1
|
Olatunji M, Liu Y. RNA damage and its implications in genome stability. DNA Repair (Amst) 2025; 147:103821. [PMID: 40043352 DOI: 10.1016/j.dnarep.2025.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/17/2025]
Abstract
Endogenous and environmental stressors can damage DNA and RNA to compromise genome and transcriptome stability and integrity in cells, leading to genetic instability and diseases. Recent studies have demonstrated that RNA damage can also modulate genome stability via RNA-templated DNA synthesis, suggesting that it is essential to maintain RNA integrity for the sustainment of genome stability. However, little is known about RNA damage and repair and their roles in modulating genome stability. Current efforts have mainly focused on revealing RNA surveillance pathways that detect and degrade damaged RNA, while the critical role of RNA repair is often overlooked. Due to their abundance and susceptibility to nucleobase damaging agents, it is essential for cells to evolve robust RNA repair mechanisms that can remove RNA damage, maintaining RNA integrity during gene transcription. This is supported by the discovery of the alkylated RNA nucleobase repair enzyme human AlkB homolog 3 that can directly remove the methyl group on damaged RNA nucleobases, predominantly in the nucleus of human cells, thereby restoring the integrity of the damaged RNA nucleobases. This is further supported by the fact that several DNA repair enzymes can also process RNA damage. In this review, we discuss RNA damage and its effects on cellular function, DNA repair, genome instability, and potential RNA damage repair mechanisms. Our review underscores the necessity for future research on RNA damage and repair and their essential roles in modulating genome stability.
Collapse
Affiliation(s)
- Mustapha Olatunji
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA
| | - Yuan Liu
- Biochemistry Ph.D. Program, Florida International University, Miami, FL, USA; Department of Chemistry and Biochemistry, and Florida International University, Miami, FL, USA; Biomolecular Sciences Institute, Florida International University, Miami, FL, USA.
| |
Collapse
|
2
|
Bellisario V, Garzaro G, Squillacioti G, Panizzolo M, Ghelli F, Mariella G, Bono R, Guseva Canu I, Bergamaschi E. Occupational Exposure to Metal-Based Nanomaterials: A Possible Relationship between Chemical Composition and Oxidative Stress Biomarkers. Antioxidants (Basel) 2024; 13:676. [PMID: 38929117 PMCID: PMC11201196 DOI: 10.3390/antiox13060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Nanomaterials (NMs) are in high demand for a wide range of practical applications; however, comprehensively understanding the toxicity of these materials is a complex challenge, due to the limited availability of epidemiological evidence on the human health effects arising from workplace exposures. The aim of this work is to assess whether and how urinary metal concentrations could be reliable and useful in NM biomonitoring. In the framework of "NanoExplore Project" [EU LIFE17 Grant ENV/GR/000285], 43 not-exposed subjects and 40 exposed workers were recruited to measure exposure to NMs (PCN and LDSA) in the proximity of the workstations and biological biomarkers (urinary metal concentrations-Aluminum (Al), Silica (Si), Titanium (Ti), and Chromium (Cr); urinary OS biomarkers-TAP, Isop, and MDA). The results showed that Si and Ti were directly associated with NM exposure (both PCN and LDSA), as well as with OS biomarkers, especially in exposed workers. Moreover, the mediation analyses showed that Si could account for about 2.8% in the relationship between LDSA and OS biomarkers, possibly by decreasing OS antioxidant defenses in exposed people. In conclusion, our study provides evidence that occupational exposure to mixtures containing NMs can represent an underestimated hazard for exposed people, increasing the body burden and the oxidative balance.
Collapse
Affiliation(s)
- Valeria Bellisario
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| | - Giacomo Garzaro
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| | - Giulia Squillacioti
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| | - Marco Panizzolo
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| | - Federica Ghelli
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| | - Giuseppe Mariella
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| | - Roberto Bono
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| | - Irina Guseva Canu
- Department of Occupational and Environmental Health, Center for Primary Care and Public Health (Unisanté), University of Lausanne, 1010 Lausanne, Switzerland;
| | - Enrico Bergamaschi
- Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy; (V.B.); (G.G.); (G.S.); (M.P.); (F.G.); (G.M.); (E.B.)
| |
Collapse
|
3
|
Peruzzi CP, Brucker N, Bubols G, Cestonaro L, Moreira R, Domingues D, Arbo M, Olivo Neto P, Knorst MM, Garcia SC. Occupational exposure to crystalline silica and peripheral biomarkers: An update. J Appl Toxicol 2021; 42:87-102. [PMID: 34128557 DOI: 10.1002/jat.4212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 12/20/2022]
Abstract
Peripheral biomarkers are important tools for detecting occupational exposures to prevent the onset and/or progression of diseases. Studies that reveal early peripheral biomarkers are highly important to preserve the health of workers and can potentially contribute to diagnosing and/or prognosing occupational pathologies. Exposure to crystalline silica is a problem in several workplaces because it increases the risk of chronic obstructive pulmonary disease (COPD), tuberculosis, cancer, and pulmonary fibrosis, clinically defined as silicosis. Silicosis is diagnosed by chest radiography and/or lung tomography in advanced stages when there is a severe loss of lung function. Peripheral biomarkers can help in diagnosing early changes prior to silicosis and represent a highly important technical-scientific advance that is minimally invasive. This review aimed to investigate the biomarkers studied for evaluating occupational exposure to crystalline silica and to understand the recent advances in this area. Potential oxidative, inflammatory, and immunological biomarkers were reviewed, as well as routine biomarkers such as biochemical parameters. It was found that biomarkers of effect such as serum CC16 and l-selectin levels could represent promising alternatives. Additionally, studies have shown that neopterin levels in urine and serum can be used to monitor worker exposure. However, further studies are needed that include a greater number of participants, different times of exposure to crystalline silica, and a combination of silicosis patients and healthy volunteers. Evaluating the concentration of crystalline silica in occupational environments, its impact on biomarkers of effect, and alterations in lung function could contribute to revealing early health alterations in workers in a more robust manner.
