1
|
Amir S, Arathi A, Reshma S, Mohanan PV. Microfluidic devices for the detection of disease-specific proteins and other macromolecules, disease modelling and drug development: A review. Int J Biol Macromol 2023; 235:123784. [PMID: 36822284 DOI: 10.1016/j.ijbiomac.2023.123784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023]
Abstract
Microfluidics is a revolutionary technology that has promising applications in the biomedical field.Integrating microfluidic technology with the traditional assays unravels the innumerable possibilities for translational biomedical research. Microfluidics has the potential to build up a novel platform for diagnosis and therapy through precise manipulation of fluids and enhanced throughput functions. The developments in microfluidics-based devices for diagnostics have evolved in the last decade and have been established for their rapid, effective, accurate and economic advantages. The efficiency and sensitivity of such devices to detect disease-specific macromolecules like proteins and nucleic acids have made crucial impacts in disease diagnosis. The disease modelling using microfluidic systems provides a more prominent replication of the in vivo microenvironment and can be a better alternative for the existing disease models. These models can replicate critical microphysiology like the dynamic microenvironment, cellular interactions, and biophysical and biochemical cues. Microfluidics also provides a promising system for high throughput drug screening and delivery applications. However, microfluidics-based diagnostics still encounter related challenges in the reliability, real-time monitoring and reproducibility that circumvents this technology from being impacted in the healthcare industry. This review highlights the recent microfluidics developments for modelling and diagnosing common diseases, including cancer, neurological, cardiovascular, respiratory and autoimmune disorders, and its applications in drug development.
Collapse
Affiliation(s)
- S Amir
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - A Arathi
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - S Reshma
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India
| | - P V Mohanan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology (Govt. of India), Poojapura, Trivandrum 695 012, Kerala, India.
| |
Collapse
|
2
|
Rawas-Qalaji M, Cagliani R, Al-Hashimi N, Al-Dabbagh R, Al-Dabbagh A, Hussain Z. Microfluidics in drug delivery: review of methods and applications. Pharm Dev Technol 2023; 28:61-77. [PMID: 36592376 DOI: 10.1080/10837450.2022.2162543] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Microfluidics technology has emerged as a promising methodology for the fabrication of a wide variety of advanced drug delivery systems. Owing to its ability for accurate handling and processing of small quantities of fluidics as well as immense control over physicochemical properties of fabricated micro and nanoparticles (NPs), microfluidic technology has significantly improved the pharmacokinetics and pharmacodynamics of drugs. This emerging technology has offered numerous advantages over the conventional drug delivery methods for fabricating of a variety of micro and nanocarriers for poorly soluble drugs. In addition, a microfluidic system can be designed for targeted drug delivery aiming to increase the local bioavailability of drugs. This review spots the light on the recent advances made in the area of microfluidics including various methods of fabrication of drug carriers, their characterization, and unique features. Furthermore, applications of microfluidic technology for the robust fabrication and development of drug delivery systems, the existing challenges associated with conventional fabrication methodologies as well as the proposed solutions offered by microfluidic technology have been discussed in details.HighlightsMicrofluidic technology has revolutionized fabrication of tunable micro and nanocarriers.Microfluidic platforms offer several advantages over the conventional fabrication methods.Microfluidic devices hold great promise in controlling the physicochemical features of fabricated drug carriers.Micro and nanocarriers with controllable release kinetics and site-targeting efficiency can be fabricated.Drug carriers fabricated by microfluidic technology exhibited improved pharmacokinetic and pharmacodynamic profiles.
