1
|
Vaghef-Koodehi A, Lapizco-Encinas BH. Tuning the Migration Order in Electrokinetic Separations of Saccharomyces cerevisiae Cells. Anal Chem 2025; 97:10433-10441. [PMID: 40338659 DOI: 10.1021/acs.analchem.5c01262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Traditional analytical methods such as electrophoresis and chromatography have long been employed for separating bioparticles, particularly nanosized analytes. However, the efficient separation of micrometer-sized biological particles remains a challenge. Electrokinetic (EK) systems, particularly insulator-based EK (iEK) platforms, offer promising solutions by leveraging both linear and nonlinear electrokinetic phenomena to manipulate analyte migration and separation. A key approach in analyte separations is the reversal of migration order, which has been extensively studied for small molecules but remains underexplored for biological cells. This study investigates the reversal of migration order for the separation of two strains of Saccharomyces cerevisiae (S. cerevisiae) (ATCC 9763 and ATCC 9080) cells using an iEK system under a DC voltage. A COMSOL Multiphysics model was employed to simulate the system and optimize the separation conditions. Then, experimental separations were conducted under both linear and nonlinear EK regimes, where the applied voltage was allowed to control the separation mechanism: size-based or charge-based. The results demonstrated that switching from a charge-based separation under a linear EK regime to a size-based separation under a nonlinear regime successfully reversed the migration order of S. cerevisiae cells, enhancing separation resolution. These findings highlight the potential of iEK systems for tunable separations of micrometer-sized biological analytes and provide a foundation for further applications in biological and clinical diagnostics.
Collapse
Affiliation(s)
- Alaleh Vaghef-Koodehi
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| |
Collapse
|
2
|
Guzman-Saleh E, Perez-Gonzalez VH, Martinez-Duarte R. Comparing Different Light Models for Virtual Electrodes in Optoelectronic Tweezers. Electrophoresis 2025. [PMID: 40099714 DOI: 10.1002/elps.8131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/20/2025]
Abstract
Optoelectronic tweezers (OET) allow for the physical manipulation of particles of interest via dielectrophoresis (DEP) in microfluidic devices. To produce the nonuniform electric field required to enable DEP, light is used to expose a photoconductive film and create a so-called virtual electrode (VE). Several attempts have been made to model the light profile used to excite the photoconductive layer and produce the VE. However, no comparison of the models has been presented in the literature. Here, we present a comparative study among the rectangular, Gaussian, and saturated-Gaussian models in mapping to light profiles obtained experimentally. These models were then used to predict the activation of a VE and the distribution of the electric field in an OET system. From this comparison, it is possible to conclude that the saturated-Gaussian model should be the preferred choice to study these systems. Moreover, VEs were also compared numerically to conventional gold electrodes used regularly in DEP applications, concluding that very relevant differences exist between the electric fields produced by these two types of electrodes.
Collapse
Affiliation(s)
- Ernesto Guzman-Saleh
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon, Mexico
| | | | - Rodrigo Martinez-Duarte
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
3
|
Liu Y, Wang X, Lan Y. Label-free detection of ConA-induced T-lymphocyte activation at single-cell level by microfluidics. Electrophoresis 2024; 45:2125-2131. [PMID: 39119740 DOI: 10.1002/elps.202400060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/22/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024]
Abstract
Lymphocyte activation is critical in regulating immune responses. The resulting T-cell proliferation has been implicated in the pathogenesis of a variety of autoimmune diseases, such as SLE and rheumatoid arthritis. ConA (concanavalin A)-induced activation has been widely used in the T lymphocytes model of immune-mediated liver injury, autoimmune hepatitis, and so on. In those works, it usually requires fluorescent labeling or cell staining to confirm whether the cells are transformed successfully after medicine treatment to figure out efficacy/pharmacology. The detection preparation steps are time-consuming and have limitations for further proteomic/genomic identifications. Here, a label-free microfluidic method is established to detect lymphocyte activation degree. The lymphocyte and ConA-activated lymphocyte were investigated by a microfluidic device. According to where single cells in the sample were captured in the designed channel, lymphocyte and ConA-activated samples are differentiated and characterized by population electric field factors, 2.08 × 104 and 2.21 × 104 V/m, respectively. Furthermore, salidroside, a herbal medicine that was documented to promote the transformation, was used to treat lymphocyte cells, and the treated cell population is detected to be 2.67 × 104 V/m. The characterization indicates an increasing trend with the activation degree. The result maintains a high consistency with traditional staining methods with transformed cells of 15.8%, 28.8%, and 48.3% in each cell population. Dielectrophoresis is promising to work as a tool for detecting lymphocyte transformation and medical efficacy detection.
Collapse
Affiliation(s)
- Yameng Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaohu Wang
- Intelligent Manufacturing College, Tianjin Sino-German University of Applied Sciences, Tianjin, China
| | - Yuxia Lan
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Masuduzzaman M, Bakli C, Barisik M, Kim B. Applied Electric Field Effects on Diffusivity and Electrical Double-Layer Thickness. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404397. [PMID: 39177143 DOI: 10.1002/smll.202404397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Indexed: 08/24/2024]
Abstract
This study utilizes molecular dynamics (MD) simulations and continuum frameworks to explore electroosmotic flow (EOF) in nanoconfined aqueous electrolytes, offering a promising alternative to conventional micro-/nanofluidic systems. Although osmotic behavior in these environments is deeply linked to local fluid properties and interfacial dynamics between the fluid and electrolyte solutions, achieving a complete molecular-level understanding has remained challenging. The findings establish a linear relationship between electric field strength and fluid velocity, uncovering two distinct transport regimes separated by a critical threshold, with a markedly intensified flow in the second regime. It is demonstrated that rising electric field strengths significantly enhance water diffusion coefficients, supported by a detailed analysis of fluid hydration structures, the potential of mean force (PMF), and local stress tensors. Due to the applied electric field strength, the motion of ions and water accelerates, leading to the redistribution of ions and intensification of electrostatic forces. This expands the thickness of the electric double layer (EDL) and amplifies fluid diffusivity, thereby enhancing nanoscale fluid activity. These insights enhance the molecular-level understanding of EOF and define the stability of flow regimes, providing valuable guidelines for advancing nanofluidic technologies, such as drug delivery systems and lab-on-a-chip devices.