Collapse
Affiliation(s)
- Caroline Portela Peruzzi
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Natália Brucker
- Graduate Program in Pharmacology, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Guilherme Bubols
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Larissa Cestonaro
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Rafael Moreira
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Daiane Domingues
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marcelo Arbo
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Pedro Olivo Neto
- Graduate Program in Pneumological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marli Maria Knorst
- Graduate Program in Pneumological Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Division of Pulmonology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Solange Cristina Garcia
- Laboratory of Toxicology (LATOX), Department of Analysis, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Graduate Program in Pharmaceutical Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
4
|
Xu Z, Huang J, Gao M, Guo G, Zeng S, Chen X, Wang X, Gong Z, Yan Y. Current perspectives on the clinical implications of oxidative RNA damage in aging research: challenges and opportunities. GeroScience 2021; 43:487-505. [PMID: 32529593 PMCID: PMC8110629 DOI: 10.1007/s11357-020-00209-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/28/2020] [Indexed: 02/05/2023] Open
Abstract
Ribonucleic acid (RNA) molecules can be easily attacked by reactive oxygen species (ROS), which are produced during normal cellular metabolism and under various oxidative stress conditions. Numerous findings report that the amount of cellular 8-oxoG, the most abundant RNA damage biomarker, is a promising target for the sensitive measurement of oxidative stress and aging-associated diseases, including neuropsychiatric disorders. Most importantly, available data suggest that RNA oxidation has important implications for various signaling pathways and gene expression regulation in aging-related diseases, highlighting the necessity of using combinations of RNA oxidation adducts in both experimental studies and clinical trials. In this review, we primarily describe evidence for the effect of oxidative stress on RNA integrity modulation and possible quality control systems. Additionally, we discuss the profiles and clinical implications of RNA oxidation products that have been under intensive investigation in several aging-associated medical disorders.
Collapse
Affiliation(s)
- Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Oncology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jinzhou Huang
- Department of Oncology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Ming Gao
- Department of Oncology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Guijie Guo
- Department of Oncology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shuangshuang Zeng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Zhicheng Gong
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
5
|
Fu W, Chen Z, Bai Y, Wu X, Li G, Chen W, Wang G, Wang S, Li X, He M, Zhang X, Wu T, Guo H. The interaction effects of polycyclic aromatic hydrocarbons exposure and TERT- CLPTM1L variants on longitudinal telomere length shortening: A prospective cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:2100-2110. [PMID: 30097281 DOI: 10.1016/j.envpol.2018.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 04/08/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
Telomere length (TL) is an index of cellular aging and can predict the incidences of many age-related diseases. Change of TL might be affected by environmental pollution and individual's genetic background. In this cohort study, we aimed to evaluate the associations between polycyclic aromatic hydrocarbons (PAHs) exposure and longitudinal TL shortening, and investigate whether genetic variations in TERT-CLPTM1L can modify these associations. We measured the baseline concentrations of twelve urinary PAH metabolites and genotyped six variants at TERT-CLPTM1L among 1243 coke-oven workers. The relative leukocyte TL was detected in both baseline and follow-up (4 years later) visits. The TL shortening were estimated by TL decline and TL ratio. We found that the urinary level of 1-hydroxypyrene (1-OHP) had significant dose-response relationships with increased TL decline [β(95%CI) = 0.078(0.023, 0.133), P = 0.005] and TL ratio [β(95%CI) = 0.096(0.037, 0.155), P = 0.002]. Besides, urinary 1-hydroxynaphthalene (1-OHNa) was marginally dose-related with elevated TL decline [β(95%CI) = 0.053(-0.001, 0.107), P = 0.055] and TL ratio [β(95%CI) = 0.057(-0.002, 0.116), P = 0.058]. Analyses of TERT-CLPTM1L variants showed that the rs401681 and rs465498 could modify the effect of 1-OHP on increasing TL decline (Pinteraction = 0.012 and 0.035, respectively) and TL ratio (Pinteraction = 0.014 and 0.067, respectively), which were pronounced among rs401681TT and rs465498CC carriers, but not seen among rs401681TC + CC and rs465498CT + TT carriers. In conclusion, elevated exposure to PAHs can accelerate the TL shortening and this effect can be modified by TERT-CLPTM1L variants. These results may add potential evidence for gene-environment interactions on dynamic changes of telomere length. Further studies are warranted to validate these findings and uncover the underlying mechanisms.
Collapse
Affiliation(s)
- Wenshan Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhuowang Chen
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yansen Bai
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiulong Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Guyanan Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weilin Chen
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Gege Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Suhan Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoliang Li
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Meian He
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaomin Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tangchun Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
6
|
Santos LO, dos Anjos JP, Ferreira SL, de Andrade JB. Simultaneous determination of PAHS, nitro-PAHS and quinones in surface and groundwater samples using SDME/GC-MS. Microchem J 2017. [DOI: 10.1016/j.microc.2017.04.012] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
7
|
Hanchi M, Campo L, Polledri E, Olgiati L, Consonni D, Saidane-Mosbahi D, Fustinoni S. Urinary 8-Oxo-7,8-Dihydro-2′-Deoxyguanosine in Tunisian Electric Steel Foundry Workers Exposed to Polycyclic Aromatic Hydrocarbons. Ann Work Expo Health 2017; 61:333-343. [DOI: 10.1093/annweh/wxw030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/06/2016] [Indexed: 01/15/2023] Open
|
8
|
van den Brink FTG, Wigger T, Ma L, Odijk M, Olthuis W, Karst U, van den Berg A. Oxidation and adduct formation of xenobiotics in a microfluidic electrochemical cell with boron doped diamond electrodes and an integrated passive gradient rotation mixer. LAB ON A CHIP 2016; 16:3990-4001. [PMID: 27722593 DOI: 10.1039/c6lc00708b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Reactive xenobiotic metabolites and their adduct formation with biomolecules such as proteins are important to study as they can be detrimental to human health. Here, we present a microfluidic electrochemical cell with integrated micromixer to study phase I and phase II metabolism as well as protein adduct formation of xenobiotics in a purely instrumental approach. The newly developed microfluidic device enables both the generation of reactive metabolites through electrochemical oxidation and subsequent adduct formation with biomolecules in a chemical microreactor. This allows us to study the detoxification of reactive species with glutathione and to predict potential toxicity of xenobiotics as a result of protein modification. Efficient mixing in microfluidic systems is a slow process due to the typically laminar flow conditions in shallow channels. Therefore, a passive gradient rotation micromixer has been designed that is capable of mixing liquids efficiently in a 790 pL volume within tens of milliseconds. The mixing principle relies on turning the concentration gradient that is initially established by bringing together two streams of liquid, to take advantage of the short diffusion distances in the shallow microchannels of thin-layer flow cells. The mixer is located immediately downstream of the working electrode of an electrochemical cell with integrated boron doped diamond electrodes. In conjunction with mass spectrometry, the two microreactors integrated in a single device provide a powerful tool to study the metabolism and toxicity of xenobiotics, which was demonstrated by the investigation of the model compound 1-hydroxypyrene.
