1
|
Qin J, Shan Y, Liu H, Xue Z, Xie Y, Yuan G, Zou Y, Hao X, Zhu Y, Shen X, Li M, Wang X, Liu P, Xu J, Wang Y, Zhao P, Chen Y, Zhu Y, Xu M, Yue M, Fu A, Zhang W, Li B. The dual-targeted transcription factor BAI1 orchestrates nuclear and plastid gene transcription in land plants. MOLECULAR PLANT 2025; 18:833-852. [PMID: 40170352 DOI: 10.1016/j.molp.2025.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 02/20/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
Coordinated gene transcription in plastids and nuclei is necessary for the photosynthetic apparatus assembly during chloroplast biogenesis. Despite the identification of several transcription factors regulating nuclear-encoded photosynthetic gene transcription, transcription factors regulating plastid gene transcription are barely reported. Here, we report that BAI1 ("albino" in Chinese), a nucleus-plastid dual-targeted C2H2-type zinc-finger transcription factor in Arabidopsis, positively regulates and tunes the transcription of both nuclear and plastid genes. Knockout of BAI1 blocks chloroplast formation, producing albino seedlings and lethality. In plastids, BAI1 is a newly identified functional component of the pTAC (transcriptionally active chromosome complex), which interacts with another pTAC component, pTAC12/PAP5/HMR, to allow the effective assembly of plastid-encoded RNA polymerase (PEP) complexes. The transcript levels of PEP-dependent genes were reduced in the bai1 mutant. In contrast, the accumulation of nuclear-encoded RNA polymerase (NEP)-dependent transcripts was increased, suggesting that BAI1 is critical in maintaining PEP activity. BAI1 directly binds to the promoter regions of nuclear genes RbcSs and a plastid gene RbcL to activate their expression for RubisCO assembly. AtBAI1 homologs TaBAI1, GmBAI1a, and GmBAI1b from monocots and dicots can fully complement the defects of the Arabidopsis bai1 mutant. In contrast, Physcomitrium patens BAI1 (PpBAI1) only partially complements the bai1 mutant. Phylogenetic analysis of BAI1 and HMR uncovered that both components arose from late-diverging streptophyte algae, following a conserved evolutionary path during terrestrialization. In summary, this work unveils a BAI1-mediated transcription regulatory mechanism synchronizing the transcription of nuclear and plastid genes, necessary for hybrid photosynthetic complex assembly. This could be an intrinsic feature facilitating plant terrestrialization.
Collapse
Affiliation(s)
- Jing Qin
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yelin Shan
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Hao Liu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhangzhi Xue
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Yike Xie
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Guoxin Yuan
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yiming Zou
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xiaonuan Hao
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yunpeng Zhu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xuan Shen
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Meng Li
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xu Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Puyuan Liu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jinxiu Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yuhua Wang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Peng Zhao
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yuan Chen
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China
| | - Yi Zhu
- iMarker Lab, Westlake Laboratory of Life Sciences and Biomedicine, Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China
| | - Min Xu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Ming Yue
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Aigen Fu
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Weiguo Zhang
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China.
| | - Beibei Li
- Chinese Education Ministry's Key Laboratory of Western Resources and Modern Biotechnology, Key Laboratory of Biotechnology Shaanxi Province, College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Deng W, He Q, Zhang W. Analysis of the mechanism of curcumin against osteoarthritis using metabolomics and transcriptomics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:3313-3329. [PMID: 37938371 PMCID: PMC11074044 DOI: 10.1007/s00210-023-02785-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023]
Abstract
Curcumin, a polyphenolic compound derived from the turmeric plant (Curcuma longa), has been extensively studied for its anti-inflammatory and anti-proliferative properties. The safety and efficacy of curcumin have been thoroughly validated. Nevertheless, the underlying mechanism for treating osteoarthritis remains ambiguous. This study aims to reveal the potential mechanism of curcumin in treating osteoarthritis by using metabolomics and transcriptomics. Firstly, we validated the effect of curcumin on inflammatory factors in human articular chondrocytes. Secondly, we explored the cellular metabolism mechanism of curcumin against osteoarthritis using cell metabolomics. Thirdly, we assessed the differences in gene expression of human articular chondrocytes through transcriptomics. Lastly, to evaluate the essential targets and elucidate the potential mechanism underlying the therapeutic effects of curcumin in osteoarthritis, we conducted a screening of the proteins within the shared pathway of metabolomics and transcriptomics. Our results demonstrated that curcumin significantly decreased the levels of inflammatory markers, such as IL-β, IL-6, and TNF-α, in human articular chondrocytes. Cell metabolomics identified 106 differential metabolites, including beta-aminopropionitrile, 3-amino-2-piperidone, pyrrole-2-carboxaldehyde, and various other components. The transcriptomic analysis yielded 1050 differential mRNAs. Enrichment analysis showed that the differential metabolites and mRNAs were significantly enriched in seven pathways, including glycine, serine, and threonine metabolism; pentose and glucuronate interconversions; glycerolipid metabolism; histidine metabolism; mucin-type o-glycan biosynthesis; inositol phosphate metabolism; and cysteine and methionine metabolism. A total of 23 key targets were identified to be involved in these pathways. We speculate that curcumin may alleviate osteoarthritis by targeting key proteins involved in glycine, serine, and threonine metabolism; inhibiting pyruvate production; and modulating glycolysis.
Collapse
Affiliation(s)
- Wenxiang Deng
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Qinghu He
- Department of Rehabilitation and Healthcare, Hunan University of Medicine, Huaihua, 418000, Hunan, China.