Collapse
Affiliation(s)
- Md Masuduzzaman
- School of Mechanical Engineering, University of Ulsan, Daehak-ro 93, Namgu, Ulsan, 680749, South Korea
| | - Chirodeep Bakli
- School of Energy Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Murat Barisik
- Department of Mechanical Engineering, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, USA
| | - BoHung Kim
- School of Mechanical Engineering, University of Ulsan, Daehak-ro 93, Namgu, Ulsan, 680749, South Korea
| |
Collapse
|
5
|
Bentor J, Gabbard C, Bostwick JB, Xuan X. Nonlinear Electrophoresis of Microparticles in Shear Thinning Fluids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39261018 DOI: 10.1021/acs.langmuir.4c02334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The nonlinear electric field dependence of particle electrophoresis has been demonstrated to occur in Newtonian fluids for highly charged particles under large electric fields. It has also been predicted to arise from the rheological effects of non-Newtonian fluids even at small electric fields. We present in this work an experimental verification of nonlinear electrophoresis in shear thinning xanthan gum solutions through a straight rectangular microchannel. The addition of polymer into a Newtonian buffer solution is found to change the electric field dependence from linear to superlinear for electroosmotic, electrokinetic, and electrophoretic velocities. The nonlinear index of each of these electrokinetic phenomena increases with the increasing polymer or buffer concentration, among which electrophoresis exhibits the strongest nonlinearity. Both these observed trends are captured by a dimensionless electrokinetic shear thinning number that depends on the power-law index of fluid viscosity and the Debye length.
Collapse
Affiliation(s)
- Joseph Bentor
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| | - Chase Gabbard
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| | - Joshua B Bostwick
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634-0921, United States
| |
Collapse
|
6
|
de Los Santos-Ramirez JM, Mendiola-Escobedo CA, Cotera-Sarabia JM, Gallo-Villanueva RC, Martinez-Duarte R, Perez-Gonzalez VH. Enabling the characterization of the nonlinear electrokinetic properties of particles using low voltage. Analyst 2024; 149:3839-3849. [PMID: 38855835 DOI: 10.1039/d4an00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Insulator-based electrokinetically driven microfluidic devices stimulated with direct current (DC) voltages are an attractive solution for particle separation, concentration, or isolation. However, to design successful particle manipulation protocols, it is mandatory to know the mobilities of electroosmosis, and linear and nonlinear electrophoresis of the microchannel/liquid/particle system. Several techniques exist to characterize the mobilities of electroosmosis and linear electrophoresis. However, only one method to characterize the mobility of nonlinear electrophoresis has been thoroughly assessed, which generally requires DC voltages larger than 1000 V and measuring particle velocity in a straight microchannel. Under such conditions, Joule heating, electrolysis, and the DC power source cost become a concern. Also, measuring particle velocity at high voltages is noisy, limiting characterization quality. Here we present a protocol-tested on 2 μm polystyrene particles-for characterizing the mobility of nonlinear electrophoresis of the liquid/particle system using a DC voltage of only 30 V and visual inspection of particle dynamics in a microchannel featuring insulating obstacles. Multiphysics numerical modelling was used to guide microchannel design and to correlate particle location during an experiment with electric field intensity. The method was validated against the conventional characterization protocol, exhibiting excellent agreement while significantly reducing measurement noise and experimental complexity.
Collapse
Affiliation(s)
- J Martin de Los Santos-Ramirez
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| | - Carlos A Mendiola-Escobedo
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| | - Jose M Cotera-Sarabia
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| | - Roberto C Gallo-Villanueva
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| | - Rodrigo Martinez-Duarte
- Multiscale Manufacturing Laboratory, Department of Mechanical Engineering, Clemson University, Clemson, SC 29634, USA.
| | - Victor H Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501, Monterrey, NL, 64700, Mexico.
