1
|
Lim W, Randisi F, Doye JPK, Louis AA. The interplay of supercoiling and thymine dimers in DNA. Nucleic Acids Res 2022; 50:2480-2492. [PMID: 35188542 PMCID: PMC8934635 DOI: 10.1093/nar/gkac082] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/21/2022] [Accepted: 02/04/2022] [Indexed: 11/16/2022] Open
Abstract
Thymine dimers are a major mutagenic photoproduct induced by UV radiation. While they have been the subject of extensive theoretical and experimental investigations, questions of how DNA supercoiling affects local defect properties, or, conversely, how the presence of such defects changes global supercoiled structure, are largely unexplored. Here, we introduce a model of thymine dimers in the oxDNA forcefield, parametrized by comparison to melting experiments and structural measurements of the thymine dimer induced bend angle. We performed extensive molecular dynamics simulations of double-stranded DNA as a function of external twist and force. Compared to undamaged DNA, the presence of a thymine dimer lowers the supercoiling densities at which plectonemes and bubbles occur. For biologically relevant supercoiling densities and forces, thymine dimers can preferentially segregate to the tips of the plectonemes, where they enhance the probability of a localized tip-bubble. This mechanism increases the probability of highly bent and denatured states at the thymine dimer site, which may facilitate repair enzyme binding. Thymine dimer-induced tip-bubbles also pin plectonemes, which may help repair enzymes to locate damage. We hypothesize that the interplay of supercoiling and local defects plays an important role for a wider set of DNA damage repair systems.
Collapse
Affiliation(s)
- Wilber Lim
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| | - Ferdinando Randisi
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
- FabricNano Limited, 192 Drummond St, London NW1 3HP, UK
| | - Jonathan P K Doye
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| | - Ard A Louis
- Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford OX1 3PU, UK
| |
Collapse
|
2
|
O'Flaherty DK, Guengerich FP, Egli M, Wilds CJ. Backbone Flexibility Influences Nucleotide Incorporation by Human Translesion DNA Polymerase η opposite Intrastrand Cross-Linked DNA. Biochemistry 2015; 54:7449-56. [PMID: 26624500 DOI: 10.1021/acs.biochem.5b01078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Intrastrand cross-links (IaCL) connecting two purine nucleobases in DNA pose a challenge to high-fidelity replication in the cell. Various repair pathways or polymerase bypass can cope with these lesions. The influence of the phosphodiester linkage between two neighboring 2'-deoxyguanosine (dG) residues attached through the O(6) atoms by an alkylene linker on bypass with human DNA polymerase η (hPol η) was explored in vitro. Steady-state kinetics and mass spectrometric analysis of products from nucleotide incorporation revealed that although hPol η is capable of bypassing the 3'-dG in a mostly error-free fashion, significant misinsertion was observed for the 5'-dG of the IaCL containing a butylene or heptylene linker. The lack of the phosphodiester linkage triggered an important increase in frameshift adduct formation across the 5'-dG by hPol η, in comparison to the 5'-dG of IaCL DNA containing the phosphodiester group.