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| | - Wenan Zhang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| |
Collapse
|
3
|
Guo X, Xie NB, Chen W, Ji TT, Xiong J, Feng T, Wang M, Zhang S, Gu SY, Feng YQ, Yuan BF. AlkB-Facilitated Demethylation Enables Quantitative and Site-Specific Detection of Dual Methylation of Adenosine in RNA. Anal Chem 2024; 96:847-855. [PMID: 38159051 DOI: 10.1021/acs.analchem.3c04457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
RNA molecules undergo various chemical modifications that play critical roles in a wide range of biological processes. N6,N6-Dimethyladenosine (m6,6A) is a conserved RNA modification and is essential for the processing of rRNA. To gain a deeper understanding of the functions of m6,6A, site-specific and accurate quantification of this modification in RNA is indispensable. In this study, we developed an AlkB-facilitated demethylation (AD-m6,6A) method for the site-specific detection and quantification of m6,6A in RNA. The N6,N6-dimethyl groups in m6,6A can cause reverse transcription to stall at the m6,6A site, resulting in truncated cDNA. However, we found that Escherichia coli AlkB demethylase can effectively demethylate m6,6A in RNA, generating full-length cDNA from AlkB-treated RNA. By quantifying the amount of full-length cDNA produced using quantitative real-time PCR, we were able to achieve site-specific detection and quantification of m6,6A in RNA. Using the AD-m6,6A method, we successfully detected and quantified m6,6A at position 1851 of 18S rRNA and position 937 of mitochondrial 12S rRNA in human cells. Additionally, we found that the level of m6,6A at position 1007 of mitochondrial 12S rRNA was significantly reduced in lung tissues from sleep-deprived mice compared with control mice. Overall, the AD-m6,6A method provides a valuable tool for easy, accurate, quantitative, and site-specific detection of m6,6A in RNA, which can aid in uncovering the functions of m6,6A in human diseases.
Collapse
Affiliation(s)
- Xia Guo
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Neng-Bin Xie
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Wei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tong-Tong Ji
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Jun Xiong
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Tian Feng
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Min Wang
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Shan Zhang
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
| | - Shu-Yi Gu
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Yu-Qi Feng
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Bi-Feng Yuan
- College of Chemistry and Molecular Sciences, Research Center of Public Health, Renmin Hospital of Wuhan University, Wuhan University, Wuhan 430060, China
- School of Public Health, Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Zhongnan Hospital of Wuhan University, Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan 430071, China
| |
Collapse
|
4
|
Dvoran M, Nemcova L, Kalous J. An Interplay between Epigenetics and Translation in Oocyte Maturation and Embryo Development: Assisted Reproduction Perspective. Biomedicines 2022; 10:biomedicines10071689. [PMID: 35884994 PMCID: PMC9313063 DOI: 10.3390/biomedicines10071689] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/11/2022] Open
Abstract
Germ cell quality is a key prerequisite for successful fertilization and early embryo development. The quality is determined by the fine regulation of transcriptomic and proteomic profiles, which are prone to alteration by assisted reproduction technology (ART)-introduced in vitro methods. Gaining evidence shows the ART can influence preset epigenetic modifications within cultured oocytes or early embryos and affect their developmental competency. The aim of this review is to describe ART-determined epigenetic changes related to the oogenesis, early embryogenesis, and further in utero development. We confront the latest epigenetic, related epitranscriptomic, and translational regulation findings with the processes of meiotic maturation, fertilization, and early embryogenesis that impact the developmental competency and embryo quality. Post-ART embryo transfer, in utero implantation, and development (placentation, fetal development) are influenced by environmental and lifestyle factors. The review is emphasizing their epigenetic and ART contribution to fetal development. An epigenetic parallel among mouse, porcine, and bovine animal models and human ART is drawn to illustrate possible future mechanisms of infertility management as well as increase the awareness of the underlying mechanisms governing oocyte and embryo developmental complexity under ART conditions.
Collapse
|
5
|
Sasaki E, Yamamoto H, Asari T, Matsuta R, Ota S, Kimura Y, Sasaki S, Ishibashi K, Yamamoto Y, Kami K, Ando M, Tsuda E, Ishibashi Y. Metabolomics with severity of radiographic knee osteoarthritis and early phase synovitis in middle-aged women from the Iwaki Health Promotion Project: a cross-sectional study. Arthritis Res Ther 2022; 24:145. [PMID: 35710532 PMCID: PMC9205107 DOI: 10.1186/s13075-022-02830-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 05/29/2022] [Indexed: 01/15/2023] Open
Abstract
Background Osteoarthritis (OA) is one of the costliest and most disabling forms of arthritis, and it poses a major public health burden; however, its detailed etiology, pathophysiology, and metabolism remain unclear. Therefore, the purpose of this study was to investigate the key plasma metabolites and metabolic pathways, especially focusing on radiographic OA severity and synovitis, from a large sample cohort study. Methods We recruited 596 female volunteers who participated in the Iwaki Health Promotion Project in 2017. Standing anterior-posterior radiographs of the knee were classified by the Kellgren-Lawrence (KL) grade. Radiographic OA was defined as a KL grade of ≥ 2. Individual effusion-synovitis was scored according to the Whole-Organ Magnetic Resonance Imaging Scoring System. Blood samples were collected, and metabolites were extracted from the plasma. Metabolome analysis was performed using capillary electrophoresis time-of-flight mass spectrometry. To investigate the relationships among metabolites, the KL grade, and effusion-synovitis scores, partial least squares with rank order of groups (PLS-ROG) analyses were performed. Results Among the 82 metabolites examined in this assay, PLS-ROG analysis identified 42 metabolites that correlated with OA severity. A subsequent metabolite set enrichment analysis using the significant metabolites showed the urea cycle and tricarboxylic acid cycle as key metabolic pathways. Moreover, further PLS-ROG analysis identified cystine (p = 0.009), uric acid (p = 0.024), and tyrosine (p = 0.048) as common metabolites associated with both OA severity and effusion-synovitis. Receiver operating characteristic analyses showed that cystine levels were moderately associated with radiographic OA (p < 0.001, area under the curve 0.714, odds ratio 3.7). Conclusion Large sample metabolome analyses revealed that cystine, an amino acid associated with antioxidant activity and glutamate homeostasis, might be a potential metabolic biomarker for radiographic osteoarthritis and early phase synovitis. Supplementary Information The online version contains supplementary material available at 10.1186/s13075-022-02830-w.