| |
Collapse
|
7
|
Lapizco-Encinas BH. Nonlinear Electrokinetic Methods of Particles and Cells. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2024; 17:243-264. [PMID: 38360552 DOI: 10.1146/annurev-anchem-061622-040810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Nonlinear electrokinetic phenomena offer label-free, portable, and robust approaches for particle and cell assessment, including selective enrichment, separation, sorting, and characterization. The field of electrokinetics has evolved substantially since the first separation reports by Arne Tiselius in the 1930s. The last century witnessed major advances in the understanding of the weak-field theory, which supported developments in the use of linear electrophoresis and its adoption as a routine analytical technique. More recently, an improved understanding of the strong-field theory enabled the development of nonlinear electrokinetic techniques such as electrorotation, dielectrophoresis, and nonlinear electrophoresis. This review discusses the operating principles and recent applications of these three nonlinear electrokinetic phenomena for the analysis and manipulation of particles and cells and provides an overview of some of the latest developments in the field of nonlinear electrokinetics.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, New York, USA;
| |
Collapse
|
8
|
Bu S, Sonker M, Koh D, Ros A. On the behavior of sub-micrometer polystyrene particles subjected to AC insulator-based dielectrophoresis. Electrophoresis 2024; 45:1065-1079. [PMID: 38195843 DOI: 10.1002/elps.202300184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
Polymer beads, especially polystyrene particles, have been extensively used as model species in insulator-based dielectrophoresis (iDEP) studies. Their use in alternating current iDEP (AC-iDEP) is less explored; however, an assessment in the low-frequency regime (≤10 kHz) allows to link surface conduction effects with the surface properties of polymer particles. Here, we provide a case study for various experimental conditions assessing sub-micrometer polystyrene particles with AC-iDEP and link to accepted surface conduction theory to predict and experimentally verify the observed AC-iDEP trapping behavior based on apparent zeta potential and solution conductivity. We find excellent agreement with the theoretical predictions, but also the occurrence of concentration polarization electroosmotic flow under the studied conditions, which have the potential to confound acting dielectrophoresis conditions. Furthermore, we study a case relevant to the assessment of microplastics in human and animal body fluids by mimicking the protein adsorption of high abundant proteins in blood by coating polystyrene beads with bovine serum albumin, a highly abundant protein in blood. Theoretical predictions and experimental observations confirm a difference in observed AC-iDEP behavior between coated and non-coated particles, which might be exploited for future studies of microplastics in blood to assess their exposure to humans and animals.
Collapse
Affiliation(s)
- Shulin Bu
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Domin Koh
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
9
|
Nasir Ahamed NN, Mendiola-Escobedo CA, Perez-Gonzalez VH, Lapizco-Encinas BH. Development of a DC-Biased AC-Stimulated Microfluidic Device for the Electrokinetic Separation of Bacterial and Yeast Cells. BIOSENSORS 2024; 14:237. [PMID: 38785711 PMCID: PMC11117482 DOI: 10.3390/bios14050237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/19/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Electrokinetic (EK) microsystems, which are capable of performing separations without the need for labeling analytes, are a rapidly growing area in microfluidics. The present work demonstrated three distinct binary microbial separations, computationally modeled and experimentally performed, in an insulator-based EK (iEK) system stimulated by DC-biased AC potentials. The separations had an increasing order of difficulty. First, a separation between cells of two distinct domains (Escherichia coli and Saccharomyces cerevisiae) was demonstrated. The second separation was for cells from the same domain but different species (Bacillus subtilis and Bacillus cereus). The last separation included cells from two closely related microbial strains of the same domain and the same species (two distinct S. cerevisiae strains). For each separation, a novel computational model, employing a continuous spatial and temporal function for predicting the particle velocity, was used to predict the retention time (tR,p) of each cell type, which aided the experimentation. All three cases resulted in separation resolution values Rs>1.5, indicating complete separation between the two cell species, with good reproducibility between the experimental repetitions (deviations < 6%) and good agreement (deviations < 18%) between the predicted tR,p and experimental (tR,e) retention time values. This study demonstrated the potential of DC-biased AC iEK systems for performing challenging microbial separations.
Collapse
Affiliation(s)
- Nuzhet Nihaar Nasir Ahamed
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA; (N.N.N.A.); (C.A.M.-E.)
| | - Carlos A. Mendiola-Escobedo
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA; (N.N.N.A.); (C.A.M.-E.)
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64700, Nuevo Leon, Mexico
| | - Victor H. Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64700, Nuevo Leon, Mexico
| | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA; (N.N.N.A.); (C.A.M.-E.)
| |
Collapse
|
10
|
Vaghef-Koodehi A, Cyr P, Lapizco-Encinas BH. Improving device design in insulator-based electrokinetic tertiary separations. J Chromatogr A 2024; 1722:464853. [PMID: 38579611 DOI: 10.1016/j.chroma.2024.464853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/07/2024]
Abstract
This study presents a methodology for designing effective insulator-based electrokinetic (iEK) systems for separating tertiary microparticle samples, which can be extended to more complex samples. First, 144 distinct iEK microchannel designs were built considering different shapes and arrangements of the insulating posts. Second, a mathematical model was developed with COMSOL software to predict the retention time of each particle type in the microchannel, this allowed identifying the best channel designs for two distinct types of separations: charge-based and sized-based. Third, the experimental charge-based and size-based separations of the tertiary microparticle mixtures were performed employing the improved designs identified with COMSOL modeling. The experimental results demonstrated successful separation in terms of separation resolution and good agreement with COMSOL predictions. The findings from this study show that the proposed method for device design, which combines mathematical modeling with varying post shape and post arrangement is an effective approach for identifying iEK systems capable of separating complex microparticle samples.
