1
|
Applicability of Scrape Loading-Dye Transfer Assay for Non-Genotoxic Carcinogen Testing. Int J Mol Sci 2021; 22:ijms22168977. [PMID: 34445682 PMCID: PMC8396440 DOI: 10.3390/ijms22168977] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/30/2021] [Accepted: 07/31/2021] [Indexed: 12/27/2022] Open
Abstract
Dysregulation of gap junction intercellular communication (GJIC) is recognized as one of the key hallmarks for identifying non-genotoxic carcinogens (NGTxC). Currently, there is a demand for in vitro assays addressing the gap junction hallmark, which would have the potential to eventually become an integral part of an integrated approach to the testing and assessment (IATA) of NGTxC. The scrape loading-dye transfer (SL-DT) technique is a simple assay for the functional evaluation of GJIC in various in vitro cultured mammalian cells and represents an interesting candidate assay. Out of the various techniques for evaluating GJIC, the SL-DT assay has been used frequently to assess the effects of various chemicals on GJIC in toxicological and tumor promotion research. In this review, we systematically searched the existing literature to gather papers assessing GJIC using the SL-DT assay in a rat liver epithelial cell line, WB-F344, after treating with chemicals, especially environmental and food toxicants, drugs, reproductive-, cardio- and neuro-toxicants and chemical tumor promoters. We discuss findings derived from the SL-DT assay with the known knowledge about the tumor-promoting activity and carcinogenicity of the assessed chemicals to evaluate the predictive capacity of the SL-DT assay in terms of its sensitivity, specificity and accuracy for identifying carcinogens. These data represent important information with respect to the applicability of the SL-DT assay for the testing of NGTxC within the IATA framework.
Collapse
|
2
|
Tennant RE, Guesné SJ, Canipa S, Cayley A, Drewe WC, Honma M, Masumura K, Morita T, Stalford SA, Williams RV. Extrapolation of in vitro structural alerts for mutagenicity to the in vivo endpoint. Mutagenesis 2019; 34:111-121. [PMID: 30281100 DOI: 10.1093/mutage/gey030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/06/2018] [Accepted: 09/12/2018] [Indexed: 11/14/2022] Open
Abstract
As part of the hazard and risk assessment of chemicals in man, it is important to assess the ability of a chemical to induce mutations in vivo. Because of the commonalities in the molecular initiating event, mutagenicity in vitro can correlate well to the in vivo endpoint for certain compound classes; however, the difficulty lies in identifying when this correlation holds true. In silico alerts for in vitro mutagenicity may therefore be used as the basis for alerts for mutagenicity in vivo where an expert assessment is carried out to establish the relevance of the correlation. Taking this into account, a data set of publicly available transgenic rodent gene mutation assay data, provided by the National Institute of Health Sciences of Japan, was processed in the expert system Derek Nexus against the in vitro mutagenicity endpoint. The resulting predictivity was expertly reviewed to assess the validity of the observed correlations in activity and mechanism of action between the two endpoints to identify suitable in vitro alerts for extension to the in vivo endpoint. In total, 20 alerts were extended to predict in vivo mutagenicity, which has significantly improved the coverage of this endpoint in Derek Nexus against the data set provided. Updating the Derek Nexus knowledge base in this way led to an increase in sensitivity for this data set against this endpoint from 9% to 66% while maintaining a good specificity of 89%.
Collapse
Affiliation(s)
| | | | | | - Alex Cayley
- Lhasa Limited, Granary Wharf House, Leeds, UK
| | | | - Masamitsu Honma
- National Institute of Health Sciences, Kawasaki-ku, Kanagawa, Japan
| | - Kenichi Masumura
- National Institute of Health Sciences, Kawasaki-ku, Kanagawa, Japan
| | - Takeshi Morita
- National Institute of Health Sciences, Kawasaki-ku, Kanagawa, Japan
| | | | | |
Collapse
|
3
|
Nohmi T. Past, Present and Future Directions of gpt delta Rodent Gene Mutation Assays. Food Saf (Tokyo) 2016; 4:1-13. [PMID: 32231899 PMCID: PMC6989157 DOI: 10.14252/foodsafetyfscj.2015024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 12/21/2015] [Indexed: 01/28/2023] Open
Abstract
Genotoxicity is a critical endpoint of toxicity to regulate environmental chemicals. Genotoxic chemicals are believed to have no thresholds for the action and impose genotoxic risk to humans even at very low doses. Therefore, genotoxic carcinogens, which induce tumors via genotoxic mechanisms, are regulated more strictly than non-genotoxic carcinogens, which induce tumors through non-genotoxic mechanisms such as hormonal effects, cell proliferation and cell toxicity. Although Ames bacterial mutagenicity assay is the gold standard to identify genotoxicity of chemicals, the genotoxicity should be further examined in rodents because Ames positive chemicals are not necessarily genotoxic in vivo. To better evaluate the genotoxicity of chemicals in a whole body system, gene mutation assays with gpt delta transgenic mice and rats have been developed. A feature of the assays is to detect point mutations and deletions by two distinct selection methods, ie, gpt and Spi- assays, respectively. The Spi- assay is unique in that it allows analyses of deletions and complex DNA rearrangements induced by double-strand breaks in DNA. Here, I describe the concept of gpt delta gene mutation assays and the application in food safety research, and discuss future perspectives of genotoxicity assays in vivo.
