1
|
Kaur P, Muskan, Kriplani P. Quality by design for Niosome-Based nanocarriers to improve transdermal drug delivery from lab to industry. Int J Pharm 2024; 666:124747. [PMID: 39326474 DOI: 10.1016/j.ijpharm.2024.124747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Niosomes are essentially multilamellar or unilamellar vesicles based on non-ionic surfactants. They consist of surfactant macromolecules arranged in a bilayer, which surrounds an aqueous solute solution. Amphiphilic, biodegradable, biocompatible, and environmentally friendly materials are utilized for encapsulating the drugs in vesicles that enhance the bioavailability, therapeutic efficacy, penetration of drug via the skin, and drug release in a controlled or sustained manner, and are employed to target the anticipated area via modifying composition that acts to minimize undesirable effects. With cholesterol as the lipid, Tween 20, Span 60, and Tween 60 are mostly employed as surfactants. Many medications, including Glibenclamide for diabetic kidney disease and anti-cancer medications including gemcitabine, cisplatin, and nintedanib, have been effectively encapsulated into niosomes. The traditional approach for creating niosomes at the lab scale is a thin film hydration process. The ideal ratio between primary components as well as critical manufacturing process parameters is key component in creating the best niosomal formulations with substantial drug loading and nanometric form. Utilizing the Design of Experiments (DoE) and Response Surface Methodology (RSM) in conjunction with Quality by design (QbD) is essential for comprehending how these variables interact both during lab preparation and during the scale-up process. Research on the development of anti-aging cosmetics is being done by Loreal. Niosomal preparations like Lancome are sold in stores. An overview of niosomes, penetration mechanisms, and quality by design from laboratory to industrial scale is provided in this article.
Collapse
Affiliation(s)
- Prabhjot Kaur
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India
| | - Muskan
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India
| | - Priyanka Kriplani
- Guru Gobind Singh College of Pharmacy, Yamuna Nagar 135001, Haryana, India.
| |
Collapse
|
2
|
Dow XY, Gao Q, Sperduto JL, Wen X, Thai C, Zhang L, McCoy MA. High-Throughput Fluorometric Assay For Quantifying Polysorbate In Biopharmaceutical Products Using Micelle Activated Fluorescence Probe N-Phenyl-1-Naphthylamine. Pharm Res 2024; 41:1455-1473. [PMID: 38955997 DOI: 10.1007/s11095-024-03723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/27/2024] [Indexed: 07/04/2024]
Abstract
PURPOSE Polysorbates are among the most used surfactants in biopharmaceutical products containing proteins. Our work aims to develop a high-throughput fluorometric assay to further diversify the analytical toolbox for quantification of PSs. METHOD The assay leverages the micelle activated fluorescence signal from N-Phenyl-1-Naphthylamine (NPN). The development and optimization of assay parameters were guided by the pre-defined analytical target profile. Furthermore, NMR was used to probe the interaction between protein, PS80 and NPN in the measurement system and understand protein interference. RESULTS All assay parameters including excitation and emission wavelengths, standard curve, NPN concentration, and incubation time have been optimized and adapted to a microplate format, making it compatible with automated solutions that will be pursued in the near future to drive consistency and efficiency in our workflows. The specificity, accuracy, and precision of the assay have been demonstrated through a case study. Furthermore, NMR results provided additional insight into the change of the interaction dynamics between PS80 and NPN as the protein concentration increases. The results indicate minimal interaction between the protein and PS80 at lower concentration. However, when the concentration exceeds 75 mg/mL, there is a significant interaction between the protein and PS-80 micelle and monomer. CONCLUSION A high-throughput fluorometric assay has been developed for quantification of polysorbates in biopharmaceutical samples including in-process samples, drug substance and drug product. The assay reported herein could serve as a powerful analytical tool for polysorbate quantification and control, complementing the widely used liquid chromatography with charged aerosol detection method.
Collapse
Affiliation(s)
- Ximeng Y Dow
- Analytical Research & Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA.