Collapse
Affiliation(s)
- Alaleh Vaghef-Koodehi
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, United States
| | - Patricia Cyr
- Department of Industrial and Systems Engineering, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, United States
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, United States.
| |
Collapse
|
11
|
Vaghef-Koodehi A, Lapizco-Encinas BH. Switching Separation Migration Order by Switching Electrokinetic Regime in Electrokinetic Microsystems. BIOSENSORS 2024; 14:119. [PMID: 38534226 DOI: 10.3390/bios14030119] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 03/28/2024]
Abstract
Analyte migration order is a major aspect in all migration-based analytical separations methods. Presented here is the manipulation of the migration order of microparticles in an insulator-based electrokinetic separation. Three distinct particle mixtures were studied: a binary mixture of particles with similar electrical charge and different sizes, and two tertiary mixtures of particles of distinct sizes. Each one of the particle mixtures was separated twice, the first separation was performed under low voltage (linear electrokinetic regime) and the second separation was performed under high voltage (nonlinear electrokinetic regime). Linear electrophoresis, which discriminates particles by charge, is the dominant electrokinetic effect in the linear regime; while nonlinear electrophoresis, which discriminates particles by size and shape, is the dominant electrokinetic effect in the nonlinear regime. The separation results obtained with the three particle mixtures illustrated that particle elution order can be changed by switching from the linear electrokinetic regime to the nonlinear electrokinetic regime. Also, in all cases, better separation performances in terms of separation resolution (Rs) were obtained by employing the nonlinear electrokinetic regime allowing nonlinear electrophoresis to be the discriminatory electrokinetic mechanism. These findings could be applied to analyze complex samples containing bioparticles of interest within the micron size range. This is the first report where particle elution order is altered in an iEK system.
Collapse
Affiliation(s)
- Alaleh Vaghef-Koodehi
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA
| |
Collapse
|
12
|
Islam MN, Jaiswal B, Gagnon ZR. High-Throughput Continuous Free-Flow Dielectrophoretic Trapping of Micron-Scale Particles and Cells in Paper Using Localized Nonuniform Pore-Scale-Generated Paper-Based Electric Field Gradients. Anal Chem 2024; 96:1084-1092. [PMID: 38194698 PMCID: PMC10809225 DOI: 10.1021/acs.analchem.3c03740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/11/2024]
Abstract
Dielectrophoresis (DEP) utilizes a spatially varying nonuniform electrical field to induce forces on suspended polarizable soft matter including particles and cells. Such nonuniformities are conventionally created using 2D or 3D micrometer-scale electrode arrays. Alternatively, insulator-based dielectrophoresis (iDEP) uses small micrometer-scale insulating structures to spatially distort and generate regions of localized field gradients to selectively trap, isolate, and concentrate bioparticles, including bacteria, viruses, red blood cells, and cancer cells from a suspending electrolyte solution. Despite significant advances in the microfabrication technology, the commercial adoption of DEP devices for soft matter manipulation remains elusive. One reason for low market penetration is a lack of low-cost and scalable fabrication methods to quickly microfabricate field-deforming structures to generate localized DEP-inducing electric field gradients. We propose here that paper-based devices can offer a low-cost and easy-to-use alternative to traditional iDEP devices. In this article, we demonstrate for the first time the ability to perform iDEP-style particle trapping using the naturally occurring micrometer-scale insulating porous structures of paper. In particular, we use polymeric laminated nonwoven fiberglass paper channels as a source of insulating structures for iDEP. We apply a flow of polarizable microparticles directly within the nonwoven channel and simultaneously drop an electric field perpendicular to the flow direction to induce DEP. We show the ability to readily trap and concentrate particles in paper by DEP with an applied voltage as low as 2 V using two different flow mechanisms: a constant fluid flow rate using an external pump and passive fluid flow by capillary wicking. Using a combination of micro computed tomography and finite element analysis, we then present a computational model to probe the microscale DEP force formation dynamics within the paper structure. This new paper-based iDEP platform enables the development of robust, low-cost, and portable next-generation iDEP systems for a wide variety of sample purification and liquid handling applications.
Collapse
Affiliation(s)
- Md. Nazibul Islam
- Artie McFerrin Department of Chemical
Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Bhavya Jaiswal
- Artie McFerrin Department of Chemical
Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Zachary R. Gagnon
- Artie McFerrin Department of Chemical
Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
13
|
de Los Santos-Ramirez JM, Boyas-Chavez PG, Cerrillos-Ordoñez A, Mata-Gomez M, Gallo-Villanueva RC, Perez-Gonzalez VH. Trends and challenges in microfluidic methods for protein manipulation-A review. Electrophoresis 2024; 45:69-100. [PMID: 37259641 DOI: 10.1002/elps.202300056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/06/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023]
Abstract
Proteins are important molecules involved in an immensely large number of biological processes. Being capable of manipulating proteins is critical for developing reliable and affordable techniques to analyze and/or detect them. Such techniques would enable the production of therapeutic agents for the treatment of diseases or other biotechnological applications (e.g., bioreactors or biocatalysis). Microfluidic technology represents a potential solution to protein manipulation challenges because of the diverse phenomena that can be exploited to achieve micro- and nanoparticle manipulation. In this review, we discuss recent contributions made in the field of protein manipulation in microfluidic systems using different physicochemical principles and techniques, some of which are miniaturized versions of already established macro-scale techniques.
Collapse
Affiliation(s)
| | - Pablo G Boyas-Chavez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | - Marco Mata-Gomez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo León, Mexico
| | | | | |
Collapse
|
14
|
Nasir Ahamed NN, Mendiola-Escobedo CA, Perez-Gonzalez VH, Lapizco-Encinas BH. Assessing the Discriminatory Capabilities of iEK Devices under DC and DC-Biased AC Stimulation Potentials. MICROMACHINES 2023; 14:2239. [PMID: 38138408 PMCID: PMC10745336 DOI: 10.3390/mi14122239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
There is a rising need for rapid and reliable analytical methods for separating microorganisms in clinical and biomedical applications. Microscale-insulator-based electrokinetic (iEK) systems have proven to be robust platforms for assessing a wide variety of microorganisms. Traditionally, iEK systems are usually stimulated with direct-current (DC) potentials. This work presents a comparison between using DC potentials and using DC-biased alternating-current (AC) potentials in iEK systems for the separation of microorganisms. The present study, which includes mathematical modeling and experimentation, compares the separation of bacterial and yeast cells in two distinct modes by using DC and DC-biased AC potentials. The quality of both separations, assessed in terms of separation resolution (Rs), showed a complete separation (Rs = 1.51) with the application of a DC-biased low-frequency AC signal but an incomplete separation (Rs = 0.55) with the application of an RMS-equivalent DC signal. Good reproducibility between experimental repetitions (<10%) was obtained, and good agreement (~18% deviation) was observed between modeling and experimental retention times. The present study demonstrates the potential of extending the limits of iEK systems by employing DC-biased AC potentials to perform discriminatory separations of microorganisms that are difficult to separate with the application of DC potentials.