Collapse
Affiliation(s)
- Floris T G van den Brink
- BIOS - Lab on a Chip group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| | - Tina Wigger
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany and NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Liwei Ma
- BIOS - Lab on a Chip group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| | - Mathieu Odijk
- BIOS - Lab on a Chip group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| | - Wouter Olthuis
- BIOS - Lab on a Chip group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| | - Uwe Karst
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany and NRW Graduate School of Chemistry, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Albert van den Berg
- BIOS - Lab on a Chip group, MESA+ Institute for Nanotechnology and MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
9
|
Ling X, Zhang G, Chen Q, Yang H, Sun L, Zhou N, Wang Z, Zou P, Wang X, Cui Z, Liu J, Ao L, Cao J. Shorter sperm telomere length in association with exposure to polycyclic aromatic hydrocarbons: Results from the MARHCS cohort study in Chongqing, China and in vivo animal experiments. ENVIRONMENT INTERNATIONAL 2016; 95:79-85. [PMID: 27522147 DOI: 10.1016/j.envint.2016.08.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/23/2016] [Accepted: 08/05/2016] [Indexed: 06/06/2023]
Abstract
It has been well demonstrated that polycyclic aromatic hydrocarbons (PAHs) can cause reproductive toxicity, and shorter telomere length in sperm may be one of the factors causing male infertility. However, whether exposure to PAHs is associated with sperm telomere length (STL) has never been evaluated. The present study aimed to assess the potential association between PAHs exposure and STL, and to explore potential biomarkers that may predict the effects of low-level exposure to PAHs on human sperm. Questionnaires and biological samples were collected from 666 volunteers participating in the Male Reproductive Health in Chongqing College Students (MARHCS) cohort study in 2014. Semen parameters were measured for 656 participants, while urinary PAH metabolites, STL and sperm apoptosis were successfully measured for 492, 444 and 628 participants, respectively. The linear regression analysis revealed that increased levels of urinary 1-hydroxypyrene (1-OHPyr) and 1-hydroxynapthalene (1-OHNap) were associated with decreased STL (-0.385; 95% CI, -0.749, -0.021 for 1-OHPyr; and -0.079; 95% CI, -0.146, -0.011 for 1-OHNap). The significant negative associations remained after adjusting for potential confounders. However, no significant associations were observed between urinary PAH metabolites and semen quality or sperm apoptosis. We also administrated rats with benzo[a]pyrene (B[a]P; 0, 1, 5, and 10mg/kg) for 4weeks and found shorter STL and decreased telomerase expression in germ cells in a dose-dependent manner. In conclusion, environmental exposure to some PAHs may be associated with decreased human STL, and the in vivo animal results also demonstrate the adverse effects of B[a]P on telomere of male germ cells.
Collapse
Affiliation(s)
- Xi Ling
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Guowei Zhang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Qing Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lei Sun
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Niya Zhou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhi Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Peng Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Xiaogang Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Zhihong Cui
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jinyi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lin Ao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Jia Cao
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
10
|
Hua H, Zhao X, Wu S, Li G. Impact of refining on the levels of 4-hydroxy- trans -alkenals, parent and oxygenated polycyclic aromatic hydrocarbons in soybean and rapeseed oils. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Influence of dermal exposure to ultraviolet radiation and coal tar (polycyclic aromatic hydrocarbons) on the skin aging process. J Dermatol Sci 2016; 81:192-202. [DOI: 10.1016/j.jdermsci.2015.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
|
12
|
Yang Q, Qiu X, Li R, Ma J, Li K, Li G. Polycyclic aromatic hydrocarbon (PAH) exposure and oxidative stress for a rural population from the North China Plain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1760-9. [PMID: 25015715 DOI: 10.1007/s11356-014-3284-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 07/03/2014] [Indexed: 05/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) belong to a class of ubiquitous pollutants and are possibly associated with adverse health effects. In this study, we aimed to assess PAH exposure by measuring the hydroxylated metabolites (hydroxy-PAHs) in urine samples of a rural population from the North China Plain and to explore the possible associations between PAH exposure and oxidative stress indicated by urinary malondialdehyde (MDA) and 8-hydroxy-2′-deoxyguanosine (8-OHdG). High levels of urinary hydroxy-PAHs were observed, with the geometric mean concentrations of 0.57, 2.2, 5.0, 7.0, and 16.6 μg g−1 creatinine for 1-hydroxypyrene, hydroxyphenanthrenes, hydroxyfluorenes, hydroxybiphenyls, and hydroxynaphthalenes, respectively. Particularly in the winter season, the exposures were 2.3–6.0-fold of those in the spring. Corresponding to PAH exposure, levels of urinary MDA were positively associated with hydroxy-PAHs after controlling for confounders in the linear regression models (p < 0.05). An estimation indicated 21.3–39.3 % increment of urinary MDA per one-fold increase of hydroxy-PAHs. In contrast, no significant correlation was found between urinary 8-OHdG and hydroxy-PAHs; alternatively, living at the e-waste recycling site was found a significant factor on this oxidative DNA damage. These results provide evidence on high PAH exposure and the induction of oxidative stress on lipid peroxidation for this rural population.
Collapse
|
13
|
Gavina JMA, Yao C, Feng YL. Recent developments in DNA adduct analysis by mass spectrometry: a tool for exposure biomonitoring and identification of hazard for environmental pollutants. Talanta 2014; 130:475-94. [PMID: 25159438 DOI: 10.1016/j.talanta.2014.06.050] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 06/19/2014] [Accepted: 06/22/2014] [Indexed: 02/08/2023]
Abstract
DNA adducts represent an important category of biomarkers for detection and exposure surveillance of potential carcinogenic and genotoxic chemicals in the environment. Sensitive and specific analytical methods are required to detect and differentiate low levels of adducts from native DNA from in vivo exposure. In addition to biomonitoring of environmental pollutants, analytical methods have been developed for structural identification of adducts which provides fundamental information for determining the toxic pathway of hazardous chemicals. In order to achieve the required sensitivity, mass spectrometry has been increasingly utilized to quantify adducts at low levels as well as to obtain structural information. Furthermore, separation techniques such as chromatography and capillary electrophoresis can be coupled to mass spectrometry to increase the selectivity. This review will provide an overview of advances in detection of adducted and modified DNA by mass spectrometry with a focus on the analysis of nucleosides since 2007. Instrument advances, sample and instrument considerations, and recent applications will be summarized in the context of hazard assessment. Finally, advances in biomonitoring applying mass spectrometry will be highlighted. Most importantly, the usefulness of DNA adducts measurement and detection will be comprehensively discussed as a tool for assessment of in vitro and in vivo exposure to environmental pollutants.