| | - Qi Gao
- Analytical Research & Development, MRL, Merck & Co., Inc., 126 E Lincoln Ave, Rahway, NJ, 07065, USA
| | - John L Sperduto
- Process Research & Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Xiaona Wen
- Analytical Research & Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Christopher Thai
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Lei Zhang
- Analytical Research & Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ, 07033, USA
| | - Mark A McCoy
- Quantitative Biosciences, MRL, Merck & Co., Inc., 126 E Lincoln Ave, Rahway, NJ, 07065, USA
| |
Collapse
|
3
|
Bramham JE, Wang Y, Moore SA, Golovanov AP. Assessing Photostability of mAb Formulations In Situ Using Light-Coupled NMR Spectroscopy. Anal Chem 2024; 96:9935-9943. [PMID: 38847283 PMCID: PMC11190875 DOI: 10.1021/acs.analchem.4c01164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 06/19/2024]
Abstract
Biopharmaceuticals, such as monoclonal antibodies (mAbs), need to maintain their chemical and physical stability in formulations throughout their lifecycle. It is known that exposure of mAbs to light, particularly UV, triggers chemical and physical degradation, which can be exacerbated by trace amounts of photosensitizers in the formulation. Although routine assessments of degradation following defined UV dosages are performed, there is a fundamental lack of understanding regarding the intermediates, transient reactive species, and radicals formed during illumination, as well as their lifetimes and immediate impact post-illumination. In this study, we used light-coupled NMR spectroscopy to monitor in situ live spectral changes in sealed samples during and after UV-A illumination of different formulations of four mAbs without added photosensitizers. We observed a complex evolution of spectra, reflecting the appearance within minutes of transient radicals during illumination and persisting for minutes to tens of minutes after the light was switched off. Both mAb and excipient signals were strongly affected by illumination, with some exhibiting fast irreversible photodegradation and others exhibiting partial recovery in the dark. These effects varied depending on the mAb and the presence of excipients, such as polysorbate 80 (PS80) and methionine. Complementary ex situ high-performance size-exclusion chromatography analysis of the same formulations post-UV exposure in the chamber revealed significant loss of purity, confirming formulation-dependent degradation. Both approaches suggested the presence of degradation processes initiated by light but continuing in the dark. Further studies on photoreaction intermediates and transient reactive species may help mitigate the impact of light on biopharmaceutical degradation.
Collapse
Affiliation(s)
- Jack E. Bramham
- Department
of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, U.K.
| | - Yujing Wang
- Dosage
Form Design & Development, BioPharmaceutical
Development, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Stephanie A. Moore
- Dosage
Form Design & Development, BioPharmaceutical
Development, R&D, AstraZeneca, Cambridge CB2 0AA, U.K.
| | - Alexander P. Golovanov
- Department
of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
4
|
Lynch CC, Khirich G, Lee RT. Quantification of Biopharmaceutically Relevant Nonionic Surfactant Excipients Using Benchtop qNMR. Anal Chem 2024; 96:6746-6755. [PMID: 38632675 DOI: 10.1021/acs.analchem.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Nonionic surfactant excipients (NISEs) are commonly added to biologics formulations to mitigate the effects of stress incurred by the active biotherapeutic during manufacturing, transport, and storage. During manufacturing, NISEs are added by dilution of a stock solution directly into a protein formulation, and their accurate addition is critical in maintaining the quality and integrity of the drug product and thus ensuring patient safety. This is especially true for the common NISEs, polysorbates 20 and 80 (PS20 and PS80, respectively) and poloxamer 188 (P188). With the increasing diversity of biologic modalities within modern pharmaceutical pipelines, there is thus a critical need to develop and deploy convenient and user-accessible analytical techniques that can rapidly and reliably quantify these NISEs under biopharmaceutically relevant conditions. We thus pursued 60 MHz benchtop quantitative NMR (qNMR) as a nondestructive and user-friendly analytical technique for the quantification of PS20, PS80, and P188 under such conditions. We demonstrated the ability of benchtop qNMR (1) to quantify simulated PS20, PS80, and P188 stock solutions representative of those used during the drug substance (DS) formulation step in biomanufacturing and (2) to quantify these NISEs at and below their target concentrations (≤0.025% w/v) directly in biologics formulations containing histidine, sucrose, and one of three biotherapeutic modalities (monoclonal antibody, antibody-drug conjugate, and Fc-fusion protein). Our results demonstrate that benchtop qNMR offers a fit-for-purpose, reliable, user-friendly, and green analytical route by which NISE of interest to the biopharmaceutical industry may be readily and reliably quantified. We conclude that benchtop qNMR has the potential to be applied to other excipient formulation components in the presence of various biological modalities as well as the potential for routine integration within analytical and QC laboratories across pharmaceutical development and manufacturing sites.
Collapse
Affiliation(s)
- Ciarán C Lynch
- Analytical Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Gennady Khirich
- Analytical Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ryan T Lee
- Analytical Research & Development, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
5
|
Kietrungruang K, Sookkree S, Sangboonruang S, Semakul N, Poomanee W, Kitidee K, Tragoolpua Y, Tragoolpua K. Ethanolic Extract Propolis-Loaded Niosomes Diminish Phospholipase B1, Biofilm Formation, and Intracellular Replication of Cryptococcus neoformans in Macrophages. Molecules 2023; 28:6224. [PMID: 37687052 PMCID: PMC10488685 DOI: 10.3390/molecules28176224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Secretory phospholipase B1 (PLB1) and biofilms act as microbial virulence factors and play an important role in pulmonary cryptococcosis. This study aims to formulate the ethanolic extract of propolis-loaded niosomes (Nio-EEP) and evaluate the biological activities occurring during PLB1 production and biofilm formation of Cryptococcus neoformans. Some physicochemical characterizations of niosomes include a mean diameter of 270 nm in a spherical shape, a zeta-potential of -10.54 ± 1.37 mV, and 88.13 ± 0.01% entrapment efficiency. Nio-EEP can release EEP in a sustained manner and retains consistent physicochemical properties for a month. Nio-EEP has the capability to permeate the cellular membranes of C. neoformans, causing a significant decrease in the mRNA expression level of PLB1. Interestingly, biofilm formation, biofilm thickness, and the expression level of biofilm-related genes (UGD1 and UXS1) were also significantly reduced. Pre-treating with Nio-EEP prior to yeast infection reduced the intracellular replication of C. neoformans in alveolar macrophages by 47%. In conclusion, Nio-EEP mediates as an anti-virulence agent to inhibit PLB1 and biofilm production for preventing fungal colonization on lung epithelial cells and also decreases the intracellular replication of phagocytosed cryptococci. This nano-based EEP delivery might be a potential therapeutic strategy in the prophylaxis and treatment of pulmonary cryptococcosis in the future.