Collapse
Affiliation(s)
- Nuzhet Nihaar Nasir Ahamed
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA;
| | | | | | - Blanca H. Lapizco-Encinas
- Microscale Bioseparations Laboratory, Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, NY 14623, USA;
| |
Collapse
|
15
|
Wu M, Gao Y, Luan Q, Papautsky I, Chen X, Xu J. Three-dimensional lab-on-a-foil device for dielectrophoretic separation of cancer cells. Electrophoresis 2023; 44:1802-1809. [PMID: 37026613 DOI: 10.1002/elps.202200287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/28/2023] [Accepted: 03/13/2023] [Indexed: 04/08/2023]
Abstract
A simple, low-cost, three-dimensional (3D) lab-on-a-foil microfluidic device for dielectrophoretic separation of circulating tumor cells (CTCs) is designed and constructed. Disposable thin films are cut by xurography and microelectrode array are made with rapid inkjet printing. The multilayer device design allows the studying of spatial movements of CTCs and red blood cells (RBCs) under dielectrophoresis (DEP). A numerical simulation was performed to find the optimum driving frequency of RBCs and the crossover frequency for CTCs. At the optimum frequency, RBCs were lifted 120 µm in z-axis direction by DEP force, and CTCs were not affected due to negligible DEP force. By utilizing the displacement difference, the separation of CTCs (modeled with A549 lung carcinoma cells) from RBCs in z-axis direction was achieved. With the nonuniform electric field at optimized driving frequency, the RBCs were trapped in the cavities above the microchannel, whereas the A549 cells were separated with a high capture rate of 86.3% ± 0.2%. The device opens not only the possibility for 3D high-throughput cell separation but also for future developments in 3D cell manipulation through rapid and low-cost fabrication.
Collapse
Affiliation(s)
- Mengren Wu
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Yuan Gao
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, Illinois, USA
- Department of Mechanical Engineering, University of Memphis, Memphis, Tennessee, USA
| | - Qiyue Luan
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Ian Papautsky
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| | - Xiaolin Chen
- School of Engineering and Computer Science, Washington State University, Vancouver, Washington, USA
| | - Jie Xu
- Department of Mechanical and Industrial Engineering, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
16
|
Wells T, Schmidt H, Hawkins A. Nano/microfluidic device for high-throughput passive trapping of nanoparticles. BIOMICROFLUIDICS 2023; 17:064101. [PMID: 37928800 PMCID: PMC10622172 DOI: 10.1063/5.0176323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
We present a design and a fabrication method for devices designed for rapid collection of nanoparticles in a fluid. The design uses nanofluidic channels as a passive size-based barrier trap to isolate particles near a central point in the channel, which is also covered by a thin membrane. Particles that enter the collection region are trapped with 100% efficiency within a 6-12 μ m radius from a central point. Flow rates for particle-free fluid range from 1.88 to 3.69 nl/s for the pressure and geometries tested. Particle trapping tests show that high trapped particle counts significantly impact flow rates. For suspensions as dilute as 30-300 aM (20-200 particles/μ l), 8-80 particles are captured within 500 s.
Collapse
Affiliation(s)
- Tanner Wells
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah 84602, USA
| | - Holger Schmidt
- School of Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Aaron Hawkins
- Department of Electrical and Computer Engineering, Brigham Young University, Provo, Utah 84602, USA
| |
Collapse
|
17
|
Koh D, Sonker M, Arriaga E, Ros A. Numerical modeling reveals improved organelle separation for dielectrophoretic ratchet migration. Electrophoresis 2023; 44:1826-1836. [PMID: 37622551 PMCID: PMC10905386 DOI: 10.1002/elps.202300091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
Organelle size varies with normal and abnormal cell function. Thus, size-based particle separation techniques are key to assessing the properties of organelle subpopulations differing in size. Recently, insulator-based dielectrophoresis (iDEP) has gained significant interest as a technique to manipulate sub-micrometer-sized particles enabling the assessment of organelle subpopulations. Based on iDEP, we recently reported a ratchet device that successfully demonstrated size-based particle fractionation in combination with continuous flow sample injection. Here, we used a numerical model to optimize the performance with flow rates a factor of three higher than previously and increased the channel volume to improve throughput. We evaluated the amplitude and duration of applied low-frequency DC-biased AC potentials improving separation efficiency. A separation efficiency of nearly 0.99 was achieved with the optimization of key parameters-improved from 0.80 in previous studies (Ortiz et al. Electrophoresis, 2022;43;1283-1296)-demonstrating that fine-tuning the periodical driving forces initiating the ratchet migration under continuous flow conditions can significantly improve the fractionation of organelles of different sizes.