Collapse
Affiliation(s)
- Jennilee M A Gavina
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9
| | - Chunhe Yao
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9
| | - Yong-Lai Feng
- Exposure and Biomonitoring Division, Environmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, Healthy Environments and Consumer Safety Branch, Health Canada, 50 Columbine Driveway, AL: 0800C, Ottawa, Ontario, Canada K1A 0K9.
| |
Collapse
|
14
|
Barbeau D, Persoons R, Marques M, Hervé C, Laffitte-Rigaud G, Maitre A. Relevance of urinary 3-hydroxybenzo(a)pyrene and 1-hydroxypyrene to assess exposure to carcinogenic polycyclic aromatic hydrocarbon mixtures in metallurgy workers. THE ANNALS OF OCCUPATIONAL HYGIENE 2014; 58:579-90. [PMID: 24504174 PMCID: PMC4305110 DOI: 10.1093/annhyg/meu004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/06/2014] [Accepted: 01/07/2014] [Indexed: 11/14/2022]
Abstract
OBJECTIVES In metallurgy, workers are exposed to mixtures of polycyclic aromatic hydrocarbons (PAHs) in which some compounds are carcinogenic. Biomonitoring of PAH exposure has been performed by measuring urinary 1-hydroxypyrene (1-OHP), a metabolite of pyrene which is not carcinogenic. This study investigated the use of 3-hydroxybenzo(a)pyrene (3-OHBaP), a metabolite of benzo(a)pyrene (BaP) which is the main carcinogenic component in PAHs, to improve carcinogen exposure assessment. METHODS We included 129 metallurgy workers routinely exposed to PAHs during working hours. Urinary samples were collected at three sampling times at the beginning and at the end of the working week for 1-OHP and 3-OHBaP analyses. RESULTS Workers in anode production showed greater exposure to both biomarkers than those in cathode or silicon production, with respectively, 71, 40, and 30% of 3-OHBaP concentrations exceeding the value of 0.4 nmol mol(-1) creatinine. No difference was observed between the 3-OHBaP levels found at the end of the penultimate workday shift and those at the beginning of the last workday shift. Within these plants, the 1-OHP/3-OHBaP ratios varied greatly according to the workers' activity and emission sources. Using linear regression between these two metabolites, the 1-OHP level corresponding to the guidance value for 3-OHBaP ranged from 0.7 to 2.4 µmol mol(-1) creatinine, depending on the industrial sector. CONCLUSIONS This study emphasizes the interest of monitoring urinary 3-OHBaP at the end of the last workday shift when working week exposure is relatively steady, and the irrelevance of a single guideline value for 1-OHP when assessing occupational health risk.
Collapse
Affiliation(s)
- Damien Barbeau
- 1.EPSP, TIMC-IMAG, Université Joseph Fourier de Grenoble, 38700 La Tronche, France 2.Laboratoire de Toxicologie Professionnelle et Environnementale, DBTP, CHU de Grenoble, 38043 Grenoble, France
| | - Renaud Persoons
- 2.Laboratoire de Toxicologie Professionnelle et Environnementale, DBTP, CHU de Grenoble, 38043 Grenoble, France
| | - Marie Marques
- 1.EPSP, TIMC-IMAG, Université Joseph Fourier de Grenoble, 38700 La Tronche, France
| | - Claire Hervé
- 2.Laboratoire de Toxicologie Professionnelle et Environnementale, DBTP, CHU de Grenoble, 38043 Grenoble, France
| | - Gilbert Laffitte-Rigaud
- 3.Aluminum Pechiney, Rio Tinto Alcan, 73300 Saint Jean de Maurienne, France 4.FerroPem, 73870 Montricher, France
| | - Anne Maitre
- 1.EPSP, TIMC-IMAG, Université Joseph Fourier de Grenoble, 38700 La Tronche, France 2.Laboratoire de Toxicologie Professionnelle et Environnementale, DBTP, CHU de Grenoble, 38043 Grenoble, France
| |
Collapse
|
15
|
Westman O, Larsson M, Venizelos N, Hollert H, Engwall M. An oxygenated metabolite of benzo[a]pyrene increases hepatic β-oxidation of fatty acids in chick embryos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:6243-6251. [PMID: 24385188 DOI: 10.1007/s11356-013-2471-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are well-known carcinogens to humans and ecotoxicological effects have been shown in several studies. However, PAHs can also be oxidized into more water soluble-oxygenated metabolites (Oxy-PAHs). The first purpose of the present project was to (1) assess the effects of a mixture containing three parent PAHs: anthracene, benz[a]anthracene, and benzo[a]pyrene versus a mixture of their oxygenated metabolites, namely: anthracene-9,10-dione, benz[a]anthracene-7,12-dione, and 9,10-dihydrobenzo[a]pyrene-7-(8H)-one on the hepatic fatty acid β-oxidation in chicken embryos (Gallus gallus domesticus) exposed in ovo. The second and also main purpose of the project was to (2) assess the effects of the parent PAHs versus their oxy-PAHs analogues when injected individually, followed by (3) additional testing of the individual oxy-PAHs. The hepatic β-oxidation was measured using a tritium release assay with [9,10-(3)H]-palmitic acid (16:0) as substrate. The result from the first part (1) showed reduced hepatic β-oxidation after exposure in ovo to a mixture of three PAHs, however, increased after exposure to the mixture of three oxy-PAHs compared to control. The result from the second part (2) and also the follow-up experiment (3) showed that 9,10-dihydrobenzo[a]pyrene-7-(8H)-one was the causative oxy-PAH. The implication of this finding on the risk assessment of PAH metabolite exposure in avian wildlife remains to be determined. To the best of our knowledge, no similar studies have been reported.