Collapse
Affiliation(s)
- Eiji Sasaki
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Hiroyuki Yamamoto
- Human Metabolome Technologies, Tsuruoka, Japan.,Department of Metabolomics Innovation, Hirosaki, Japan
| | - Toru Asari
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Rira Matsuta
- Human Metabolome Technologies, Tsuruoka, Japan.,Department of Metabolomics Innovation, Hirosaki, Japan
| | - Seiya Ota
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yuka Kimura
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Shizuka Sasaki
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Kyota Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Yuji Yamamoto
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | | | - Masataka Ando
- School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| | - Eiichi Tsuda
- Department of Rehabilitation Medicine, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopaedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
6
|
Gokhale A, Lee CE, Zlatic SA, Freeman AAH, Shearing N, Hartwig C, Ogunbona O, Bassell JL, Wynne ME, Werner E, Xu C, Wen Z, Duong D, Seyfried NT, Bearden CE, Oláh VJ, Rowan MJM, Glausier JR, Lewis DA, Faundez V. Mitochondrial Proteostasis Requires Genes Encoded in a Neurodevelopmental Syndrome Locus. J Neurosci 2021; 41:6596-6616. [PMID: 34261699 PMCID: PMC8336702 DOI: 10.1523/jneurosci.2197-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/23/2021] [Accepted: 06/26/2021] [Indexed: 02/08/2023] Open
Abstract
Eukaryotic cells maintain proteostasis through mechanisms that require cytoplasmic and mitochondrial translation. Genetic defects affecting cytoplasmic translation perturb synapse development, neurotransmission, and are causative of neurodevelopmental disorders, such as Fragile X syndrome. In contrast, there is little indication that mitochondrial proteostasis, either in the form of mitochondrial protein translation and/or degradation, is required for synapse development and function. Here we focus on two genes deleted in a recurrent copy number variation causing neurodevelopmental disorders, the 22q11.2 microdeletion syndrome. We demonstrate that SLC25A1 and MRPL40, two genes present in the microdeleted segment and whose products localize to mitochondria, interact and are necessary for mitochondrial ribosomal integrity and proteostasis. Our Drosophila studies show that mitochondrial ribosome function is necessary for synapse neurodevelopment, function, and behavior. We propose that mitochondrial proteostasis perturbations, either by genetic or environmental factors, are a pathogenic mechanism for neurodevelopmental disorders.SIGNIFICANCE STATEMENT The balance between cytoplasmic protein synthesis and degradation, or cytoplasmic proteostasis, is required for normal synapse function and neurodevelopment. Cytoplasmic and mitochondrial ribosomes are necessary for two compartmentalized, yet interdependent, forms of proteostasis. Proteostasis dependent on cytoplasmic ribosomes is a well-established target of genetic defects that cause neurodevelopmental disorders, such as autism. Here we show that the mitochondrial ribosome is a neurodevelopmentally regulated organelle whose function is required for synapse development and function. We propose that defective mitochondrial proteostasis is a mechanism with the potential to contribute to neurodevelopmental disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhexing Wen
- Departments of Cell Biology
- Psychiatry and Behavioral Sciences
| | - Duc Duong
- and Biochemistry, Emory University, Atlanta, Georgia 30322
| | | | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior Department of Psychology, UCLA, Los Angeles, California 90095
| | | | | | - Jill R Glausier
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - David A Lewis
- Departments of Psychiatry and Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
7
|
PGC1s and Beyond: Disentangling the Complex Regulation of Mitochondrial and Cellular Metabolism. Int J Mol Sci 2021; 22:ijms22136913. [PMID: 34199142 PMCID: PMC8268830 DOI: 10.3390/ijms22136913] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Metabolism is the central engine of living organisms as it provides energy and building blocks for many essential components of each cell, which are required for specific functions in different tissues. Mitochondria are the main site for energy production in living organisms and they also provide intermediate metabolites required for the synthesis of other biologically relevant molecules. Such cellular processes are finely tuned at different levels, including allosteric regulation, posttranslational modifications, and transcription of genes encoding key proteins in metabolic pathways. Peroxisome proliferator activated receptor γ coactivator 1 (PGC1) proteins are transcriptional coactivators involved in the regulation of many cellular processes, mostly ascribable to metabolic pathways. Here, we will discuss some aspects of the cellular processes regulated by PGC1s, bringing up some examples of their role in mitochondrial and cellular metabolism, and how metabolic regulation in mitochondria by members of the PGC1 family affects the immune system. We will analyze how PGC1 proteins are regulated at the transcriptional and posttranslational level and will also examine other regulators of mitochondrial metabolism and the related cellular functions, considering approaches to identify novel mitochondrial regulators and their role in physiology and disease. Finally, we will analyze possible therapeutical perspectives currently under assessment that are applicable to different disease states.
Collapse
|
8
|
Hayward RJ, Humphrys MS, Huston WM, Myers GSA. Dual RNA-seq analysis of in vitro infection multiplicity and RNA depletion methods in Chlamydia-infected epithelial cells. Sci Rep 2021; 11:10399. [PMID: 34001998 PMCID: PMC8128910 DOI: 10.1038/s41598-021-89921-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/04/2021] [Indexed: 12/13/2022] Open
Abstract
Dual RNA-seq experiments examining viral and bacterial pathogens are increasing, but vary considerably in their experimental designs, such as infection rates and RNA depletion methods. Here, we have applied dual RNA-seq to Chlamydia trachomatis infected epithelial cells to examine transcriptomic responses from both organisms. We compared two time points post infection (1 and 24 h), three multiplicity of infection (MOI) ratios (0.1, 1 and 10) and two RNA depletion methods (rRNA and polyA). Capture of bacterial-specific RNA were greatest when combining rRNA and polyA depletion, and when using a higher MOI. However, under these conditions, host RNA capture was negatively impacted. Although it is tempting to use high infection rates, the implications on host cell survival, the potential reduced length of infection cycles and real world applicability should be considered. This data highlights the delicate nature of balancing host-pathogen RNA capture and will assist future transcriptomic-based studies to achieve more specific and relevant infection-related biological insights.
Collapse
Affiliation(s)
- Regan J Hayward
- The iThree Institute, Faculty of Science, University of Technology Sydney, Sydney, Australia.