Collapse
Affiliation(s)
- Mutasem Rawas-Qalaji
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Research Institute For Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates.,Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Roberta Cagliani
- Research Institute For Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Noor Al-Hashimi
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rahma Al-Dabbagh
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Amena Al-Dabbagh
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Zahid Hussain
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Research Institute For Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
3
|
Altam AA, Zhu L, Wang W, Yagoub H, Yang S. Stability improvement of carboxymethyl cellulose/chitosan complex beads by thermal treatment. Int J Biol Macromol 2022; 223:1278-1286. [PMID: 36379283 DOI: 10.1016/j.ijbiomac.2022.11.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/22/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
Abstract
Carboxymethyl cellulose (CMC) and chitosan (CHI) are two well-known natural polymer derivatives, as such the CMC@CHI complex beads fulfill many requirements for bio-related and safety-required applications. However, poor mechanical properties of CMC@CHI beads hinder their applications. We managed to improve the beads stability by a simple thermal treatment during the bead preparation. The effects of temperature, changing from 25 °C to 75 °C, on the stability of the formed beads were investigated. The morphology, diameter, shell thickness and structure of the beads treated at different temperature were analyzed using SEM, XPS and FTIR. The mechanical test and swelling experiments showed that the thermal treatment enhanced the bead's ability to withstand pressure and swelling. The beads treated at 75 °C showed the best pressure resistance, while the beads treated at 55 °C exhibited the highest swelling capability without losing integrity. This method is convenient to implement, not only improves the stability, but also controls the swelling capacity and mechanical properties of the beads, which are important for their potential applications in adsorption and controlled release. More importantly, this work offered insights on the effects of thermal treatment on the complexation process of the two polysaccharide molecular chains.
Collapse
Affiliation(s)
- Ali A Altam
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China.
| | - Weijie Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Hajo Yagoub
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
4
|
Hu B, Yang Y, Han L, Yang J, Zheng W, Cao J. Characterization of hydrophilic and hydrophobic core-shell microcapsules prepared using a range of antisolvent approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
Chircov C, Bîrcă AC, Vasile BS, Oprea OC, Huang KS, Grumezescu AM. Microfluidic Synthesis of -NH 2- and -COOH-Functionalized Magnetite Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3160. [PMID: 36144948 PMCID: PMC9503789 DOI: 10.3390/nano12183160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Microfluidics has emerged as a promising alternative for the synthesis of nanoparticles, which ensures precise control over the synthesis parameters, high uniformity, reproducibility, and ease of integration. Therefore, the present study investigated a one-step synthesis and functionalization of magnetite nanoparticles (MNPs) using sulfanilic acid (SA) and 4-sulfobenzoic acid (SBA). The flows of both the precursor and precipitating/functionalization solutions were varied in order to ensure the optimal parameters. The obtained nanoparticles were characterized through dynamic light scattering (DLS) and zeta potential, X-ray diffraction (XRD), selected area electron diffraction (SAED), transmission electron microscopy (TEM) and high-resolution TEM (HR-TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravimetry and differential scanning calorimetry (TG-DSC), and vibrating sample magnetometry (VSM). The results demonstrated the successful synthesis of magnetite as the unique mineralogical phase, as well as the functionalization of the nanoparticles. Furthermore, the possibility to control the crystallinity, size, shape, and functionalization degree by varying the synthesis parameters was further confirmed. In this manner, this study validated the potential of the microfluidic platform to develop functionalized MNPs, which are suitable for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- National Research Center for Food Safety, University Politehnica of Bucharest, 060042 Bucharest, Romania
| | - Ovidiu-Cristian Oprea
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu Street, 011061 Bucharest, Romania
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 840301, Taiwan
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania
- National Research Center for Micro and Nanomaterials, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050045 Bucharest, Romania
| |
Collapse
|
6
|
Ladeira B, Custodio C, Mano J. Core-Shell Microcapsules: Biofabrication and Potential Applications in Tissue Engineering and Regenerative Medicine. Biomater Sci 2022; 10:2122-2153. [DOI: 10.1039/d1bm01974k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The construction of biomaterial scaffolds that accurately recreate the architecture of living tissues in vitro is a major challenge in the field of tissue engineering and regenerative medicine. Core-shell microcapsules...