Collapse
Affiliation(s)
- Ola Westman
- MTM Research Centre, School of Science and Technology, Örebro University, Örebro, SE-70182, Sweden,
| | | | | | | | | |
Collapse
|
16
|
de Oliveira BFA, Chacra APM, Frauches TS, Vallochi A, Hacon S. A curated review of recent literature of biomarkers used for assessing air pollution exposures and effects in humans. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2014; 17:369-410. [PMID: 25495790 DOI: 10.1080/10937404.2014.976893] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This is a cross-sectional review of biomarkers used in air pollution research from January 2009 through December 2012. After an initial keyword search in PubMed retrieving 426 articles, a comprehensive abstract review identified 54 articles of experimental design that used biomarkers of exposure or effect in human studies in the area of air pollution research during this specified time period. A thorough bibliographic search of the included articles retrieved an additional 65 articles meeting the inclusion criteria. This review presents these 119 studies and the 234 biomarkers employed in these air pollution research investigations. Data presented are 70 biomarkers of exposure with 54% relating to polycyclic aromatic hydrocarbons, 36% volatile organic carbons, and 10% classified as other. Of the 164 biomarkers of effect, 91 and 130 were used in investigating effects of short-term and chronic exposure, respectively. Results of biomarkers used in short-term exposure describe different lag times and pollutant components such as primary and secondary pollutants, and particle number associated with corresponding physiological mechanisms including airway inflammation, neuroinflammation, ocular, metabolic, early endothelial dysfunction, coagulation, atherosclerosis, autonomic nervous system, oxidative stress, and DNA damage. The review presents three different exposure scenarios of chronic, occupational, and extreme exposure scenarios (indoor cooking) with associated biomarker findings presented in three broad categories of (1) immune profile, (2) oxidative stress, and (3) DNA damage. This review offers a representation of the scope of data being explored by air pollution researchers through the use of biomarkers and has deliberately been restricted to this particular subject rather than an extensive or in-depth review. This article provides a contextualization of air pollution studies conducted with biomarkers in human subjects in given areas while also integrating this complex body of information to offer a useful review for investigators in this field of study.
Collapse
Affiliation(s)
- Beatriz Fátima Alves de Oliveira
- a Public Health and Environment Post-Graduation , National School of Public Health at Oswaldo Cruz Foundation , Rio de Janeiro , Brazil
| | | | | | | | | |
Collapse
|
17
|
Genies C, Maître A, Lefèbvre E, Jullien A, Chopard-Lallier M, Douki T. The extreme variety of genotoxic response to benzo[a]pyrene in three different human cell lines from three different organs. PLoS One 2013; 8:e78356. [PMID: 24260113 PMCID: PMC3832631 DOI: 10.1371/journal.pone.0078356] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Accepted: 09/19/2013] [Indexed: 02/05/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are associated with occupational exposure and urban atmospheric pollution. Determination of the genotoxic properties of these compounds is thus of outmost importance. For this purpose a variety of cellular models have been widely used. Reliable results can however only be obtained with models reflecting the specific sensitivity of different organs towards PAHs. In this work, we compared the response to benzo[a]pyrene in cell lines from human lungs (A549) and bladder (T24); two important target organs for PAHs-induced cancer. Human hepatocytes (HepG2) were used as a reference, although liver is not a concern for PAHs carcinogenesis. Adducts arising from the ultimate diol-epoxide metabolite of B[a]P, BPDE, were found to be produced in a dose-dependent manner in HepG2. BPDE DNA adducts were not detected in T24 and in A549 their formation was found to be most efficient at the lowest concentration studied (0.2 µM). These results are probably explained by differences in induction and activity of phase I metabolization enzymes, as well as by proteins eliminating the B[a]P epoxide in A549. In addition to BPDE adducts, oxidative DNA damage, namely strand breaks and oxidized purines were measured and found to be produced only in minute amounts in all three cell lines. In summary, our results emphasize the large differences in the response of cells originating from different organs. Our data also point out the importance of carefully selecting the doses used in in vitro toxicological experiments. The example of A549 shows that working at high doses may lead to an underestimation of the risk. Finally, the choice of method for evaluating genotoxicity appears to be of crucial importance. The comet assay does not seem to be the best method for a compound like B[a]P which induces stable adducts causing limited oxidative damage.
Collapse
Affiliation(s)
- Camille Genies
- Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, Grenoble, France
- Equipe EPSP Environnement et Prédiction de la Santé des Populations – laboratoire TIMC (UMR CNRS 5525), CHU de Grenoble, Université Joseph Fourier, UFR de médecine, Domaine de la Merci, La Tronche, France
- Agence de l′environnement et de la Maîtrise de l′Energie 20, Angers, France
| | - Anne Maître
- Equipe EPSP Environnement et Prédiction de la Santé des Populations – laboratoire TIMC (UMR CNRS 5525), CHU de Grenoble, Université Joseph Fourier, UFR de médecine, Domaine de la Merci, La Tronche, France
| | - Emmanuel Lefèbvre
- Equipe EPSP Environnement et Prédiction de la Santé des Populations – laboratoire TIMC (UMR CNRS 5525), CHU de Grenoble, Université Joseph Fourier, UFR de médecine, Domaine de la Merci, La Tronche, France
| | - Amandine Jullien
- Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, Grenoble, France
| | - Marianne Chopard-Lallier
- Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, Grenoble, France
| | - Thierry Douki
- Laboratoire « Lésions des Acides Nucléiques », Université Joseph Fourier – Grenoble 1/CEA/Institut Nanoscience et Cryogénie/SCIB, Grenoble, France
- * E-mail:
| |
Collapse
|
18
|
Brucker N, Moro AM, Charão MF, Durgante J, Freitas F, Baierle M, Nascimento S, Gauer B, Bulcão RP, Bubols GB, Ferrari PD, Thiesen FV, Gioda A, Duarte MMMF, de Castro I, Saldiva PH, Garcia SC. Biomarkers of occupational exposure to air pollution, inflammation and oxidative damage in taxi drivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 463-464:884-93. [PMID: 23872245 DOI: 10.1016/j.scitotenv.2013.06.098] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/27/2013] [Accepted: 06/24/2013] [Indexed: 05/06/2023]
Abstract
Exposure to environmental pollutants has been recognised as a risk factor for cardiovascular events. 1-hydroxypyrene (1-OHP) is a biomarker of exposure to polycyclic aromatic hydrocarbons (PAHs) from traffic-related air pollution. Experimental studies indicate that PAH exposure could be associated with inflammation and atherogenesis. Thus, the purpose of this study was to evaluate whether the biomarker of PAH exposure is associated with biomarkers of inflammation and oxidative stress and if these effects modulate the risk of developing cardiovascular diseases in workers exposed to air pollution. This study included 60 subjects, comprising 39 taxi drivers and 21 non-occupationally exposed persons. Environmental PM2.5 and benzo[a]pyrene (BaP) levels, in addition to biomarkers of exposure and oxidative damage, were determined. Inflammatory cytokines (IL-1β, IL-6, IL-10, TNF-α, IFN-γ and hs-CRP) and serum levels of oxidised LDL (ox-LDL), auto-antibodies (ox-LDL-Ab) and homocysteine (Hcy) were also evaluated. PM2.5 and BaP exhibited averages of 12.4±6.9 μg m(-3) and 1.0±0.6 ng m(-3), respectively. Urinary 1-OHP levels were increased in taxi drivers compared to the non-occupationally exposed subjects (p<0.05) and were positively correlated with pro-inflammatory cytokines and negatively correlated with antioxidants. Furthermore, taxi drivers had elevated pro-inflammatory cytokines, biomarkers of oxidative damage, and ox-LDL, ox-LDL-Ab and Hcy levels, although antioxidant enzymes were decreased compared to the non-occupationally exposed subjects (p<0.05). In summary, our findings indicate that taxi drivers showed major exposure to pollutants, such as PAHs, in relation to non-occupationally exposed subjects. This finding was associated with higher inflammatory biomarkers and Hcy, which represent important predictors for cardiovascular events. These data suggest a contribution of PAHs to cardiovascular diseases upon occupational exposure.