Collapse
Affiliation(s)
- Domin Koh
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States
| | - Mukul Sonker
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States
| | - Edgar Arriaga
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Alexandra Ros
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, United States
- Center for Applied Structural Discovery, The Biodesign Institute, Arizona State University, Tempe, Arizona, United States
| |
Collapse
|
18
|
Raihan MK, Baghdady M, Dort H, Bentor J, Xuan X. Fluid Elasticity-Enhanced Insulator-Based Dielectrophoresis for Sheath-Free Particle Focusing in Very Dilute Polymer Solutions. Anal Chem 2023; 95:16013-16020. [PMID: 37856245 DOI: 10.1021/acs.analchem.3c03311] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Focusing particles into a narrow stream is usually a necessary step in microfluidic flow cytometry and particle sorting. We demonstrate that the addition of a small amount of poly(ethylene oxide) (PEO) polymer into a buffer solution can reduce by almost 1 order of magnitude the threshold DC electric field for single-line dielectrophoretic focusing of particles in a constricted microchannel. The particle focusing effectiveness of this fluid elasticity-enhanced insulator-based dielectrophoresis (E-iDEP) in very dilute PEO solutions gets enhanced with the increase of the PEO molecular weight and particle size. These two trends are consistent with a theoretical analysis that accounts for the fluid elasticity effects on the electrokinetic and dielectrophoretic particle motions. Surprisingly, the particle-focusing effectiveness of E-iDEP is observed to first increase and then decrease with an increase in the PEO concentration.
Collapse
Affiliation(s)
- Mahmud Kamal Raihan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Micah Baghdady
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Heston Dort
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Joseph Bentor
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Xiangchun Xuan
- Department of Mechanical Engineering, Clemson University, Clemson, South Carolina 29634, United States
| |
Collapse
|
19
|
Gong L, Cretella A, Lin Y. Microfluidic systems for particle capture and release: A review. Biosens Bioelectron 2023; 236:115426. [PMID: 37276636 DOI: 10.1016/j.bios.2023.115426] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Microfluidic technology has emerged as a promising tool in various applications, including biosensing, disease diagnosis, and environmental monitoring. One of the notable features of microfluidic devices is their ability to selectively capture and release specific cells, biomolecules, bacteria, and particles. Compared to traditional bulk analysis instruments, microfluidic capture-and-release platforms offer several advantages, such as contactless operation, label-free detection, high accuracy, good sensitivity, and minimal reagent requirements. However, despite significant efforts dedicated to developing innovative capture mechanisms in the past, the release and recovery efficiency of trapped particles have often been overlooked. Many previous studies have focused primarily on particle capture techniques and their efficiency, disregarding the crucial role of successful particle release for subsequent analysis. In reality, the ability to effectively release trapped particles is particularly essential to ensure ongoing, high-throughput analysis. To address this gap, this review aims to highlight the importance of both capture and release mechanisms in microfluidic systems and assess their effectiveness. The methods are classified into two categories: those based on physical principles and those using biochemical approaches. Furthermore, the review offers a comprehensive summary of recent applications of microfluidic platforms specifically designed for particle capture and release. It outlines the designs and performance of these devices, highlighting their advantages and limitations in various target applications and purposes. Finally, the review concludes with discussions on the current challenges faced in the field and presents potential future directions.
Collapse
Affiliation(s)
- Liyuan Gong
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Andrew Cretella
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, 02881, USA.
| |
Collapse
|
20
|
Deivasigamani R, Mohd Maidin NN, Abdul Nasir NS, Abdulhameed A, Ahmad Kayani AB, Mohamed MA, Buyong MR. A correlation of conductivity medium and bioparticle viability on dielectrophoresis-based biomedical applications. Electrophoresis 2023; 44:573-620. [PMID: 36604943 DOI: 10.1002/elps.202200203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023]
Abstract
Dielectrophoresis (DEP) bioparticle research has progressed from micro to nano levels. It has proven to be a promising and powerful cell manipulation method with an accurate, quick, inexpensive, and label-free technique for therapeutic purposes. DEP, an electrokinetic phenomenon, induces particle movement as a result of polarization effects in a nonuniform electrical field. This review focuses on current research in the biomedical field that demonstrates a practical approach to DEP in terms of cell separation, trapping, discrimination, and enrichment under the influence of the conductive medium in correlation with bioparticle viability. The current review aims to provide readers with an in-depth knowledge of the fundamental theory and principles of the DEP technique, which is influenced by conductive medium and to identify and demonstrate the biomedical application areas. The high conductivity of physiological fluids presents obstacles and opportunities, followed by bioparticle viability in an electric field elaborated in detail. Finally, the drawbacks of DEP-based systems and the outlook for the future are addressed. This article will aid in advancing technology by bridging the gap between bioscience and engineering. We hope the insights presented in this review will improve cell suspension medium and promote DEP-viable bioparticle manipulation for health-care diagnostics and therapeutics.