Collapse
|
7
|
Chircov C, Bîrcă AC, Grumezescu AM, Vasile BS, Oprea O, Nicoară AI, Yang CH, Huang KS, Andronescu E. Synthesis of Magnetite Nanoparticles through a Lab-On-Chip Device. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5906. [PMID: 34640303 PMCID: PMC8510126 DOI: 10.3390/ma14195906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/01/2021] [Accepted: 10/03/2021] [Indexed: 01/21/2023]
Abstract
Magnetite nanoparticles (MNPs) represent one of the most intensively studied types of iron oxide nanoparticles in various fields, including biomedicine, pharmaceutics, bioengineering, and industry. Since their properties in terms of size, shape, and surface charge significantly affects their efficiency towards the envisaged application, it is fundamentally important to develop a new synthesis route that allows for the control and modulation of the nanoparticle features. In this context, the aim of the present study was to develop a new method for the synthesis of MNPs. Specifically, a microfluidic lab-on-chip (LoC) device was used to obtain MNPs with controlled properties. The study investigated the influence of iron precursor solution concentration and flowed onto the final properties of the nanomaterials. The synthesized MNPs were characterized in terms of size, morphology, structure, composition, and stability. Results proved the formation of magnetite as a single mineral phase. Moreover, the uniform spherical shape and narrow size distribution were demonstrated. Optimal characteristics regarding MNPs crystallinity, uniformity, and thermal stability were obtained at higher concentrations and lower flows. In this manner, the potential of the LoC device is a promising tool for the synthesis of nanomaterials by ensuring the necessary uniformity for all final applications.
Collapse
Affiliation(s)
- Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (B.S.V.); (A.I.N.); (E.A.)
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (B.S.V.); (A.I.N.); (E.A.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (B.S.V.); (A.I.N.); (E.A.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, 54 Spl. Independentei, 050045 Bucharest, Romania
| | - Bogdan Stefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (B.S.V.); (A.I.N.); (E.A.)
| | - Ovidiu Oprea
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University Politehnica of Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania;
| | - Adrian Ionuț Nicoară
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (B.S.V.); (A.I.N.); (E.A.)
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 824, Taiwan;
- Pharmacy Department of E-Da Hospital, Kaohsiung 824, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 300, Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 840301, Taiwan;
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, 011061 Bucharest, Romania; (C.C.); (A.C.B.); (B.S.V.); (A.I.N.); (E.A.)
- Academy of Romanian Scientists, 54 Spl. Independentei, 050045 Bucharest, Romania
| |
Collapse
|
8
|
Zhang X, Hu B, Zhao Y, Yang Y, Gao Z, Nishinari K, Yang J, Zhang Y, Fang Y. Electrostatic Interaction-Based Fabrication of Calcium Alginate-Zein Core-Shell Microcapsules of Regulable Shapes and Sizes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10424-10432. [PMID: 34427433 DOI: 10.1021/acs.langmuir.1c01098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Core-shell microcapsules with combined features of hydrophilicity and hydrophobicity have become much popular. However, the assembly of biocompatible and edible materials in hydrophilic-hydrophobic core-shell microcapsules is not easy. In this work, based on electrostatic interactions, we prepared controllable calcium alginate (ALG)-zein core-shell particles of different shapes and sizes using hydrophilic ALG and hydrophobic zein by a two-step extrusion method. Negatively charged hydrogel beads of spherical, ellipsoidal, or fibrous shape were added into a positively charged zein solution (dissolved in 70% (v/v) aqueous ethanol solution) to achieve different-shaped core-shell particles. Interestingly, the size, shape, and shell thickness of the particles can be regulated by the needle diameter, stirring speed, and zein concentration. Moreover, for simplification, the core-shell particles were also synthesized by a one-step extrusion method, in which an ALG solution was added dropwise into a 70% (v/v) aqueous ethanol solution containing zein and CaCl2. The particles synthesized in this work showed controlled digestion of encapsulated medium-chain triglyceride (MCT) and sustained release of encapsulated thiamine and ethyl maltol. Our preparation method is simplistic and can be extended to fabricate a variety of hydrophilic and hydrophobic core-shell structures to encapsulate a broad spectrum of materials.