Collapse
Affiliation(s)
- Kritapat Kietrungruang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
| | - Sanonthinee Sookkree
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
| | - Sirikwan Sangboonruang
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Worrapan Poomanee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kuntida Kitidee
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand;
| | - Yingmanee Tragoolpua
- Natural Extracts and Innovative Products for Alternative Healthcare Research Group, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khajornsak Tragoolpua
- Division of Clinical Microbiology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.K.); (S.S.); (S.S.)
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| |
Collapse
|
6
|
Baltzis D, Tsogas GZ, Zacharis CK, Tzanavaras PD. Smartphone-Based High-Throughput Fluorimetric Assay for Histidine Quantification in Human Urine Using 96-Well Plates. Molecules 2023; 28:6205. [PMID: 37687035 PMCID: PMC10488697 DOI: 10.3390/molecules28176205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A high-throughput fluorimetric assay for histidine was developed, using a 96-well plates platform. The analyte reacts selectively with o-phthalaldehyde under mild alkaline conditions to form a stable derivative. Instrumental-free detection was carried out using a smartphone after illumination under UV light (365 nm). The method was proved to be linear up to 100 μM histidine, with an LLOQ (lower limit of quantification) of 10 μM. The assay was only prone to interference from glutathione and histamine that exist in the urine samples at levels that are orders of magnitude lower compared to histidine. Human urine samples were analyzed following minimum treatment and were found to contain histidine in the range of 280 to 1540 μM. The results were in good agreement with an HPLC corroborative method.
Collapse
Affiliation(s)
- Dimitrios Baltzis
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.B.); (G.Z.T.)
| | - George Z. Tsogas
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.B.); (G.Z.T.)
| | - Constantinos K. Zacharis
- Laboratory of Pharmaceutical Analysis, School of Pharmacy, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece;
| | - Paraskevas D. Tzanavaras
- Laboratory of Analytical Chemistry, School of Chemistry, Faculty of Sciences, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece; (D.B.); (G.Z.T.)
| |
Collapse
|
7
|
Mellid-Carballal R, Gutierrez-Gutierrez S, Rivas C, Garcia-Fuentes M. Viral protein nanoparticles (Part 1): Pharmaceutical characteristics. Eur J Pharm Sci 2023; 187:106460. [PMID: 37156338 DOI: 10.1016/j.ejps.2023.106460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 05/06/2023] [Indexed: 05/10/2023]
Abstract
Viral protein nanoparticles fill the gap between viruses and synthetic nanoparticles. Combining advantageous properties of both systems, they have revolutionized pharmaceutical research. Virus-like particles are characterized by a structure identical to viruses but lacking genetic material. Another type of viral protein nanoparticles, virosomes, are similar to liposomes but include viral spike proteins. Both systems are effective and safe vaccine candidates capable of overcoming the disadvantages of both traditional and subunit vaccines. Besides, their particulate structure, biocompatibility, and biodegradability make them good candidates as vectors for drug and gene delivery, and for diagnostic applications. In this review, we analyze viral protein nanoparticles from a pharmaceutical perspective and examine current research focused on their development process, from production to administration. Advances in synthesis, modification and formulation of viral protein nanoparticles are critical so that large-scale production of viral protein nanoparticle products becomes viable and affordable, which ultimately will increase their market penetration in the future. We will discuss their expression systems, modification strategies, formulation, biopharmaceutical properties, and biocompatibility.
Collapse
Affiliation(s)
- Rocio Mellid-Carballal
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Sara Gutierrez-Gutierrez
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain
| | - Carmen Rivas
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain; Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología (CNB)-CSIC, Spain
| | - Marcos Garcia-Fuentes
- CiMUS Research Center, Universidad de Santiago de Compostela, Spain; Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidad de Santiago de Compostela, Spain; Health Research Institute of Santiago de Compostela (IDIS), Universidad de Santiago de Compostela, Spain.
| |
Collapse
|