Collapse
Affiliation(s)
- Derek K O'Flaherty
- Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| | - F Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - Martin Egli
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | - Christopher J Wilds
- Department of Chemistry and Biochemistry, Concordia University , 7141 Sherbrooke Street West, Montréal, Québec, Canada H4B 1R6
| |
Collapse
|
3
|
Site-directed Mutagenesis (Y52E) of POLH Affects Its Ability to Bypass Ultraviolet-induced DNA Lesions in HaCaT Cells. W INDIAN MED J 2014; 63:307-11. [PMID: 25429473 DOI: 10.7727/wimj.2014.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/27/2014] [Indexed: 11/18/2022]
Abstract
DNA polymerase eta (Pol η) is one of several Y family trans-lesion synthesis (TLS) polymerases in humans and plays an important role in maintaining genome stability after ultraviolet (UV) irradiation, as it carries out error-free TLS at sites of UV-induced lesions. We performed site-directed mutagenesis of human polymerase η gene (Y52E), confirmed by sequencing, then cloned wild-type mutant and POLH genes into the eukaryotic vector pEGFP-N1. After transfecting wild-type and mutant plasmids into HaCaT keratinocytes, we tested for UV induced cis-syn cyclobutane pyrimidine dimer (CPDs) DNA lesions, and analysed cellular viability by MTT cell proliferation assay. The results showed that CPD levels decreased both with empty vector control (EVC), wild-type POLH, and Y52E-POLH over 48 hours post UV irradiation with 0.1 mW/cm2 UVB for 15 minutes (p = 0.025). The rate in CPD reduction of mutant POLH was less than in wild-type POLH. Cell viabilities of all three groups increased over 48 hours after UV irradiation, with the increased rate in the wild-type being higher than for mutant protein (p = 0.046). We conclude that Y52E POLH has reduced capacity to bypass UV induced DNA lesions in HaCaT cells.
Collapse
|
4
|
Grebneva HA. Mechanisms of targeted frameshift mutations: Insertions arising during error-prone or SOS synthesis of DNA containing cis-syn cyclobutane thymine dimers. Mol Biol 2014. [DOI: 10.1134/s0026893314030066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
5
|
Biertümpfel C, Zhao Y, Kondo Y, Ramón-Maiques S, Gregory M, Lee JY, Masutani C, Lehmann AR, Hanaoka F, Yang W. Structure and mechanism of human DNA polymerase eta. Nature 2010; 465:1044-8. [PMID: 20577208 PMCID: PMC2899710 DOI: 10.1038/nature09196] [Citation(s) in RCA: 287] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 05/21/2010] [Indexed: 12/25/2022]
Abstract
The variant form of the human syndrome xeroderma pigmentosum (XPV) is caused by a deficiency in DNA polymerase eta (Poleta), a DNA polymerase that enables replication through ultraviolet-induced pyrimidine dimers. Here we report high-resolution crystal structures of human Poleta at four consecutive steps during DNA synthesis through cis-syn cyclobutane thymine dimers. Poleta acts like a 'molecular splint' to stabilize damaged DNA in a normal B-form conformation. An enlarged active site accommodates the thymine dimer with excellent stereochemistry for two-metal ion catalysis. Two residues conserved among Poleta orthologues form specific hydrogen bonds with the lesion and the incoming nucleotide to assist translesion synthesis. On the basis of the structures, eight Poleta missense mutations causing XPV can be rationalized as undermining the molecular splint or perturbing the active-site alignment. The structures also provide an insight into the role of Poleta in replicating through D loop and DNA fragile sites.
Collapse
Affiliation(s)
| | - Ye Zhao
- Laboratory of Molecular Biology, NIDDK, NIH
- Institute of Nuclear-Agricultural Sciences, Zhejiang University, China
| | - Yuji Kondo
- Graduate School of Frontier Biosciences, Osaka University, Japan
| | | | | | | | | | - Alan R. Lehmann
- Genome Damage and Stability Centre, University of Sussex, Brighton, UK
| | - Fumio Hanaoka
- Graduate School of Frontier Biosciences, Osaka University, Japan
- Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, NIH
| |
Collapse
|
6
|
Cruet-Hennequart S, Gallagher K, Sokòl AM, Villalan S, Prendergast AM, Carty MP. DNA polymerase eta, a key protein in translesion synthesis in human cells. Subcell Biochem 2010; 50:189-209. [PMID: 20012583 DOI: 10.1007/978-90-481-3471-7_10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genomic DNA is constantly damaged by exposure to exogenous and endogenous agents. Bulky adducts such as UV-induced cyclobutane pyrimidine dimers (CPDs) in the template DNA present a barrier to DNA synthesis by the major eukaryotic replicative polymerases including DNA polymerase delta. Translesion synthesis (TLS) carried out by specialized DNA polymerases is an evolutionarily conserved mechanism of DNA damage tolerance. The Y family of DNA polymerases, including DNA polymerase eta (Pol eta), the subject of this chapter, play a key role in TLS. Mutations in the human POLH gene encoding Pol eta underlie the genetic disease xeroderma pigmentosum variant (XPV), characterized by sun sensitivity, elevated incidence of skin cancer, and at the cellular level, by delayed replication and hypermutability after UV-irradiation. Pol eta is a low fidelity enzyme when copying undamaged DNA, but can carry out error-free TLS at sites of UV-induced dithymine CPDs. The active site of Pol eta has an open conformation that can accommodate CPDs, as well as cisplatin-induced intrastrand DNA crosslinks. Pol eta is recruited to sites of replication arrest in a tightly regulated process through interaction with PCNA. Pol eta-deficient cells show strong activation of downstream DNA damage responses including ATR signaling, and accumulate strand breaks as a result of replication fork collapse. Thus, Pol eta plays an important role in preventing genome instability after UV- and cisplatin-induced DNA damage. Inhibition of DNA damage tolerance pathways in tumors might also represent an approach to potentiate the effects of DNA damaging agents such as cisplatin.