Collapse
Affiliation(s)
- Takehiko Nohmi
- Biological Safety Research Center, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
4
|
|
5
|
Suzuki Y, Umemura T, Ishii Y, Hibi D, Inoue T, Jin M, Sakai H, Kodama Y, Nohmi T, Yanai T, Nishikawa A, Ogawa K. Possible involvement of sulfotransferase 1A1 in estragole-induced DNA modification and carcinogenesis in the livers of female mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2012; 749:23-8. [DOI: 10.1016/j.mrgentox.2012.07.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/25/2012] [Accepted: 07/27/2012] [Indexed: 11/29/2022]
|
6
|
Induction of TK mutations in human lymphoblastoid TK6 cells by the rat carcinogen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX). Mutat Res 2011; 725:43-9. [PMID: 21784170 DOI: 10.1016/j.mrgentox.2011.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 05/25/2011] [Accepted: 06/29/2011] [Indexed: 12/25/2022]
Abstract
3-Chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), a chlorine disinfection by-product in drinking water, is carcinogenic in rats and genotoxic in mammalian cells in vitro. In the current study, the mechanism of genotoxicity of MX in human lymphoblastoid TK6 cells was investigated by use of the Comet assay, the micronucleus test, and the thymidine kinase (TK) gene-mutation assay. MX induced a concentration-dependent increase in micronuclei and TK mutations. The lowest effective concentrations in the MN test and the TK gene-mutation assay were 37.5μM and 25μM, respectively. In the Comet assay, a slight although not statistically significant increase was observed in the level of DNA damage induced by MX in the concentration range of 25-62.5μM. Molecular analysis of the TK mutants revealed that MX induced primarily point mutations or other small intragenic mutations (61%), while most of the remaining TK mutants (32%) were large deletions at the TK locus, leading to the hemizygous-type loss-of-heterozygosity (LOH) mutations. These findings show that aside from inducing point mutations, MX also generates LOH at the TK locus in human cells and may thus cause the inactivation of tumour-suppressor genes by LOH.
Collapse
|
7
|
Improved derivatization technique for gas chromatography–mass spectrometry determination of 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone in drinking water. Anal Chim Acta 2009; 649:222-9. [DOI: 10.1016/j.aca.2009.07.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 07/16/2009] [Indexed: 11/23/2022]
|
8
|
Sannino A, Di Costanzo G, Brescia F, Sarti M, Zeni O, Juutilainen J, Scarfì MR. Human Fibroblasts and 900 MHz Radiofrequency Radiation: Evaluation of DNA Damage after Exposure and Co-exposure to 3-Chloro-4-(dichloromethyl)-5-Hydroxy-2(5h)-furanone (MX). Radiat Res 2009; 171:743-51. [DOI: 10.1667/rr1642.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
9
|
King LC, Hester SD, Warren SH, DeMarini DM. Induction of abasic sites by the drinking-water mutagen MX in Salmonella TA100. Chem Biol Interact 2009; 180:340-3. [PMID: 19539801 DOI: 10.1016/j.cbi.2009.02.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Revised: 02/19/2009] [Accepted: 02/19/2009] [Indexed: 11/17/2022]
Abstract
Mutagen X (MX) is a chlorinated furanone that accounts for more of the mutagenic activity of drinking water than any other disinfection by-product. It is one of the most potent base-substitution mutagens in the Salmonella (Ames) mutagenicity assay, producing primarily GC to TA mutations in TA100. MX does not produce stable DNA adducts in cellular or acellular DNA. However, theoretical calculations predict that it might induce abasic sites, which it does in supercoiled plasmid DNA but not in rodents. To investigate the ability of MX to induce abasic sites in cellular DNA, we used an aldehydic site assay to detect abasic sites in DNA from Salmonella TA100 cells treated for 1.5 h with MX. At 0, 2.3, and 4.6 microM, MX induced mutant frequencies (revertants/10(6) survivors) and percent survivals of 2 (100%), 14.9 (111%), and 59.3 (45%), respectively. The frequencies of abasic sites (sites/10(5) nucleotides) for the control and two concentrations were 5.9, 6.2, and 9.7, respectively, with the frequency at the highest concentration being significant (P<0.001). These results provide some evidence for the ability of MX to induce abasic sites in cellular DNA. However, the lack of a dose response makes it unclear whether this DNA damage underlies the mutagenic activity of MX.