Collapse
Affiliation(s)
- Xun Zhang
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Bing Hu
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Yiguo Zhao
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yisu Yang
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Zhiming Gao
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Katsuyoshi Nishinari
- Hubei International Scientific and Technological Cooperation Base of Food Hydrocolloids, Hubei University of Technology, Wuhan 430068, China
- Glyn O. Phillips Hydrocolloid Research Centre at HUT, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jixin Yang
- Faculty of Arts, Science and Technology, Wrexham Glyndwr University, Plas Coch, Mold Road, Wrexham LL11 2AW, United Kingdom
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, China
| | - Yapeng Fang
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
|
10
|
Yang F, Wang J, Song S, Rao P, Wang R, Liu S, Xu L, Zhang F. Novel Controlled Release Microspheric Soil Conditioner Based on the Temperature and pH Dual-Stimuli Response. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7819-7829. [PMID: 32511910 DOI: 10.1021/acs.jafc.0c01825] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A novel type of temperature and pH dual-stimuli-responsive microspheric soil conditioner was prepared for the controlled release of urea. First, poly(N-isopropylacrylamide-co-methacrylic acid) [P(NIPAM-co-MAA)] was synthesized, and the microspheric soil conditioner was prepared on the basis of chitosan-coated P(NIPAM-co-MAA) via the emulsion cross-linking method. The structure and morphology of the microsphere were characterized by Fourier transform infrared spectroscopy, hydrogen nuclear magnetic resonance, polarization optical microscopy, and scanning electron microscopy. The microsphere showed controlled release behavior in different temperature and pH conditions, indicating good stimuli responsiveness. The plant experiment revealed that the microsphere can effectively promote plant growth in acidified soil and high-temperature conditions, and the pH value of acidified soil could be improved. In addition, the microsphere possessed good biodegradation property in the soil. Therefore, the multi-responsive microspheric soil conditioner owns a great potential value to amend soil conditions and promote plant growth in agriculture applications.
Collapse
Affiliation(s)
- Fan Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Jincheng Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Shiqiang Song
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Pinhua Rao
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Runkai Wang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, People's Republic of China
| | - Shihui Liu
- Key Laboratory of Quality and Safety Regulating of Horticultural Crop Products, Ministry of Agriculture, Shanghai 201210, People's Republic of China
- Shanghai Sunqiao Agricultural Science and Technology Company, Limited, Shanghai 201210, People's Republic of China
- Hunan Agricultural University, Changsha, Hunan 410128, People's Republic of China
| | - Liqi Xu
- Shanghai Huita Industrial Company, Limited, Shanghai 201616, People's Republic of China
| | - Feng Zhang
- Shanghai Songfeng Fruit and Vegetable Cooperative, Shanghai 200000, People's Republic of China
| |
Collapse
|
11
|
Yang CH, Wang YC, Wang TC, Chang YC, Lin YC, Chen PF, Huang WJ, Wen HY, Lin YM, Kuo WS, Wang YT, Huang KS. Facile synthesis of highly tunable monodispersed calcium hydroxide composite particles by using a two-step ion exchange reaction. RSC Adv 2020; 10:13700-13707. [PMID: 35493011 PMCID: PMC9051553 DOI: 10.1039/d0ra01275k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 03/25/2020] [Indexed: 11/24/2022] Open
Abstract
“Calcium hydroxide [Ca(OH)2]” is a medicament frequently used for antimicrobial purposes in endodontic procedures, or it is used as a toxic-waste adsorbent in industry. Ca(OH)2 particles produced through conventional methods are size untunable and have a wide size distribution and polygonal shape. In this paper, a novel and facile approach involving template-mediated synthesis and two-step ion exchange is proposed for uniform size Ca(OH)2 composite particles generation. “Sodium-alginate (Na-alginate)” was used as a precursor, and monodisperse Na-alginate emulsions were formed through needle droplet or droplet microfluidic technology. After the first ion exchange step with the Ca2+ ions, “calcium-alginate (Ca-alginate)” particles were obtained. The Ca-alginate particles were intermediate reaction products and were designed to be the templates for ensuring the spherical shape and size of products. The OH− ions were used for the second ion exchange step to fabricate Ca(OH)2 composite particles. The results revealed that the Ca(OH)2 composite particles were size tunable, had a spherical shape, and were monodisperse (with a relative standard deviation of less than 8%). The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay revealed that the Ca(OH)2 composite particles were potential biocompatible materials. The synthesized Ca(OH)2 composite particles were size tunable, had a spherical shape, and were monodisperse.![]()
Collapse
Affiliation(s)
- Chih-Hui Yang
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
- Pharmacy Department of E-Da Hospital
- Taiwan
| | - Ya-Chin Wang
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
- The School of Chinese Medicine for Post-Baccalaureate
- I-Shou University
| | - Ta-Chen Wang
- The School of Chinese Medicine for Post-Baccalaureate