Collapse
Affiliation(s)
- Natália Brucker
- Post-graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil; Laboratory of Toxicology (LATOX), Department of Clinical Analysis, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhai Q, Duan H, Wang Y, Huang C, Niu Y, Dai Y, Bin P, Liu Q, Chen W, Ma J, Zheng Y. Genetic damage induced by organic extract of coke oven emissions on human bronchial epithelial cells. Toxicol In Vitro 2012; 26:752-8. [PMID: 22522113 DOI: 10.1016/j.tiv.2012.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/16/2012] [Accepted: 04/02/2012] [Indexed: 11/20/2022]
Abstract
Coke oven emissions are known as human carcinogen, which is a complex mixture of polycyclic aromatic hydrocarbon. In this study, we aimed to clarify the mechanism of action of coke oven emissions induced carcinogenesis and to identify biomarkers of early biological effects in a human bronchial epithelial cell line with CYP1A1 activity (HBE-CYP1A1). Particulate matter was collected in the oven area on glass filter, extracted and analyzed by GC/MS. DNA breaks and oxidative damage were evaluated by alkaline and endonucleases (FPG, hOGG1 and ENDO III)-modified comet assays. Cytotoxicity and chromosomal damage were assessed by the cytokinesis-block micronucleus cytome (CBMN-Cyt) assay. The cells were treated with organic extract of coke oven emissions (OE-COE) representing 5, 10, 20, 40μg/mL extract for 24h. We found that there was a dose-effect relationship between the OE-COE and the direct DNA damage presented by tail length, tail intensity and Olive tail moment in the comet assay. The presence of lesion-specific endonucleases in the assays increased DNA migration after OE-COE treatment when compared to those without enzymes, which indicated that OE-COE produced oxidative damage at the level of pyrimidine and purine bases. The dose-dependent increase of micronuclei, nucleoplasmic bridges and nuclear buds in exposed cells was significant, indicating chromosomal and genomic damage induced by OE-COE. Based on the cytotoxic biomarkers in CBMN-Cyt assay, OE-COE may inhibit nuclear division, interfere with apoptosis, or induce cell necrosis. This study indicates that OE-COE exposure can induce DNA breaks/oxidative damage and genomic instability in HBE-CYP1A1 cells. The FPG-comet assay appears more specific for detecting oxidative DNA damage induced by complex mixtures of genotoxic substances.
Collapse
Affiliation(s)
- Qingfeng Zhai
- Faculty of Public Health, Weifang Medical University, 7166 Baotongwest street, Weifang 261053, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Isabel RRM, Sandra GA, Rafael VP, Carmen MV, Josefina CE, del Carmen CEM, Rocío GM, Francisco AH, Elena CSM. Evaluation of 8-hydroxy-2′-deoxyguanosine (8-OHdG) adduct levels and DNA strand breaks in human peripheral blood lymphocytes exposedin vitroto polycyclic aromatic hydrocarbons with or without animal metabolic activation. Toxicol Mech Methods 2011; 22:170-83. [DOI: 10.3109/15376516.2011.623330] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
22
|
Mori T, Yoshinaga J, Suzuki K, Mizoi M, Adachi SI, Tao H, Nakazato T, Li YS, Kawai K, Kasai H. Exposure to polycyclic aromatic hydrocarbons, arsenic and environmental tobacco smoke, nutrient intake, and oxidative stress in Japanese preschool children. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:2881-2887. [PMID: 21570106 DOI: 10.1016/j.scitotenv.2011.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 04/14/2011] [Accepted: 04/14/2011] [Indexed: 05/30/2023]
Abstract
The association between oxidative stress and exposure to environmental chemicals was assessed in a group of Japanese preschool children. The concentrations of 8-hydroxy-2'-deoxyguanosine (8-OHdG), 1-hydroxypyrene (1-OHP), inorganic arsenic (iAs) and monomethylarsonic acid (MMA), and cotinine in spot urine samples, collected from 134 children (3-6 yrs) from a kindergarten in Kanagawa, Japan, were measured as biomarkers of oxidative stress or exposure to environmental chemicals. For 76 subjects of the 134, intakes of anti-oxidant nutrients (vitamins A, C, and E, manganese, copper, zinc and selenium (Se)) were estimated from a food consumption survey carried out 2-4 weeks after urine sampling and by urine analysis (Se). The median (min-max) creatinine-corrected concentrations of urinary biomarkers were 4.45 (1.98-12.3), 0.127 (0.04-2.41), 4.78 (1.18-12.7), and 0.62 (<0.6-19.0) μg/g cre for 8-OHdG, 1-OHP, iAs+MMA, and cotinine, respectively. Multiple regression analysis was carried out using 8-OHdG concentration as a dependent variable and urinary biomarkers of exposure and Se intake, intakes of vitamins and biological attributes of the subjects as independent variables. To explain 8-OHdG concentrations, intake of vitamin A and age were significant variables with negative coefficients, while 1-OHP concentration had a positive coefficient. These results indicated that oxidative stress of children is affected by chemical exposure at environmental levels, by nutrient intake and by physiological factors in a complex manner. On the other hand, unstable statistical results due to sub-grouping of subject, based on the availability of food consumption data, were found: the present results should further be validated by future studies with suitable research design.