- Helmholtz Centre for Infection Research (HZI), Helmholtz Institute for RNA-based Infection Research (HIRI), Würzburg, Germany.
| | - Michael S Humphrys
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wilhelmina M Huston
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| | - Garry S A Myers
- The iThree Institute, Faculty of Science, University of Technology Sydney, Sydney, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, Australia
| |
Collapse
|
9
|
Wang J, Li J, Song D, Ni J, Ding M, Huang J, Yan M. AMPK: implications in osteoarthritis and therapeutic targets. Am J Transl Res 2020; 12:7670-7681. [PMID: 33437352 PMCID: PMC7791500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/24/2020] [Indexed: 06/12/2023]
Abstract
Osteoarthritis (OA) is the most common skeletal disease and the leading cause of pain and disability in the aged population (>65 years). However, the underlying factors involved in OA pathogenesis remain elusive which has resulted in failure to identify disease-modifying OA drugs. Altered metabolism has been shown to be a prominent pathological change in OA. As a critical bioenergy sensor, AMP-activated protein kinase (AMPK) mediates not only energy homeostasis but also redox balance in chondrocytes to counter various cell stress. Dysfunction of AMPK activity has been associated with reduced autophagy, impaired mitochondrial function, excessive reactive oxygen species generation, and inflammation in joint tissue. These abnormalities ultimately trigger articular cartilage degeneration, synovial inflammation, and abnormal subchondral bone remodeling. This review focuses on recent findings describing the central role of AMPK in joint homeostasis and OA development. We also highlight current advances that target AMPK as a novel therapeutic strategy for OA prevention.
Collapse
Affiliation(s)
- Junjie Wang
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Jiali Li
- Department of Rheumatology and Nephrology, University of South China Affiliated Changsha Central HospitalChangsha 410008, Hunan, China
| | - Deye Song
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Jiangdong Ni
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Muliang Ding
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Jun Huang
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| | - Mingming Yan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South UniversityChangsha 410011, Hunan, China
| |
Collapse
|
10
|
Zhao T, Goedhart C, Pfeffer G, Greenway SC, Lines M, Khan A, Innes AM, Shutt TE. Skeletal Phenotypes Due to Abnormalities in Mitochondrial Protein Homeostasis and Import. Int J Mol Sci 2020; 21:8327. [PMID: 33171986 PMCID: PMC7664180 DOI: 10.3390/ijms21218327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial disease represents a collection of rare genetic disorders caused by mitochondrial dysfunction. These disorders can be quite complex and heterogeneous, and it is recognized that mitochondrial disease can affect any tissue at any age. The reasons for this variability are not well understood. In this review, we develop and expand a subset of mitochondrial diseases including predominantly skeletal phenotypes. Understanding how impairment ofdiverse mitochondrial functions leads to a skeletal phenotype will help diagnose and treat patients with mitochondrial disease and provide additional insight into the growing list of human pathologies associated with mitochondrial dysfunction. The underlying disease genes encode factors involved in various aspects of mitochondrial protein homeostasis, including proteases and chaperones, mitochondrial protein import machinery, mediators of inner mitochondrial membrane lipid homeostasis, and aminoacylation of mitochondrial tRNAs required for translation. We further discuss a complex of frequently associated phenotypes (short stature, cataracts, and cardiomyopathy) potentially explained by alterations to steroidogenesis, a process regulated by mitochondria. Together, these observations provide novel insight into the consequences of impaired mitochondrial protein homeostasis.
Collapse
Affiliation(s)
- Tian Zhao
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Caitlin Goedhart
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.G.); (M.L.); (A.M.I)
| | - Gerald Pfeffer
- Departments of Clinical Neurosciences and Medical Genetics, Cumming School of Medicine, Hotchkiss Brain Institute, Alberta Child Health Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Steven C Greenway
- Departments of Pediatrics, Cardiac Sciences and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute and Libin Cardiovascular Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| | - Matthew Lines
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.G.); (M.L.); (A.M.I)
| | - Aneal Khan
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T3B 6A8, Canada;
| | - A Micheil Innes
- Departments of Pediatrics and Medical Genetics, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada; (C.G.); (M.L.); (A.M.I)
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Alberta Children’s Hospital Research Institute, Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada;
| |
Collapse
|
11
|
Madeddu G, Fiore V, Melis M, Ortu S, Mannu F, Muredda AA, Garrucciu G, Bandiera F, Zaru S, Bagella P, Calvisi DF, Babudieri S. Mitochondrial toxicity and body shape changes during nucleos(t)ide analogues administration in patients with chronic hepatitis B. Sci Rep 2020; 10:2014. [PMID: 32029790 PMCID: PMC7005185 DOI: 10.1038/s41598-020-58837-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/26/2019] [Indexed: 12/15/2022] Open
Abstract
Our study purpose was to evaluate mitochondrial (mt)DNA and RNA in peripheral blood mononuclear cells (PBMCs) and body shape changes (BSC) in HBV-infected patients. mtDNA and mtRNA were measured in PBMCs. The presence of BSC was evaluated through a questionnaire and clinical evaluation. A total of 157 subjects were enrolled, of these 107 were HBV-infected patients, 54 receiving nucleoside analogues (NAs, Group A), 53 naive to antivirals (Group B) and 50 age-sex matched controls (Group C). All HBV-treated patients had negative HBV–DNA. Twenty (37,0%) received lamivudine + adefovir, 20 (37.0%) tenofovir, 2 (3.7%) lamivudine and 12 (22.2%) entecavir. Therapy median duration was 38 months (IQR 20–60) in NA-treated patients. Group A showed significantly higher mtDNA/nuclear (n) DNA ratio (p = 0.000008) compared to Group C and Group B (p = 0.002). Group B showed significantly higher mtDNA/nDNA ratio compared to Group C (p = 0.017). Group A and B had significantly lower mtRNA/nRNA ratio compared to Group C (p = 0.00003 and p = 0.00006, respectively). Tenofovir and entecavir showed less impact compared to lamivudine + adefovir. mtDNA/nDNA ratio positively (Rho = 0.34, p < 0.05) and mtRNA/nRNA ratio negatively (Rho = −0.34, p < 0.05) correlated with therapy duration. BSC were significantly more frequent in Group A [10/54 (18.5%)] compared to Group B [3/53 (5.6%, p = 0.04)] and Group C [0/50, (p = 0.0009)]. In conclusion, long-term NA therapy was associated both to mitochondrial toxicity and BSC, showing significant differences in mtDNA and mtRNA levels. Tenofovir and entecavir showed lower impact on alterations, compared to 1st generation NA.