- I-Shou University
- Kaohsiung City 82445
- Taiwan
| | - Yi-Ching Chang
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
| | - Yun-Chul Lin
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
| | - Pei-Fan Chen
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
| | - Wei-Jie Huang
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
| | - Hsin-Yi Wen
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
| | - Yu-Mei Lin
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
- The School of Chinese Medicine for Post-Baccalaureate
- I-Shou University
| | - Wen-Shuo Kuo
- School of Chemistry and Materials Science
- Nanjing University of Information Science and Technology
- China
| | - Yi-Ting Wang
- Department of Biological Science and Technology
- I-Shou University
- Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate
- I-Shou University
- Kaohsiung City 82445
- Taiwan
| |
Collapse
|
12
|
Huang KS, Yang CH, Wang YC, Wang WT, Lu YY. Microfluidic Synthesis of Vinblastine-Loaded Multifunctional Particles for Magnetically Responsive Controlled Drug Release. Pharmaceutics 2019; 11:E212. [PMID: 31058849 PMCID: PMC6571913 DOI: 10.3390/pharmaceutics11050212] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 12/23/2022] Open
Abstract
Vinblastine (VBL) is a major chemotherapeutic drug; however, in some cases, it may cause severe side effects in patients with cancer. Designing a novel VBL pharmaceutical formulation is a crucial and emerging concern among researchers for reducing the use of VBL. This study developed a stimuli-responsive controlled VBL drug release system from magnetically sensitive chitosan capsules. A magnetically responsive controlled drug release system was designed by embedding superparamagnetic iron oxide (SPIO) nanoparticles (NPs) in a chitosan matrix and an external magnet. In addition, droplet microfluidics, which is a novel technique for producing polymer spheres, was used for manufacturing monodispersed chitosan microparticles. The prepared VBL and SPIO NPs-loaded chitosan microparticles were characterized and analyzed using Fourier transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, a superconducting quantum interference device, and a biocompatibility test. The drug encapsulation efficiency was 67%-69%. The in vitro drug release test indicated that the VBL could be 100% released from chitosan composite particles in 80-130 min under magnetic stimulation. The pulsatile magnetically triggered tests showed individual and distinctive controlled release patterns. Thus, the timing and dose of VBL release was controllable by an external magnet. The results presume that using a magnetically responsive controlled drug release system offers a valuable opportunity for VBL drug delivery, where the delivery system is an active participant, rather than a passive vehicle, in the optimization of cancer treatment. The proposed actively targeted magnetic drug delivery system offers many advantages over conventional drug delivery systems by improving the precision and timing of drug release, easy operation, and higher compliance for pharmaceutical applications.
Collapse
Affiliation(s)
- Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan.
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 30076, Taiwan.
| | - Ya-Chin Wang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan.
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Wei-Ting Wang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan.
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Yen-Yi Lu
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan.
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan.
| |
Collapse
|
13
|
Mohanraj B, Duan G, Peredo A, Kim M, Tu F, Lee D, Dodge GR, Mauck RL. Mechanically-Activated Microcapsules for 'On-Demand' Drug Delivery in Dynamically Loaded Musculoskeletal Tissues. ADVANCED FUNCTIONAL MATERIALS 2019; 29:1807909. [PMID: 32655335 PMCID: PMC7351315 DOI: 10.1002/adfm.201807909] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Indexed: 05/11/2023]
Abstract
Delivery of biofactors in a precise and controlled fashion remains a clinical challenge. Stimuli-responsive delivery systems can facilitate 'on-demand' release of therapeutics in response to a variety of physiologic triggering mechanisms (e.g. pH, temperature). However, few systems to date have taken advantage of mechanical inputs from the microenvironment to initiate drug release. Here, we developed mechanically-activated microcapsules (MAMCs) that are designed to deliver therapeutics in an on-demand fashion in response to the mechanically loaded environment of regenerating musculoskeletal tissues, with the ultimate goal of furthering tissue repair. To establish a suite of microcapsules with different thresholds for mechano-activation, we first manipulated MAMC physical dimensions and composition, and evaluated their mechano-response under both direct 2D compression and in 3D matrices mimicking the extracellular matrix properties and dynamic loading environment of regenerating tissue. To demonstrate the feasibility of this delivery system, we used an engineered cartilage model to test the efficacy of mechanically-instigated release of TGF-β3 on the chondrogenesis of mesenchymal stem cells. These data establish a novel platform by which to tune the release of therapeutics and/or regenerative factors based on the physiologic dynamic mechanical loading environment, and will find widespread application in the repair and regeneration of numerous musculoskeletal tissues.