Collapse
Affiliation(s)
- Revathy Deivasigamani
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nur Nasyifa Mohd Maidin
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nur Shahira Abdul Nasir
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | | | - Aminuddin Bin Ahmad Kayani
- Functional Materials and Microsystems Research Group and the Micro Nano Research Facility, RMIT University, Melbourne, Australia.,ARC Research Hub for Connected Sensors for Health, RMIT University, Melbourne, Australia
| | - Mohd Ambri Mohamed
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Muhamad Ramdzan Buyong
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
21
|
Vaghef-Koodehi A, Ernst OD, Lapizco-Encinas BH. Separation of Cells and Microparticles in Insulator-Based Electrokinetic Systems. Anal Chem 2023; 95:1409-1418. [PMID: 36599093 DOI: 10.1021/acs.analchem.2c04366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Presented here is the first continuous separation of microparticles and cells of similar characteristics employing linear and nonlinear electrokinetic phenomena in an insulator-based electrokinetic (iEK) system. By utilizing devices with insulating features, which distort the electric field distribution, it is possible to combine linear and nonlinear EK phenomena, resulting in highly effective separation schemes that leverage the new advancements in nonlinear electrophoresis. This work combines mathematical modeling and experimentation to separate four distinct binary mixtures of particles and cells. A computational model with COMSOL Multiphysics was used to predict the retention times (tR,p) of the particles and cells in iEK devices. Then, the experimental separations were carried out using the conditions identified with the model, where the experimental retention time (tR,e) of the particles and cells was measured. A total of four distinct separations of binary mixtures were performed by increasing the level of difficulty. For the first separation, two types of polystyrene microparticles, selected to mimic Escherichia coli and Saccharomyces cerevisiae cells, were separated. By leveraging the knowledge gathered from the first separation, a mixture of cells of distinct domains and significant size differences, E. coli and S. cerevisiae, was successfully separated. The third separation also featured cells of different domains but closer in size: Bacillus cereus versus S. cerevisiae. The last separation included cells in the same domain and genus, B. cereus versus Bacillus subtilis. Separation results were evaluated in terms of number of plates (N) and separation resolution (Rs), where Rs values for all separations were above 1.5, illustrating complete separations. Experimental results were in agreement with modeling results in terms of retention times, with deviations in the 6-27% range, while the variation between repetitions was between 2 and 18%, demonstrating good reproducibility. This report is the first prediction of the retention time of cells in iEK systems.
Collapse
Affiliation(s)
- Alaleh Vaghef-Koodehi
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York14623, United States
| | - Olivia D Ernst
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York14623, United States
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York14623, United States
| |
Collapse
|
22
|
Al-Ali A, Waheed W, Abu-Nada E, Alazzam A. A review of active and passive hybrid systems based on Dielectrophoresis for the manipulation of microparticles. J Chromatogr A 2022; 1676:463268. [DOI: 10.1016/j.chroma.2022.463268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022]
|
23
|
Weirauch L, Giesler J, Baune M, Pesch G, Thöming J. Shape-selective remobilization of microparticles in a mesh-based DEP filter at high throughput. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
24
|
Vaghef-Koodehi A, Dillis C, Lapizco-Encinas BH. High-Resolution Charge-Based Electrokinetic Separation of Almost Identical Microparticles. Anal Chem 2022; 94:6451-6456. [PMID: 35441512 DOI: 10.1021/acs.analchem.2c00355] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Well-established techniques, e.g., chromatography and capillary electrophoresis, are available for separating nanosized particles, such as proteins. However, similar techniques for separating micron-sized particles are still needed. Insulator-based electrokinetic (iEK) systems can achieve efficient microparticle separations by combining linear and nonlinear EK phenomena. Of particular interest are charge-based separations, which could be employed for separating similar microorganisms, such as bacterial cells of the same size, same genus, or same strain. Several groups have reported charge-based separations of microparticles where a zeta potential difference of at least 40 mV between the microparticles was required. The present work pushes the limit of the discriminatory capabilities of iEK systems by reporting the charged-based separation of two microparticles of the same size (5.1 μm), same shape, same substrate material, and with a small difference in particle zeta potentials of only 3.6 mV, which is less than 10% of the difference in previous studies. By building an accurate COMSOL Multiphysics model, which correctly accounts for dielectrophoresis and electrophoresis of the second kind, it was possible to identify the conditions to achieve this challenging separation. Furthermore, the COMSOL model allowed predicting particle retention times (tR,p) which were compared with experimental values (tR,e). The separations results had excellent reproducibility in terms of tR,e with variations of only 9% and 11% between repetitions. These findings demonstrate that, by following a robust protocol that involves modeling and experimental work, it is possible to discriminate between highly similar particles, with much smaller differences in electrical charge than previously reported.
Collapse
Affiliation(s)
- Alaleh Vaghef-Koodehi
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Curran Dillis
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, 160 Lomb Memorial Drive, Rochester, New York 14623, United States
| |
Collapse
|
25
|
Pethig R. Protein Dielectrophoresis: A Tale of Two Clausius-Mossottis-Or Something Else? MICROMACHINES 2022; 13:261. [PMID: 35208384 PMCID: PMC8876334 DOI: 10.3390/mi13020261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/31/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022]
Abstract
Standard DEP theory, based on the Clausius-Mossotti (CM) factor derived from solving the boundary-value problem of macroscopic electrostatics, fails to describe the dielectrophoresis (DEP) data obtained for 22 different globular proteins over the past three decades. The calculated DEP force appears far too small to overcome the dispersive forces associated with Brownian motion. An empirical theory, employing the equivalent of a molecular version of the macroscopic CM-factor, predicts a protein's DEP response from the magnitude of the dielectric β-dispersion produced by its relaxing permanent dipole moment. A new theory, supported by molecular dynamics simulations, replaces the macroscopic boundary-value problem with calculation of the cross-correlation between the protein and water dipoles of its hydration shell. The empirical and formal theory predicts a positive DEP response for protein molecules up to MHz frequencies, a result consistently reported by electrode-based (eDEP) experiments. However, insulator-based (iDEP) experiments have reported negative DEP responses. This could result from crystallization or aggregation of the proteins (for which standard DEP theory predicts negative DEP) or the dominating influences of electrothermal and other electrokinetic (some non-linear) forces now being considered in iDEP theory.