Collapse
Affiliation(s)
- Séverine Cruet-Hennequart
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland, Galway, Galway, Galway, Ireland
| | | | | | | | | | | |
Collapse
|
7
|
Cruet-Hennequart S, Glynn MT, Murillo LS, Coyne S, Carty MP. Enhanced DNA-PK-mediated RPA2 hyperphosphorylation in DNA polymerase eta-deficient human cells treated with cisplatin and oxaliplatin. DNA Repair (Amst) 2008; 7:582-96. [PMID: 18289945 DOI: 10.1016/j.dnarep.2007.12.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 12/17/2007] [Accepted: 12/21/2007] [Indexed: 12/20/2022]
Abstract
The chemotherapeutic drugs cisplatin and oxaliplatin act by induction of DNA damage, including monoadducts, intrastrand and interstrand crosslinks. An increased understanding of the repair and replication of platinum-damaged DNA is required to improve the effectiveness of these drugs in killing cancer cells. We have investigated the effect of expression of DNA polymerase eta (poleta), a translesion synthesis (TLS) enzyme, on the response of human cell lines to cisplatin and oxaliplatin. Poleta-deficient cells are more sensitive to both drugs than are normal cells. In poleta-deficient cells, drug treatment leads to prolonged S-phase arrest, and increased phosphorylation of the phosphatidylinositol-3-kinase-related protein kinase (PIKK) substrates Chk1, p95/Nbs1 and RPA2, the 34kDa subunit of replication protein A. Cisplatin- and oxaliplatin-induced hyperphosphorylation of RPA2, and association of the hyperphosphorylated protein with chromatin, is elevated in poleta-deficient cells. Cisplatin-induced phosphorylation of RPA2 on serine 4/serine 8, but not on serine 33, is inhibited by the DNA-PK inhibitor, NU7441, but not by the ATM inhibitor, KU-55933. Cisplatin-induced DNA-PK-dependent hyperphosphorylation of RPA2 on serine 4/serine 8 occurs after recruitment of RPA to chromatin, as determined by immunofluorescence and by subcellular fractionation. ATR is required both for recruitment of RPA2 to chromatin and its subsequent hyperphosphorylation on serine 4/serine 8 by DNA-PK, since CGK733, an inhibitor of ATM and ATR, blocked both recruitment and hyperphosphorylation. Thus, increased sensitivity to cisplatin and oxaliplatin in DNA poleta-deficient cells is associated with prolonged S-phase arrest, and enhanced PIKK-signalling, in particular activation of DNA-PK-dependent hyperphosphorylation of RPA2 on serines 4 and 8.