Collapse
Affiliation(s)
- Bhavana Mohanraj
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Gang Duan
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Ana Peredo
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Miju Kim
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Fuquan Tu
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
| | - George R. Dodge
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| | - Robert L. Mauck
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA 19104
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104
| |
Collapse
|
14
|
Guo T, Zhang N, Huang J, Pei Y, Wang F, Tang K. A facile fabrication of core–shell sodium alginate/gelatin beads for drug delivery systems. Polym Bull (Berl) 2018. [DOI: 10.1007/s00289-018-2377-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, Li X. Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev 2018; 128:3-28. [PMID: 28919029 PMCID: PMC5854505 DOI: 10.1016/j.addr.2017.09.013] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/11/2017] [Accepted: 09/13/2017] [Indexed: 12/13/2022]
Abstract
Conventional systematically-administered drugs distribute evenly throughout the body, get degraded and excreted rapidly while crossing many biological barriers, leaving minimum amounts of the drugs at pathological sites. Controlled drug delivery aims to deliver drugs to the target sites at desired rates and time, thus enhancing the drug efficacy, pharmacokinetics, and bioavailability while maintaining minimal side effects. Due to a number of unique advantages of the recent microfluidic lab-on-a-chip technology, microfluidic lab-on-a-chip has provided unprecedented opportunities for controlled drug delivery. Drugs can be efficiently delivered to the target sites at desired rates in a well-controlled manner by microfluidic platforms via integration, implantation, localization, automation, and precise control of various microdevice parameters. These features accordingly make reproducible, on-demand, and tunable drug delivery become feasible. On-demand self-tuning dynamic drug delivery systems have shown great potential for personalized drug delivery. This review presents an overview of recent advances in controlled drug delivery using microfluidic platforms. The review first briefly introduces microfabrication techniques of microfluidic platforms, followed by detailed descriptions of numerous microfluidic drug delivery systems that have significantly advanced the field of controlled drug delivery. Those microfluidic systems can be separated into four major categories, namely drug carrier-free micro-reservoir-based drug delivery systems, highly integrated carrier-free microfluidic lab-on-a-chip systems, drug carrier-integrated microfluidic systems, and microneedles. Microneedles can be further categorized into five different types, i.e. solid, porous, hollow, coated, and biodegradable microneedles, for controlled transdermal drug delivery. At the end, we discuss current limitations and future prospects of microfluidic platforms for controlled drug delivery.
Collapse
Affiliation(s)
- Sharma T. Sanjay
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Wan Zhou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Maowei Dou
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory
| | - Hamed Tavakoli
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Lei Ma
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - XiuJun Li
- Department of Chemistry, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Border Biomedical Research Center, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Biomedical Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
- Environmental Science and Engineering, University of Texas at El Paso, 500 West University Ave, El Paso, Texas, 79968, USA, Richland, Washington, 99354, USA
| |
Collapse
|
16
|
Ran R, Sun Q, Baby T, Wibowo D, Middelberg AP, Zhao CX. Multiphase microfluidic synthesis of micro- and nanostructures for pharmaceutical applications. Chem Eng Sci 2017. [DOI: 10.1016/j.ces.2017.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
|
18
|
Kim HU, Choi DG, Roh YH, Shim MS, Bong KW. Microfluidic Synthesis of pH-Sensitive Multicompartmental Microparticles for Multimodulated Drug Release. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:3463-70. [PMID: 27197594 DOI: 10.1002/smll.201600798] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/19/2016] [Indexed: 05/10/2023]
Abstract
Stimuli-responsive carriers releasing multiple drugs have been researched for synergistic combinatorial cancer treatment with reduced side-effects. However, previously used drug carriers have limitations in encapsulating multiple drug components in a single carrier and releasing each drug independently. In this work, pH-sensitive, multimodulated, anisotropic drug carrier particles are synthesized using an acid-cleavable polymer and stop-flow lithography. The particles exhibit a faster drug release rate at the acidic pH of tumors than at physiological pH, demonstrating their potential for tumor-selective drug release. The drug release rate of the particles can be adjusted by controlling the monomer composition. To accomplish multimodulated drug release, multicompartmental particles are synthesized. The drug release profile of each compartment is programmed by tailoring the monomer composition. These pH-sensitive, multicompartmental particles are promising drug carriers enabling tumor-selective and multimodulated release of multiple drugs for synergistic combination cancer therapy.