Collapse
Affiliation(s)
- Takuya Mori
- Department of Environmental Studies, University of Tokyo, Kashiwanoha 5-1-5, Kashiwa, Chiba 277-8563, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sauvain JJ, Setyan A, Wild P, Tacchini P, Lagger G, Storti F, Deslarzes S, Guillemin M, Rossi MJ, Riediker M. Biomarkers of oxidative stress and its association with the urinary reducing capacity in bus maintenance workers. J Occup Med Toxicol 2011; 6:18. [PMID: 21619715 PMCID: PMC3135575 DOI: 10.1186/1745-6673-6-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Exposure to particles (PM) induces adverse health effects (cancer, cardiovascular and pulmonary diseases). A key-role in these adverse effects seems to be played by oxidative stress, which is an excess of reactive oxygen species relative to the amount of reducing species (including antioxidants), the first line of defense against reactive oxygen species. The aim of this study was to document the oxidative stress caused by exposure to respirable particles in vivo, and to test whether exposed workers presented changes in their urinary levels for reducing species. METHODS Bus depot workers (n = 32) exposed to particles and pollutants (respirable PM4, organic and elemental carbon, particulate metal content, polycyclic aromatic hydrocarbons, NOx, O3) were surveyed over two consecutive days. We collected urine samples before and after each shift, and quantified an oxidative stress biomarker (8-hydroxy-2'-deoxyguanosine), the reducing capacity and a biomarker of PAH exposure (1-hydroxypyrene). We used a linear mixed model to test for associations between the oxidative stress status of the workers and their particle exposure as well as with their urinary level of reducing species. RESULTS Workers were exposed to low levels of respirable PM4 (range 25-71 μg/m3). However, urinary levels of 8-hydroxy-2'-deoxyguanosine increased significantly within each shift and between both days for non-smokers. The between-day increase was significantly correlated (p < 0.001) with the concentrations of organic carbon, NOx, and the particulate copper content. The within-shift increase in 8OHdG was highly correlated to an increase of the urinary reducing capacity (Spearman ρ = 0.59, p < 0.0001). CONCLUSIONS These findings confirm that exposure to components associated to respirable particulate matter causes a systemic oxidative stress, as measured with the urinary 8OHdG. The strong association observed between urinary 8OHdG with the reducing capacity is suggestive of protective or other mechanisms, including circadian effects. Additional investigations should be performed to understand these observations.
Collapse
Affiliation(s)
- Jean-Jacques Sauvain
- Institute for Work and Health, University of Lausanne + Geneva, 21 rue du Bugnon, CH-1011 Lausanne, Switzerland
| | - Ari Setyan
- Institute for Work and Health, University of Lausanne + Geneva, 21 rue du Bugnon, CH-1011 Lausanne, Switzerland.,University of California, Davis; Department of Environmental Toxicology, 4422 Meyer Hall, One Shields Avenue, Davis CA 95616 USA
| | - Pascal Wild
- Institute for Work and Health, University of Lausanne + Geneva, 21 rue du Bugnon, CH-1011 Lausanne, Switzerland
| | | | - Grégoire Lagger
- EDEL Therapeutics S.A., PSE-B/EPFL, CH-1015 Lausanne, Switzerland
| | - Ferdinand Storti
- Institute for Work and Health, University of Lausanne + Geneva, 21 rue du Bugnon, CH-1011 Lausanne, Switzerland
| | - Simon Deslarzes
- Institute for Work and Health, University of Lausanne + Geneva, 21 rue du Bugnon, CH-1011 Lausanne, Switzerland
| | - Michel Guillemin
- Institute for Work and Health, University of Lausanne + Geneva, 21 rue du Bugnon, CH-1011 Lausanne, Switzerland
| | - Michel J Rossi
- Paul Scherrer Institute, Laboratory of Atmospheric Chemistry (LAC), CH-5232 Villigen PSI, Switzerland
| | - Michael Riediker
- Institute for Work and Health, University of Lausanne + Geneva, 21 rue du Bugnon, CH-1011 Lausanne, Switzerland
| |
Collapse
|
24
|
Marie-Desvergne C, Maître A, Bouchard M, Ravanat JL, Viau C. Evaluation of DNA adducts, DNA and RNA oxidative lesions, and 3-hydroxybenzo(a)pyrene as biomarkers of DNA damage in lung following intravenous injection of the parent compound in rats. Chem Res Toxicol 2010; 23:1207-14. [PMID: 20593881 DOI: 10.1021/tx100081p] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biomarkers of exposure and effect were assessed in 40 male Sprague-Dawley rats injected intravenously with 40 micromol/kg of benzo(a)pyrene (BaP) to determine which biomarkers are more representative of BaP-induced DNA damage in lung. Lung, liver, blood, and urine were collected at t = 2, 4, 8, 16, 24, 33, 48, 72, and 360 h postdosing. Specific BaP-diol epoxide (BPDE)-DNA adducts, 8-hydroxy-7,8-dihydro-2'-deoxyguanosine (8-OHdGuo), were measured in lung, liver, and mononucleated blood cells by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS). Urinary 8-OHdGuo and 8-hydroxy-7,8-dihydroguanosine (8-OHGuo) were also determined by HPLC-MS/MS, and urinary 3-hydroxybenzo(a)pyrene was measured by HPLC/fluorescence. Between 2 and 72 h postdosing, BPDE-DNA adducts were significantly increased in lung, liver, and mononucleated blood cells of BaP-treated rats as compared to controls, with the highest levels found in lung. 8-OHdGuo levels also increased in lung of BaP-treated rats with values reaching statistical significance at 2, 8, and 16 h postinjection. No influence of BaP treatment was found on 8-OHdGuo and 8-OHGuo urinary excretions. BPDE-DNA adducts in lung were strongly correlated to urinary 3-OHBaP (r = 0.936 and p < 0.001) and to a lesser extent to blood BPDE-DNA adducts (r = 0.636 and p < 0.001), the latter of which were correlated to each other (r = 0.573 and p = 0.002). Urinary 3-OHBaP and BPDE-DNA adducts in mononucleated blood cells appear as relevant biomarkers of BaP genotoxic exposure and are highly promising for health risk assessment in humans.