Collapse
Affiliation(s)
- Giordano Madeddu
- Infectious and Tropical Diseases Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy.
| | - Vito Fiore
- Infectious and Tropical Diseases Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Michela Melis
- Infectious and Tropical Diseases Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Silvia Ortu
- Infectious and Tropical Diseases Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Franca Mannu
- Nurexbiotech, University Hospital of Sassari, Sassari, Italy
| | - Alberto Augusto Muredda
- Infectious and Tropical Diseases Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Giovanni Garrucciu
- Department of Internal Medicine, University Hospital of Sassari, Sassari, Italy
| | - Franco Bandiera
- Department of Internal Medicine, University Hospital of Sassari, Sassari, Italy
| | - Salvatore Zaru
- Department of Internal Medicine, University Hospital of Sassari, Sassari, Italy
| | - Paola Bagella
- Infectious and Tropical Diseases Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Diego Francesco Calvisi
- Division of Experimental Pathology and Oncology, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Sergio Babudieri
- Infectious and Tropical Diseases Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
12
|
Chen P, Zheng L, Wang Y, Tao M, Xie Z, Xia C, Gu C, Chen J, Qiu P, Mei S, Ning L, Shi Y, Fang C, Fan S, Lin X. Desktop-stereolithography 3D printing of a radially oriented extracellular matrix/mesenchymal stem cell exosome bioink for osteochondral defect regeneration. Theranostics 2019; 9:2439-2459. [PMID: 31131046 PMCID: PMC6525998 DOI: 10.7150/thno.31017] [Citation(s) in RCA: 311] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 03/03/2019] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress damage are hallmarks of osteoarthritis (OA). Mesenchymal stem cell (MSC)-derived exosomes are important in intercellular mitochondria communication. However, the use of MSC exosomes for regulating mitochondrial function in OA has not been reported. This study aimed to explore the therapeutic effect of MSC exosomes in a three dimensional (3D) printed scaffold for early OA therapeutics. Methods: We first examined the mitochondria-related proteins in normal and OA human cartilage samples and investigated whether MSC exosomes could enhance mitochondrial biogenesis in vitro. We subsequently designed a bio-scaffold for MSC exosomes delivery and fabricated a 3D printed cartilage extracellular matrix (ECM)/gelatin methacrylate (GelMA)/exosome scaffold with radially oriented channels using desktop-stereolithography technology. Finally, the osteochondral defect repair capacity of the 3D printed scaffold was assessed using a rabbit model. Results: The ECM/GelMA/exosome scaffold effectively restored chondrocyte mitochondrial dysfunction, enhanced chondrocyte migration, and polarized the synovial macrophage response toward an M2 phenotype. The 3D printed scaffold significantly facilitated the cartilage regeneration in the animal model. Conclusion: This study demonstrated that the 3D printed, radially oriented ECM/GelMA/exosome scaffold could be a promising strategy for early OA treatment.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Lin Zheng
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
- Department of Orthopedics, 5th Affiliated Hospital, Lishui Municipal Central Hospital, Wenzhou Medical University, Lishui, China
| | - Yiyun Wang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Min Tao
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Ziang Xie
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Chen Xia
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Chenhui Gu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Jiaxin Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Pengcheng Qiu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Sheng Mei
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Lei Ning
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Yiling Shi
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Chen Fang
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| | - Xianfeng Lin
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, Medical College of Zhejiang University, Hangzhou, China
- Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province
| |
Collapse
|
13
|
Bohnsack MT, Sloan KE. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Cell Mol Life Sci 2017; 75:241-260. [PMID: 28752201 PMCID: PMC5756263 DOI: 10.1007/s00018-017-2598-6] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/08/2017] [Accepted: 07/17/2017] [Indexed: 11/28/2022]
Abstract
Mitochondrial protein synthesis is essential for the production of components of the oxidative phosphorylation system. RNA modifications in the mammalian mitochondrial translation apparatus play key roles in facilitating mitochondrial gene expression as they enable decoding of the non-conventional genetic code by a minimal set of tRNAs, and efficient and accurate protein synthesis by the mitoribosome. Intriguingly, recent transcriptome-wide analyses have also revealed modifications in mitochondrial mRNAs, suggesting that the concept of dynamic regulation of gene expression by the modified RNAs (the “epitranscriptome”) extends to mitochondria. Furthermore, it has emerged that defects in RNA modification, arising from either mt-DNA mutations or mutations in nuclear-encoded mitochondrial modification enzymes, underlie multiple mitochondrial diseases. Concomitant advances in the identification of the mitochondrial RNA modification machinery and recent structural views of the mitochondrial translation apparatus now allow the molecular basis of such mitochondrial diseases to be understood on a mechanistic level.
Collapse
Affiliation(s)
- Markus T Bohnsack
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
- Göttingen Centre for Molecular Biosciences, University of Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.
| | - Katherine E Sloan
- Department of Molecular Biology, University Medical Center Göttingen, Humboldtallee 23, 37073, Göttingen, Germany.
| |
Collapse
|
14
|
MtDNA meta-analysis reveals both phenotype specificity and allele heterogeneity: a model for differential association. Sci Rep 2017; 7:43449. [PMID: 28230165 PMCID: PMC5322532 DOI: 10.1038/srep43449] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 01/23/2017] [Indexed: 12/13/2022] Open
Abstract
Human mtDNA genetic variants have traditionally been considered markers for ancient population migrations. However, during the past three decades, these variants have been associated with altered susceptibility to various phenotypes, thus supporting their importance for human health. Nevertheless, mtDNA disease association has frequently been supported only in certain populations, due either to population stratification or differential epistatic compensations among populations. To partially overcome these obstacles, we performed meta-analysis of the multiple mtDNA association studies conducted until 2016, encompassing 53,975 patients and 63,323 controls. Our findings support the association of mtDNA haplogroups and recurrent variants with specific phenotypes such as Parkinson’s disease, type 2 diabetes, longevity, and breast cancer. Strikingly, our assessment of mtDNA variants’ involvement with multiple phenotypes revealed significant impact for Caucasian haplogroups H, J, and K. Therefore, ancient mtDNA variants could be divided into those that affect specific phenotypes, versus others with a general impact on phenotype combinations. We suggest that the mtDNA could serve as a model for phenotype specificity versus allele heterogeneity.