Collapse
Affiliation(s)
- Hyeon Ung Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| | - Dae Gun Choi
- Division of Bioengineering, Incheon National University, Incheon, 406-772, South Korea
| | - Yoon Ho Roh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon, 406-772, South Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 136-713, South Korea
| |
Collapse
|
19
|
Yang CH, Wang LS, Chen SY, Huang MC, Li YH, Lin YC, Chen PF, Shaw JF, Huang KS. Microfluidic assisted synthesis of silver nanoparticle-chitosan composite microparticles for antibacterial applications. Int J Pharm 2016; 510:493-500. [PMID: 26780124 DOI: 10.1016/j.ijpharm.2016.01.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/16/2015] [Accepted: 01/05/2016] [Indexed: 11/26/2022]
Abstract
Silver nanoparticle (Ag NP)-loaded chitosan composites have numerous biomedical applications; however, fabricating uniform composite microparticles remains challenging. This paper presents a novel microfluidic approach for single-step and in situ synthesis of Ag NP-loaded chitosan microparticles. This proposed approach enables obtaining uniform and monodisperse Ag NP-loaded chitosan microparticles measuring several hundred micrometers. In addition, the diameter of the composites can be tuned by adjusting the flow on the microfluidic chip. The composite particles containing Ag NPs were characterized using UV-vis spectra and scanning electron microscopy-energy dispersive X-ray spectrometry data. The characteristic peaks of Ag NPs in the UV-vis spectra and the element mapping or pattern revealed the formation of nanosized silver particles. The results of antibacterial tests indicated that both chitosan and composite particles showed antibacterial ability, and Ag NPs could enhance the inhibition rate and exhibited dose-dependent antibacterial ability. Because of the properties of Ag NPs and chitosan, the synthesized composite microparticles can be used in several future potential applications, such as bactericidal agents for water disinfection, antipathogens, and surface plasma resonance enhancers.
Collapse
Affiliation(s)
- Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Taiwan
| | - Lung-Shuo Wang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Taiwan; Department of Chinese Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Szu-Yu Chen
- Department of Biological Science and Technology, I-Shou University, Taiwan; The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Taiwan
| | - Mao-Chen Huang
- Department of Biological Science and Technology, I-Shou University, Taiwan; The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Taiwan
| | - Ya-Hua Li
- Department of Biological Science and Technology, I-Shou University, Taiwan; The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Taiwan
| | - Yun-Chul Lin
- Department of Biological Science and Technology, I-Shou University, Taiwan; The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Taiwan
| | - Pei-Fan Chen
- Department of Biological Science and Technology, I-Shou University, Taiwan; The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Taiwan
| | - Jei-Fu Shaw
- Department of Biological Science and Technology, I-Shou University, Taiwan.
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Taiwan.
| |
Collapse
|
20
|
|
21
|
A novel capsule-based self-recovery system with a chloride ion trigger. Sci Rep 2015; 5:10866. [PMID: 26051224 PMCID: PMC4458884 DOI: 10.1038/srep10866] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 01/24/2023] Open
Abstract
Steel is prone to corrosion induced by chloride ions, which is a serious threat to reinforced concrete structures, especially in marine environments. In this work, we report a novel capsule-based self-recovery system that utilizes chloride ions as a trigger. These capsules, which are functionalized via a smart response to chloride ions, are fabricated using a silver alginate hydrogel that disintegrates upon contact with chloride ions, and thereby releases the activated core materials. The experimental results show that the smart capsules respond to a very low concentration of chloride ions (0.1 wt%). Therefore, we believe that this novel capsule-based self-recovery system will exhibit a promising prospect for self-healing or corrosion inhibition applications.
Collapse
|