Collapse
Affiliation(s)
- Caroline Marie-Desvergne
- Departement de Sante Environnementale et Sante au Travail, Chaire d'Analyse et de Gestion des Risques Toxicologiques, Institut de Recherche en Sante Publique de l'Universite de Montreal, Faculte de Medecine, Universite de Montreal, Station Centre-ville, Montreal, Quebec
| | | | | | | | | |
Collapse
|
25
|
Chien YC, Yeh CT. Excretion characteristics of urinary 8-hydroxydeoxyguanosine after dietary exposure to polycyclic aromatic hydrocarbons. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:243-250. [PMID: 19844955 DOI: 10.1002/em.20536] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Urinary 8-hydroxydeoxyguanosine (8-OHdG) is considered a noninvasive marker for oxidative stress and also a marker of carcinogenic potential for compounds such as polycyclic aromatic hydrocarbons (PAHs). Although human studies have investigated urinary 8-OHdG concentrations in PAH-exposed workers and the general population, the background level and excretion kinetics of urinary 8-OHdG in humans remain unclear. Two feeding experiments (consumption of barbecued meat of 15 and 30 g/kg for Experiments 1 and 2, respectively) were conducted to examine the excretion characteristics of urinary 8-OHdG. All urine voided over 7 days was collected, but only first morning (approximately 8 A.M.) and last afternoon (approximately 5 P.M.) samples were analyzed for 8-OHdG. Mean background urinary 8-OHdG concentration was 4.76 microg/g creatinine. Statistically significant increases (P < 0.05) in urinary 8-OHdG concentration were observed on the afternoon of the 3rd and 2nd days after barbecued meat consumption for Experiments 1 and 2, respectively. A pattern of diurnal fluctuation (P < 0.05) in 8-OHdG excretion rate was evident, in that the excretion of 8-OHdG was faster during the night than during the day. Additionally, significant (P < 0.05) and strong (r > 0.6) correlations were found between urinary 8-OHdG measured 2-3 days after exposure to barbecued meat, and 1-hydroxypyrene (1-OHP) and 3-hydroxy-benzo[a]pyrene (3-OHBaP) concentrations measured within a half day after such exposure. The current results demonstrate a lag in excretion of urinary 8-OHdG relative to 1-OHP and 3-PHBaP after dietary PAH exposure. These relationships highlight the importance of sampling time when assessing PAH-related DNA lesions through urinary 8-OHdG.
Collapse
Affiliation(s)
- Yeh-Chung Chien
- Department of Safety, Health and Environmental Engineering, Hungkuang University, Shalu, Taiwan.
| | | |
Collapse
|
26
|
Oxidative damage in foundry workers occupationally co-exposed to PAHs and metals. Int J Hyg Environ Health 2010; 213:93-8. [PMID: 20153695 DOI: 10.1016/j.ijheh.2009.12.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2009] [Revised: 12/07/2009] [Accepted: 12/08/2009] [Indexed: 12/23/2022]
Abstract
Occupational exposure to polycyclic aromatic hydrocarbons (PAHs) has been reported in foundries. A higher risk for DNA damage or oxidative damage lesions was also found in occupationally PAH-exposed groups. The aim of this study was to assess PAH exposure by urinary excretion of 1-hydroxypyrene (1-OHP), a biological exposure marker. Furthermore, we aimed to evaluate the oxidative damage of foundry workers with different job tasks and the association between 1-OHP, metal exposure and oxidative damage in foundry workers exposed to pervasive carcinogens. A higher concentration of 1-OHP was found in the exposed group (0.322+/-0.289 microg/g creatinine) relative to the control group (0.178+/-0.289 microg/g creatinine) (p<0.05). Moreover, higher levels of 1-OHP were found in workers involved in manufacturing processes (0.346 microg/g creatinine) compared to administrative workers (0.018 microg/g creatinine). A positive correlation was identified between levels of 1-OHP and 8-hydroxydeoxyguanosine (8-OH-dG), DNA strand breakage and malondialdehyde (MDA) in all study subjects. However, when foundry workers were considered based on their specific job categories, a similar trend for 1-OHP and three oxidative damage markers was only found for DNA strand breakage, but not for 8-OH-dG or MDA. Other factors such as furnace equipment, PAH types, and job categories may contribute to different PAH emissions. The study also suggested that co-exposure to metal and PAHs, and smoking status in foundry industries may also cause the oxidative damage in foundry workers.
Collapse
|
27
|
Tarantini A, Maitre A, Lefebvre E, Marques M, Marie C, Ravanat JL, Douki T. Relative contribution of DNA strand breaks and DNA adducts to the genotoxicity of benzo[a]pyrene as a pure compound and in complex mixtures. Mutat Res 2009; 671:67-75. [PMID: 19733579 DOI: 10.1016/j.mrfmmm.2009.08.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 07/10/2009] [Accepted: 08/28/2009] [Indexed: 04/30/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAH) produced upon incomplete combustion of organic matter are suspected to be carcinogenic to humans. In the present work, we especially studied the genotoxicity of benzo[a]pyrene (B[a]P), pure or in mixtures, with emphasis placed on the contribution of oxidative stress and alkylation. A comparison was made between the extent of DNA strand breaks as determined by the Comet assay and the number of DNA adducts to the diol epoxide metabolite of B[a]P measured by HPLC-mass spectrometry. HepG2 cultured human hepatocytes were treated with either pure B[a]P or particulate matter extracted from air samples collected in an urban peri-industrial site or in a metallurgic plant. Treatment with pure B[a]P did not induce increase in Comet measurements below a concentration of 1 microM whereas adducts were observed for concentrations as low as 0.025 microM. Very different results were obtained with environmental samples. Increase in the Comet score was observed with both urban and industrial mixtures containing 0.16 microM of B[a]P, especially for samples of urban origin. Comparison with the effect of the reconstituted PAH fraction of the mixtures allowed us to conclude that the induction of strand breaks results from the action of other components of the samples. In addition, a 30% potentialization and a 90% inhibition in the level of DNA adducts with respect to exposure to 0.16 microM pure B[a]P were observed for cells exposed to industrial and urban mixtures, respectively. These results contrast with the 6-fold enhancement in the yield of BPDE adducts in cells exposed to the reconstituted PAH fraction with respect to pure BaP. Altogether, our data emphasize that (i) a combination of analytical approaches is required to assess the genotoxicity of complex mixtures and (ii) risk assessment based on additivity consideration such as toxic equivalent factors may be misleading.
Collapse
Affiliation(s)
- Adeline Tarantini
- Laboratoire Lésions des Acides Nucléiques, Service de Chimie Inorganique et Biologique UMR-E 3 CEA-UJF, CNRS FRE 3200, CEA/DSM/INAC, CEA-Grenoble, 38054 Grenoble, Cedex 9, France
| | | | | | | | | | | | | |
Collapse
|