Collapse
|
15
|
Blumberg A, Rice EJ, Kundaje A, Danko CG, Mishmar D. Initiation of mtDNA transcription is followed by pausing, and diverges across human cell types and during evolution. Genome Res 2017; 27:362-373. [PMID: 28049628 PMCID: PMC5340964 DOI: 10.1101/gr.209924.116] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 12/29/2016] [Indexed: 12/13/2022]
Abstract
Mitochondrial DNA (mtDNA) genes are long known to be cotranscribed in polycistrones, yet it remains impossible to study nascent mtDNA transcripts quantitatively in vivo using existing tools. To this end, we used deep sequencing (GRO-seq and PRO-seq) and analyzed nascent mtDNA-encoded RNA transcripts in diverse human cell lines and metazoan organisms. Surprisingly, accurate detection of human mtDNA transcription initiation sites (TISs) in the heavy and light strands revealed a novel conserved transcription pausing site near the light-strand TIS. This pausing site correlated with the presence of a bacterial pausing sequence motif, with reduced SNP density, and with a DNase footprinting signal in all tested cells. Its location within conserved sequence block 3 (CSBIII), just upstream of the known transcription–replication transition point, suggests involvement in such transition. Analysis of nonhuman organisms enabled de novo mtDNA sequence assembly, as well as detection of previously unknown mtDNA TIS, pausing, and transcription termination sites with unprecedented accuracy. Whereas mammals (Pan troglodytes, Macaca mulatta, Rattus norvegicus, and Mus musculus) showed a human-like mtDNA transcription pattern, the invertebrate pattern (Drosophila melanogaster and Caenorhabditis elegans) profoundly diverged. Our approach paves the path toward in vivo, quantitative, reference sequence-free analysis of mtDNA transcription in all eukaryotes.
Collapse
Affiliation(s)
- Amit Blumberg
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel
| | - Edward J Rice
- Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, California 94305-5120, USA
| | - Charles G Danko
- Baker Institute for Animal Health, Cornell University, Ithaca, New York 14853, USA
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105 Israel
| |
Collapse
|
16
|
Ramachandran A, Basu U, Sultana S, Nandakumar D, Patel SS. Human mitochondrial transcription factors TFAM and TFB2M work synergistically in promoter melting during transcription initiation. Nucleic Acids Res 2016; 45:861-874. [PMID: 27903899 PMCID: PMC5314767 DOI: 10.1093/nar/gkw1157] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/02/2016] [Accepted: 11/04/2016] [Indexed: 12/26/2022] Open
Abstract
Human mitochondrial DNA is transcribed by POLRMT with the help of two initiation factors, TFAM and TFB2M. The current model postulates that the role of TFAM is to recruit POLRMT and TFB2M to melt the promoter. However, we show that TFAM has ‘post-recruitment’ roles in promoter melting and RNA synthesis, which were revealed by studying the pre-initiation steps of promoter binding, bending and melting, and abortive RNA synthesis. Our 2-aminopurine mapping studies show that the LSP (Light Strand Promoter) is melted from −4 to +1 in the open complex with all three proteins and from −4 to +3 with addition of ATP. Our equilibrium binding studies show that POLRMT forms stable complexes with TFB2M or TFAM on LSP with low-nanomolar Kd values, but these two-component complexes lack the mechanism to efficiently melt the promoter. This indicates that POLRMT needs both TFB2M and TFAM to melt the promoter. Additionally, POLRMT+TFB2M makes 2-mer abortives on LSP, but longer RNAs are observed only with TFAM. These results are explained by TFAM playing a role in promoter melting and/or stabilization of the open complex on LSP. Based on our results, we propose a refined model of transcription initiation by the human mitochondrial transcription machinery.
Collapse
Affiliation(s)
- Aparna Ramachandran
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA
| | - Urmimala Basu
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA.,Graduate School of Biomedical Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | - Shemaila Sultana
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA
| | - Divya Nandakumar
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA
| | - Smita S Patel
- Department of Biochemistry and Molecular Biology, Rutgers, Robert Wood Johnson Medical school, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Pinti MV, Hathaway QA, Hollander JM. Role of microRNA in metabolic shift during heart failure. Am J Physiol Heart Circ Physiol 2016; 312:H33-H45. [PMID: 27742689 DOI: 10.1152/ajpheart.00341.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 12/16/2022]
Abstract
Heart failure (HF) is an end point resulting from a number of disease states. The prognosis for HF patients is poor with survival rates precipitously low. Energy metabolism is centrally linked to the development of HF, and it involves the proteomic remodeling of numerous pathways, many of which are targeted to the mitochondrion. microRNAs (miRNA) are noncoding RNAs that influence posttranscriptional gene regulation. miRNA have garnered considerable attention for their ability to orchestrate changes to the transcriptome, and ultimately the proteome, during HF. Recently, interest in the role played by miRNA in the regulation of energy metabolism at the mitochondrion has emerged. Cardiac proteome remodeling during HF includes axes impacting hypertrophy, oxidative stress, calcium homeostasis, and metabolic fuel transition. Although it is established that the pathological environment of hypoxia and hemodynamic stress significantly contribute to the HF phenotype, it remains unclear as to the mechanistic underpinnings driving proteome remodeling. The aim of this review is to present evidence highlighting the role played by miRNA in these processes as a means for linking pathological stimuli with proteomic alteration. The differential expression of proteins of substrate transport, glycolysis, β-oxidation, ketone metabolism, the citric acid cycle (CAC), and the electron transport chain (ETC) are paralleled by the differential expression of miRNA species that modulate these processes. Identification of miRNAs that translocate to cardiomyocyte mitochondria (miR-181c, miR-378) influencing the expression of the mitochondrial genome-encoded transcripts as well as suggested import modulators are discussed. Current insights, applications, and challenges of miRNA-based therapeutics are also described.