Collapse
Affiliation(s)
- Séverine Cruet-Hennequart
- DNA Damage Response Laboratory, Department of Biochemistry, and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway City, Ireland
| | | | | | | | | |
Collapse
|
8
|
Grebneva HA. A model for targeted substitution mutagenesis during SOS replication of double-stranded DNA containing cis-syn cyclobutane thymine dimers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2006; 47:733-45. [PMID: 17111422 DOI: 10.1002/em.20256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
A model for ultraviolet mutagenesis is described that is based on the formation of rare tautomeric bases in pyrimidine dimers. It is shown that during SOS synthesis the modified DNA-polymerase inserts canonical bases opposite the dimers; the inserted bases are capable of forming hydrogen bonds with bases in the template DNA. SOS-replication of double-stranded DNA having thymine dimers, with one or both bases in a rare tautomeric conformation, results in targeted transitions, transversions, or one-nucleotide gaps. Structural analysis indicates that one type of dimer containing a single tautomeric base (TT*(1), with the "*" indicating a rare tautomeric base and the subscript referring to the particular conformation) can cause A:T --> G:C transition or homologous A:T --> T:A transversion, while another dimer (TT*(2)) can cause a one-nucleotide gap. The dimers containing T*(4) result in A:T --> C:G transversion, while TT*(5) dimers can cause A:T --> C:G transversion or homologous A:T --> T:A transversion. If both bases in the dimer are in a rare tautomeric form, then tandem mutations or double-nucleotide gaps can be formed. The dimers containing the rare tautomeric forms T*'(1) , T*'(2), T*'(3), T*'(4), and T*'(5) may not result in mutations. The question of whether dimers containing T*'(4) and T*'(5) result in mutations requires further investigation.
Collapse
Affiliation(s)
- Helen A Grebneva
- Donetsk Physical and Technical Institute, National Academy of Science of Ukraine, Donetsk, Ukraine.
| |
Collapse
|
9
|
Lima-Bessa KM, Chiganças V, Stary A, Kannouche P, Sarasin A, Armelini MG, de Fátima Jacysyn J, Amarante-Mendes GP, Cordeiro-Stone M, Cleaver JE, Menck CFM. Adenovirus mediated transduction of the human DNA polymerase eta cDNA. DNA Repair (Amst) 2006; 5:925-34. [PMID: 16798111 DOI: 10.1016/j.dnarep.2006.05.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 05/08/2006] [Accepted: 05/16/2006] [Indexed: 01/29/2023]
Abstract
Xeroderma pigmentosum (XP) is an autosomal recessive photosensitive disorder with an extremely high incidence of skin cancers. Seven complementation groups, corresponding to seven proteins involved in nucleotide excision repair (NER), are associated with this syndrome. However, in XP variant patients, the disorder is caused by defects in DNA polymerase eta; this error prone polymerase, encoded by POLH, is involved in translesion DNA synthesis (TLS) on DNA templates damaged by ultraviolet light (UV). We constructed a recombinant adenovirus carrying the human POLH cDNA linked to the EGFP reporter gene (AdXPV-EGFP) and infected skin fibroblasts from both XPV and XPA patients. Twenty-four hours after infection, the DNA polymerase eta-EGFP fusion protein was detected by Western blot analysis, demonstrating successful transduction by the adenoviral vector. Protein expression was accompanied by reduction in the high sensitivity of XPV cells to UV, as determined by cell survival and apoptosis-induction assays. Moreover, the pronounced UV-induced inhibition of DNA synthesis in XPV cells and their arrest in S phase were attenuated in AdXPV-EGFP infected cells, confirming that the transduced polymerase was functional. However, over-expression of polymerase eta mediated by AdXPV-EGFP infection did not result in enhancement of cell survival, prevention of apoptosis, or higher rate of nascent DNA strand growth in irradiated XPA cells. These results suggest that TLS by DNA polymerase eta is not a limiting factor for recovery from cellular responses induced by UV in excision-repair deficient fibroblasts.