Collapse
Affiliation(s)
- Leon C King
- Environmental Carcinogenesis Division, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | | | | | |
Collapse
|
10
|
Masumura K. Spontaneous and Induced gpt and Spi− Mutant Frequencies in gpt delta Transgenic Rodents. Genes Environ 2009. [DOI: 10.3123/jemsge.31.105] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
11
|
Mäki-Paakkanen J, Hakulinen P. Assessment of the genotoxicity of the rat carcinogen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) in rat liver epithelial cells in vitro. Toxicol In Vitro 2008; 22:535-40. [DOI: 10.1016/j.tiv.2007.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Revised: 08/21/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022]
|
12
|
Nishikawa A, Umemura T, Ishii Y, Tasaki M, Okamura T, Inoue T, Masumura K, Nohmi T. In vivo Approaches to Study Mechanism of Action of Genotoxic Carcinogens. Genes Environ 2008. [DOI: 10.3123/jemsge.30.120] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
13
|
Ward WO, Swartz CD, Porwollik S, Warren SH, Hanley NM, Knapp GW, McClelland M, DeMarini DM. Toxicogenomic analysis incorporating operon-transcriptional coupling and toxicant concentration-expression response: analysis of MX-treated Salmonella. BMC Bioinformatics 2007; 8:378. [PMID: 17925033 PMCID: PMC2225428 DOI: 10.1186/1471-2105-8-378] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Accepted: 10/09/2007] [Indexed: 11/25/2022] Open
Abstract
Background Deficiencies in microarray technology cause unwanted variation in the hybridization signal, obscuring the true measurements of intracellular transcript levels. Here we describe a general method that can improve microarray analysis of toxicant-exposed cells that uses the intrinsic power of transcriptional coupling and toxicant concentration-expression response data. To illustrate this approach, we characterized changes in global gene expression induced in Salmonella typhimurium TA100 by 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX), the primary mutagen in chlorinated drinking water. We used the co-expression of genes within an operon and the monotonic increases or decreases in gene expression relative to increasing toxicant concentration to augment our identification of differentially expressed genes beyond Bayesian-t analysis. Results Operon analysis increased the number of altered genes by 95% from the list identified by a Bayesian t-test of control to the highest concentration of MX. Monotonic analysis added 46% more genes. A functional analysis of the resulting 448 differentially expressed genes yielded functional changes beyond what would be expected from only the mutagenic properties of MX. In addition to gene-expression changes in DNA-damage response, MX induced changes in expression of genes involved in membrane transport and porphyrin metabolism, among other biological processes. The disruption of porphyrin metabolism might be attributable to the structural similarity of MX, which is a chlorinated furanone, to ligands indigenous to the porphyrin metabolism pathway. Interestingly, our results indicate that the lexA regulon in Salmonella, which partially mediates the response to DNA damage, may contain only 60% of the genes present in this regulon in E. coli. In addition, nanH was found to be highly induced by MX and contains a putative lexA regulatory motif in its regulatory region, suggesting that it may be regulated by lexA. Conclusion Operon and monotonic analyses improved the determination of differentially expressed genes beyond that of Bayesian-t analysis, showing that MX alters cellular metabolism involving pathways other than DNA damage. Because co-expression of similarly functioning genes also occurs in eukaryotes, this method has general applicability for improving analysis of toxicogenomic data.
Collapse
Affiliation(s)
- William O Ward
- Environmental Carcinogenesis Division, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | | | | | |
Collapse
|