Collapse
Affiliation(s)
- Mark V Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; and Mitochondria, Metabolism, and Bioenergentics Working Group, Morgantown, West Virginia
| | - Quincy A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; and Mitochondria, Metabolism, and Bioenergentics Working Group, Morgantown, West Virginia
| | - John M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, West Virginia; and Mitochondria, Metabolism, and Bioenergentics Working Group, Morgantown, West Virginia
| |
Collapse
|
18
|
Byrnes J, Hauser K, Norona L, Mejia E, Simmerling C, Garcia-Diaz M. Base Flipping by MTERF1 Can Accommodate Multiple Conformations and Occurs in a Stepwise Fashion. J Mol Biol 2016; 428:2542-2556. [PMID: 26523681 PMCID: PMC4851923 DOI: 10.1016/j.jmb.2015.10.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/14/2015] [Accepted: 10/20/2015] [Indexed: 11/28/2022]
Abstract
Human mitochondrial transcription termination occurs within the leu-tRNA gene and is mediated by the DNA binding protein MTERF1. The crystal structure of MTERF1 bound to the canonical termination sequence reveals a rare base flipping event that involves the eversion of three nucleotides. These nucleotides are stabilized by stacking interactions with three MTERF1 residues, which are essential not only for base flipping but also for termination activity. To further understand the mechanism of base flipping, we examined each of the individual stacking interactions in structural, energetic and functional detail. Individual substitutions of Arg162, Tyr288 and Phe243 have revealed unequal contributions to overall termination activity. Furthermore, our work identifies an important role for Phe322 in the base flipping mechanism and we demonstrate how Phe322 and Phe243 are important for coupling base flipping between the heavy and light strand DNA chains. We propose a stepwise model for the base flipping process that recapitulates our observations. Finally, we show that MTERF1 has the ability to accommodate alternate active conformations. The adaptability of base flipping has implications for MTERF1 function and for the putative function of MTERF1 at alternative binding sites in human mitochondria.
Collapse
Affiliation(s)
- James Byrnes
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Kevin Hauser
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | - Leah Norona
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Edison Mejia
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Carlos Simmerling
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA; Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
19
|
McKay SE, Yan W, Nouws J, Thormann MJ, Raimundo N, Khan A, Santos-Sacchi J, Song L, Shadel GS. Auditory Pathology in a Transgenic mtTFB1 Mouse Model of Mitochondrial Deafness. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:3132-40. [PMID: 26552864 DOI: 10.1016/j.ajpath.2015.08.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 07/31/2015] [Accepted: 08/14/2015] [Indexed: 12/13/2022]
Abstract
The A1555G mutation in the 12S rRNA gene of human mitochondrial DNA causes maternally inherited, nonsyndromic deafness, an extreme case of tissue-specific mitochondrial pathology. A transgenic mouse strain that robustly overexpresses the mitochondrial 12S ribosomal RNA methyltransferase TFB1M (Tg-mtTFB1 mice) exhibits progressive hearing loss that we proposed models aspects of A1555G-related pathology in humans. Although our previous studies of Tg-mtTFB1 mice implicated apoptosis in the spiral ganglion and stria vascularis because of mitochondrial reactive oxygen species-mediated activation of AMP kinase (AMPK) and the nuclear transcription factor E2F1, detailed auditory pathology was not delineated. Herein, we show that Tg-mtTFB1 mice have reduced endocochlear potential, indicative of significant stria vascularis dysfunction, but without obvious signs of strial atrophy. We also observed decreased auditory brainstem response peak 1 amplitude and prolonged wave I latency, consistent with apoptosis of spiral ganglion neurons. Although no major loss of hair cells was observed, there was a mild impairment of voltage-dependent electromotility of outer hair cells. On the basis of these results, we propose that these events conspire to produce the progressive hearing loss phenotype in Tg-mtTFB1 mice. Finally, genetically reducing AMPK α1 rescues hearing loss in Tg-mtTFB1 mice, confirming that aberrant up-regulation of AMPK signaling promotes the observed auditory pathology. The relevance of these findings to human A1555G patients and the potential therapeutic value of reducing AMPK activity are discussed.
Collapse
Affiliation(s)
- Sharen E McKay
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut; Department of Psychology, University of Bridgeport, Bridgeport, Connecticut
| | - Wayne Yan
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Jessica Nouws
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | | | - Nuno Raimundo
- Institute of Cell Biology, University Medical Center Göettingen, Göttingen, Germany
| | - Abdul Khan
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Joseph Santos-Sacchi
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut; Department of Neurobiology, Yale School of Medicine, New Haven, Connecticut.
| | - Lei Song
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut.
| | - Gerald S Shadel
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut; Department of Genetics, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
20
|
Kloss-Brandstätter A, Weissensteiner H, Erhart G, Schäfer G, Forer L, Schönherr S, Pacher D, Seifarth C, Stöckl A, Fendt L, Sottsas I, Klocker H, Huck CW, Rasse M, Kronenberg F, Kloss FR. Validation of Next-Generation Sequencing of Entire Mitochondrial Genomes and the Diversity of Mitochondrial DNA Mutations in Oral Squamous Cell Carcinoma. PLoS One 2015; 10:e0135643. [PMID: 26262956 PMCID: PMC4532422 DOI: 10.1371/journal.pone.0135643] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/23/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is mainly caused by smoking and alcohol abuse and shows a five-year survival rate of ~50%. We aimed to explore the variation of somatic mitochondrial DNA (mtDNA) mutations in primary oral tumors, recurrences and metastases. METHODS We performed an in-depth validation of mtDNA next-generation sequencing (NGS) on an Illumina HiSeq 2500 platform for its application to cancer tissues, with the goal to detect low-level heteroplasmies and to avoid artifacts. Therefore we genotyped the mitochondrial genome (16.6 kb) from 85 tissue samples (tumors, recurrences, resection edges, metastases and blood) collected from 28 prospectively recruited OSCC patients applying both Sanger sequencing and high-coverage NGS (~35,000 reads per base). RESULTS We observed a strong correlation between Sanger sequencing and NGS in estimating the mixture ratio of heteroplasmies (r = 0.99; p<0.001). Non-synonymous heteroplasmic variants were enriched among cancerous tissues. The proportions of somatic and inherited variants in a given gene region were strongly correlated (r = 0.85; p<0.001). Half of the patients shared mutations between benign and cancerous tissue samples. Low level heteroplasmies (<10%) were more frequent in benign samples compared to tumor samples, where heteroplasmies >10% were predominant. Four out of six patients who developed a local tumor recurrence showed mutations in the recurrence that had also been observed in the primary tumor. Three out of five patients, who had tumor metastases in the lymph nodes of their necks, shared mtDNA mutations between primary tumors and lymph node metastases. The percentage of mutation heteroplasmy increased from the primary tumor to lymph node metastases. CONCLUSIONS We conclude that Sanger sequencing is valid for heteroplasmy quantification for heteroplasmies ≥10% and that NGS is capable of reliably detecting and quantifying heteroplasmies down to the 1%-level. The finding of shared mutations between primary tumors, recurrences and metastasis indicates a clonal origin of malignant cells in oral cancer.