Collapse
Affiliation(s)
- Keronninn Moreno Lima-Bessa
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, Av. Prof. Lineu Prestes, 1374 São Paulo, SP 05508-900, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cruet-Hennequart S, Coyne S, Glynn MT, Oakley GG, Carty MP. UV-induced RPA phosphorylation is increased in the absence of DNA polymerase eta and requires DNA-PK. DNA Repair (Amst) 2006; 5:491-504. [PMID: 16520097 DOI: 10.1016/j.dnarep.2006.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Revised: 01/10/2006] [Accepted: 01/11/2006] [Indexed: 01/30/2023]
Abstract
Signaling from arrested replication forks plays a role in maintaining genome stability. We have investigated this process in xeroderma pigmentosum variant cells that carry a mutation in the POLH gene and lack functional DNA polymerase eta (poleta). Poleta is required for error-free bypass of UV-induced cyclobutane pyrimidine dimers; in the absence of poleta in XPV cells, DNA replication is arrested at sites of UV-induced DNA damage, and mutagenic bypass of lesions is ultimately carried out by other, error-prone, DNA polymerases. The present study investigates whether poleta expression influences the activation of a number of UV-induced DNA damage responses. In a stably transfected XPV cell line (TR30-9) in which active poleta can be induced by addition of tetracycline, expression of poleta determines the extent of DNA double-strand break formation following UV-irradiation. UV-induced phosphorylation of replication protein A (RPA), a key DNA-binding protein involved in DNA replication, repair and recombination, is increased in cells lacking poleta compared to when poleta is expressed in the same cell line. To identify the protein kinase responsible for increased UV-induced hyperphosphorylation of the p34 subunit of RPA, we have used NU7441, a specific small molecule inhibitor of DNA-PK. DNA-PK is necessary for RPA p34 hyperphosphorylation, but DNA-PK-mediated phosphorylation is not required for recruitment of RPA p34 into nuclear foci in response to UV-irradiation. The results demonstrate that activation of a UV-induced DNA damage response pathway, involving phosphorylation of RPA p34 by DNA-PK, is enhanced in cells lacking poleta.
Collapse
Affiliation(s)
- Séverine Cruet-Hennequart
- DNA Damage Response Laboratory, Department of Biochemistry and National Centre for Biomedical Engineering Science, National University of Ireland, Galway, Galway City, Ireland
| | | | | | | | | |
Collapse
|
11
|
Stary A, Kannouche P, Lehmann AR, Sarasin A. Role of DNA polymerase eta in the UV mutation spectrum in human cells. J Biol Chem 2003; 278:18767-75. [PMID: 12644471 DOI: 10.1074/jbc.m211838200] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In humans, inactivation of the DNA polymerase eta gene (pol eta) results in sunlight sensitivity and causes the cancer-prone xeroderma pigmentosum variant syndrome (XP-V). Cells from XP-V individuals have a reduced capacity to replicate UV-damaged DNA and show hypermutability after UV exposure. Biochemical assays have demonstrated the ability of pol eta to bypass cis-syn-cyclobutane thymine dimers, the most common lesion generated in DNA by UV. In most cases, this bypass is error-free. To determine the actual requirement of pol eta in vivo, XP-V cells (XP30RO) were complemented by the wild type pol eta gene. We have used two pol eta-corrected clones to study the in vivo characteristics of mutations produced by DNA polymerases during DNA synthesis of UV-irradiated shuttle vectors transfected into human host cells, which had or had not been exposed previously to UV radiation. The functional complementation of XP-V cells by pol eta reduced the mutation frequencies both at CG and TA base pairs and restored UV mutagenesis to a normal level. UV irradiation of host cells prior to transfection strongly increased the mutation frequency in undamaged vectors and, in addition, especially in the pol eta-deficient XP30RO cells at 5'-TT sites in UV-irradiated plasmids. These results clearly show the protective role of pol eta against UV-induced lesions and the activation by UV of pol eta-independent mutagenic processes.
Collapse
Affiliation(s)
- Anne Stary
- Laboratory of Genetic Instability and Cancer, UPR 2169 CNRS, Institut Gustave Roussy, 94805 Villejuif, France.
| | | | | | | |
Collapse
|