Collapse
Affiliation(s)
- Ronald Pethig
- Institute for Integrated Micro and Nano Systems, School of Engineering & Electronics, The University of Edinburgh, The King's Buildings, Edinburgh EH9 3JF, UK
| |
Collapse
|
26
|
Ruz-Cuen R, de Los Santos-Ramírez JM, Cardenas-Benitez B, Ramírez-Murillo CJ, Miller A, Hakim K, Lapizco-Encinas BH, Perez-Gonzalez VH. Amplification factor in DC insulator-based electrokinetic devices: a theoretical, numerical, and experimental approach to operation voltage reduction for particle trapping. LAB ON A CHIP 2021; 21:4596-4607. [PMID: 34739022 DOI: 10.1039/d1lc00614b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Insulator-based microfluidic devices are attractive for handling biological samples due to their simple fabrication, low-cost, and efficiency in particle manipulation. However, their widespread application is limited by the high operation voltages required to achieve particle trapping. We present a theoretical, numerical, and experimental study that demonstrates these voltages can be significantly reduced (to sub-100 V) in direct-current insulator-based electrokinetic (DC-iEK) devices for micron-sized particles. To achieve this, we introduce the concept of the amplification factor-the fold-increase in electric field magnitude due to the presence of an insulator constriction-and use it to compare the performance of different microchannel designs and to direct our design optimization process. To illustrate the effect of using constrictions with smooth and sharp features on the amplification factor, geometries with circular posts and semi-triangular posts were used. These were theoretically approximated in two different systems of coordinates (bipolar and elliptic), allowing us to provide, for the first time, explicit electric field amplification scaling laws. Finite element simulations were performed to approximate the 3D insulator geometries and provide a parametric study of the effect of changing different geometrical features. These simulations were used to predict particle trapping voltages for four different single-layer microfluidic devices using two particle suspensions (2 and 6.8 μm in size). The general agreement between our models demonstrates the feasibility of using the amplification factor, in combination with nonlinear electrokinetic theory, to meet the prerequisites for the development of portable DC-iEK microfluidic systems.
Collapse
Affiliation(s)
- Rodrigo Ruz-Cuen
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico.
| | | | | | | | - Abbi Miller
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Kel Hakim
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory, Rochester Institute of Technology, Rochester, New York 14623, USA
| | - Victor H Perez-Gonzalez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey, Nuevo Leon 64849, Mexico.
| |
Collapse
|
27
|
Vaghef-Koodehi A, Lapizco-Encinas BH. Microscale electrokinetic-based analysis of intact cells and viruses. Electrophoresis 2021; 43:263-287. [PMID: 34796523 DOI: 10.1002/elps.202100254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 12/11/2022]
Abstract
Miniaturized electrokinetic methods have proven to be robust platforms for the analysis and assessment of intact microorganisms, offering short response times and higher integration than their bench-scale counterparts. The present review article discusses three types of electrokinetic-based methodologies: electromigration or motion-based techniques, electrode-based electrokinetics, and insulator-based electrokinetics. The fundamentals of each type of methodology are discussed and relevant examples from recent reports are examined, to provide the reader with an overview of the state-of-the-art on the latest advancements on the analysis of intact cells and viruses with microscale electrokinetic techniques. The concluding remarks discuss the potential applications and future directions.
Collapse
Affiliation(s)
- Alaleh Vaghef-Koodehi
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| | - Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
28
|
Lapizco-Encinas BH. The latest advances on nonlinear insulator-based electrokinetic microsystems under direct current and low-frequency alternating current fields: a review. Anal Bioanal Chem 2021; 414:885-905. [PMID: 34664103 DOI: 10.1007/s00216-021-03687-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
This review article presents an overview of the evolution of the field of insulator-based dielectrophoresis (iDEP); in particular, it focuses on insulator-based electrokinetic (iEK) systems stimulated with direct current and low-frequency(< 1 kHz) AC electric fields. The article covers the surge of iDEP as a research field where many different device designs were developed, from microchannels with arrays of insulating posts to devices with curved walls and nano- and micropipettes. All of these systems allowed for the manipulation and separation of a wide array of particles, ranging from macromolecules to microorganisms, including clinical and biomedical applications. Recent experimental reports, supported by important theoretical studies in the field of physics and colloids, brought attention to the effects of electrophoresis of the second kind in these systems. These recent findings suggest that DEP is not the main force behind particle trapping, as it was believed for the last two decades. This new research suggests that particle trapping, under DC and low-frequency AC potentials, mainly results from a balance between electroosmotic and electrophoretic effects (linear and nonlinear); although DEP is present in these systems, it is not a dominant force. Considering these recent studies, it is proposed to rename this field from DC-iDEP to DC-iEK (and low-frequency AC-iDEP to low-frequency AC-iEK). Whereas much research is still needed, this is an exciting time in the field of microscale EK systems, as these new findings seem to explain the challenges with modeling particle migration and trapping in iEK devices, and provide perhaps a better understanding of the mechanisms behind particle trapping.
Collapse
Affiliation(s)
- Blanca H Lapizco-Encinas
- Microscale Bioseparations Laboratory and Biomedical Engineering Department, Rochester Institute of Technology, Institute Hall (Bldg. 73), Room 3103, 160 Lomb Memorial Drive, Rochester, NY, 14623-5604, USA.
| |
Collapse
|