleta J, Rončević I, Císařová I, Dračínský M, Šolínová V, Kašička V, Michl J. Bridge-Chlorinated Bicyclo[1.1.1]pentane-1,3-dicarboxylic Acids. J Org Chem 2019; 84:2448-2461. [DOI: 10.1021/acs.joc.8b02780] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jiří Kaleta
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| | - Igor Rončević
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 2030, 12840 Prague 2, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Veronika Šolínová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
| | - Josef Michl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague 6, Czech Republic
- Department of Chemistry, University of Colorado, Boulder, Colorado 80309-0215, United States
| |
Collapse
|
23
|
Matyjaszczyk K, Kolonko M, Gonciarz-Dytman A, Oszczapowicz I, Łukawska M, Jawień W, Chlopicki S, Walczak M. Effects of structural modification of the daunosamine moiety of anthracycline antibiotics on pKa values determined by capillary zone electrophoresis. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1060:44-52. [DOI: 10.1016/j.jchromb.2017.04.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 04/20/2017] [Accepted: 04/22/2017] [Indexed: 01/14/2023]
|
24
|
Investigation of the acid-base and electromigration properties of 5‐azacytosine derivatives using capillary electrophoresis and density functional theory calculations. J Chromatogr A 2017; 1479:185-193. [DOI: 10.1016/j.chroma.2016.11.058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/25/2016] [Accepted: 11/28/2016] [Indexed: 11/20/2022]
|
25
|
Tůmová T, Monincová L, Čeřovský V, Kašička V. Estimation of acidity constants, ionic mobilities and charges of antimicrobial peptides by capillary electrophoresis. Electrophoresis 2016; 37:3186-3195. [DOI: 10.1002/elps.201600342] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 08/25/2016] [Accepted: 09/18/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Tereza Tůmová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Prague Czech Republic
- Faculty of Food and Biochemical Technology; University of Chemistry and Technology Prague; Prague Czech Republic
| | - Lenka Monincová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Prague Czech Republic
| | - Václav Čeřovský
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Prague Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
26
|
Dubský P, Dvořák M, Ansorge M. Affinity capillary electrophoresis: the theory of electromigration. Anal Bioanal Chem 2016; 408:8623-8641. [DOI: 10.1007/s00216-016-9799-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 12/19/2022]
|
27
|
Štěpánová S, Kašička V. Recent applications of capillary electromigration methods to separation and analysis of proteins. Anal Chim Acta 2016; 933:23-42. [DOI: 10.1016/j.aca.2016.06.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/10/2016] [Accepted: 06/03/2016] [Indexed: 10/21/2022]
|
28
|
Recent advances in capillary electrophoretic migration techniques for pharmaceutical analysis (2013-2015). Electrophoresis 2016; 37:1591-608. [DOI: 10.1002/elps.201600058] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 11/07/2022]
|
29
|
Nojavan S, Bidarmanesh T, Mohammadi A, Yaripour S. Electromembrane extraction of gonadotropin-releasing hormone agonists from plasma and wastewater samples. Electrophoresis 2016; 37:826-33. [DOI: 10.1002/elps.201500555] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Saeed Nojavan
- Faculty of Chemistry; Shahid Beheshti University; Evin Tehran Iran
| | - Tina Bidarmanesh
- Faculty of Chemistry; Shahid Beheshti University; Evin Tehran Iran
| | - Ali Mohammadi
- Pharmaceutical Quality Assurance Research Center, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
- Department of Drug and Food Control, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| | - Saeid Yaripour
- Department of Drug and Food Control, Faculty of Pharmacy; Tehran University of Medical Sciences; Tehran Iran
| |
Collapse
|
30
|
Deiber JA, Peirotti MB, Piaggio MV. Charge regulation phenomenon predicted from the modeling of polypeptide electrophoretic mobilities as a relevant mechanism of amyloid-beta peptide oligomerization. Electrophoresis 2016; 37:711-8. [DOI: 10.1002/elps.201500391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/10/2015] [Accepted: 12/16/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral (UNL); Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Maria V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas, Facultad de Bioquímica y Ciencias Biológicas; UNL; Santa Fe Argentina
| |
Collapse
|
31
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2013-middle 2015). Electrophoresis 2015; 37:162-88. [DOI: 10.1002/elps.201500329] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 12/16/2022]
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, v.v.i; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
32
|
Štěpánová S, Kašička V. Recent developments and applications of capillary and microchip electrophoresis in proteomic and peptidomic analyses. J Sep Sci 2015; 39:198-211. [DOI: 10.1002/jssc.201500973] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 10/06/2015] [Accepted: 10/06/2015] [Indexed: 12/19/2022]
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague Czech Republic
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague Czech Republic
| |
Collapse
|
33
|
Determination of acid dissociation constants of warfarin and hydroxywarfarins by capillary electrophoresis. J Pharm Biomed Anal 2015; 112:89-97. [DOI: 10.1016/j.jpba.2015.04.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 04/17/2015] [Accepted: 04/18/2015] [Indexed: 01/18/2023]
|
34
|
Zrnčić M, Babić S, Mutavdžić Pavlović D. Determination of thermodynamic pKavalues of pharmaceuticals from five different groups using capillary electrophoresis. J Sep Sci 2015; 38:1232-9. [DOI: 10.1002/jssc.201401057] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/13/2015] [Accepted: 01/13/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Mirta Zrnčić
- Department of Analytical Chemistry; Faculty of Chemical Engineering and Technology; University of Zagreb; Zagreb Croatia
| | - Sandra Babić
- Department of Analytical Chemistry; Faculty of Chemical Engineering and Technology; University of Zagreb; Zagreb Croatia
| | - Dragana Mutavdžić Pavlović
- Department of Analytical Chemistry; Faculty of Chemical Engineering and Technology; University of Zagreb; Zagreb Croatia
| |
Collapse
|
35
|
Deiber JA, Peirotti MB, Piaggio MV. Global properties and propensity to dimerization of the amyloid-beta (12-28) peptide fragment through the modeling of its monomer and dimer diffusion coefficients and electrophoretic mobilities. Electrophoresis 2015; 36:805-12. [DOI: 10.1002/elps.201400395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 10/20/2014] [Accepted: 11/05/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Julio A. Deiber
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Marta B. Peirotti
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC); Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Santa Fe Argentina
| | - Maria V. Piaggio
- Cátedra de Bioquímica Básica de Macromoléculas; Facultad de Bioquímica y Ciencias Biológicas, UNL; Santa Fe Argentina
| |
Collapse
|
36
|
Determination of thermodynamic values of acidic dissociation constants and complexation constants of profens and their utilization for optimization of separation conditions by Simul 5 Complex. J Chromatogr A 2014; 1364:276-88. [DOI: 10.1016/j.chroma.2014.08.070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 11/23/2022]
|