Collapse
Affiliation(s)
| | - Hansi Weissensteiner
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Gertraud Erhart
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Georg Schäfer
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schönherr
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Dominic Pacher
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
- Department of Database and Information Systems, Institute of Computer Science, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Christof Seifarth
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andrea Stöckl
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Liane Fendt
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irma Sottsas
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Helmut Klocker
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian W. Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University of Innsbruck, Innsbruck, Austria
| | - Michael Rasse
- Department for Cranio-, Maxillofacial and Oral Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Frank R. Kloss
- Department for Cranio-, Maxillofacial and Oral Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
21
|
Morozov YI, Parshin AV, Agaronyan K, Cheung ACM, Anikin M, Cramer P, Temiakov D. A model for transcription initiation in human mitochondria. Nucleic Acids Res 2015; 43:3726-35. [PMID: 25800739 PMCID: PMC4402542 DOI: 10.1093/nar/gkv235] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/08/2015] [Indexed: 01/10/2023] Open
Abstract
Regulation of transcription of mtDNA is thought to be crucial for maintenance of redox potential and vitality of the cell but is poorly understood at the molecular level. In this study we mapped the binding sites of the core transcription initiation factors TFAM and TFB2M on human mitochondrial RNA polymerase, and interactions of the latter with promoter DNA. This allowed us to construct a detailed structural model, which displays a remarkable level of interaction between the components of the initiation complex (IC). The architecture of the mitochondrial IC suggests mechanisms of promoter binding and recognition that are distinct from the mechanisms found in RNAPs operating in all domains of life, and illuminates strategies of transcription regulation developed at the very early stages of evolution of gene expression.
Collapse
Affiliation(s)
- Yaroslav I Morozov
- Department of Cell Biology, School of Osteopathic Medicine, Rowan University, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | - Andrey V Parshin
- Department of Cell Biology, School of Osteopathic Medicine, Rowan University, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | - Karen Agaronyan
- Department of Cell Biology, School of Osteopathic Medicine, Rowan University, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | - Alan C M Cheung
- Institute of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Michael Anikin
- Department of Cell Biology, School of Osteopathic Medicine, Rowan University, 2 Medical Center Dr., Stratford, NJ 08084, USA
| | - Patrick Cramer
- Max Planck Institute for Biophysical Chemistry, Department of Molecular Biology, Am Fassberg 11, 37077 Gottingen, Germany
| | - Dmitry Temiakov
- Department of Cell Biology, School of Osteopathic Medicine, Rowan University, 2 Medical Center Dr., Stratford, NJ 08084, USA
| |
Collapse
|
22
|
Shutt TE, Bestwick M, Shadel GS. The core human mitochondrial transcription initiation complex: It only takes two to tango. Transcription 2014; 2:55-59. [PMID: 21468229 DOI: 10.4161/trns.2.2.14296] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 11/24/2010] [Accepted: 11/29/2010] [Indexed: 11/19/2022] Open
Abstract
We recently demonstrated that the core transcription initiation complex in human mitochondria is a two-component system (POLRMT and h-mtTFB2). Human mtTFA/TFAM, previously proposed to be a requisite initiation complex member, is dispensable for promoter-specific initiation in vitro. We propose that it instead regulates relative promoter activity and/or overall nucleoid transcription and replication potential.
Collapse
Affiliation(s)
- Timothy E Shutt
- Department of Pathology Yale University School of Medicine; New Haven, CT USA
| | | | | |
Collapse
|
23
|
Blumberg A, Sri Sailaja B, Kundaje A, Levin L, Dadon S, Shmorak S, Shaulian E, Meshorer E, Mishmar D. Transcription factors bind negatively selected sites within human mtDNA genes. Genome Biol Evol 2014; 6:2634-46. [PMID: 25245407 PMCID: PMC4224337 DOI: 10.1093/gbe/evu210] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Transcription of mitochondrial DNA (mtDNA)-encoded genes is thought to be regulated by a handful of dedicated transcription factors (TFs), suggesting that mtDNA genes are separately regulated from the nucleus. However, several TFs, with known nuclear activities, were found to bind mtDNA and regulate mitochondrial transcription. Additionally, mtDNA transcriptional regulatory elements, which were proved important in vitro, were harbored by a deletion that normally segregated among healthy individuals. Hence, mtDNA transcriptional regulation is more complex than once thought. Here, by analyzing ENCODE chromatin immunoprecipitation sequencing (ChIP-seq) data, we identified strong binding sites of three bona fide nuclear TFs (c-Jun, Jun-D, and CEBPb) within human mtDNA protein-coding genes. We validated the binding of two TFs by ChIP-quantitative polymerase chain reaction (c-Jun and Jun-D) and showed their mitochondrial localization by electron microscopy and subcellular fractionation. As a step toward investigating the functionality of these TF-binding sites (TFBS), we assessed signatures of selection. By analyzing 9,868 human mtDNA sequences encompassing all major global populations, we recorded genetic variants in tips and nodes of mtDNA phylogeny within the TFBS. We next calculated the effects of variants on binding motif prediction scores. Finally, the mtDNA variation pattern in predicted TFBS, occurring within ChIP-seq negative-binding sites, was compared with ChIP-seq positive-TFBS (CPR). Motifs within CPRs of c-Jun, Jun-D, and CEBPb harbored either only tip variants or their nodal variants retained high motif prediction scores. This reflects negative selection within mtDNA CPRs, thus supporting their functionality. Hence, human mtDNA-coding sequences may have dual roles, namely coding for genes yet possibly also possessing regulatory potential.
Collapse
Affiliation(s)
- Amit Blumberg
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Badi Sri Sailaja
- Department of Genetics, The Institute of Life Sciences, and The Edmond Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Israel
| | - Anshul Kundaje
- Department of Genetics, Stanford University Department of Computer Science, Stanford University
| | - Liron Levin
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Sara Dadon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shimrit Shmorak
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University Medical School, Ein Karem, Jerusalem, Israel
| | - Eitan Shaulian
- Department of Biochemistry and Molecular Biology, IMRIC, The Hebrew University Medical School, Ein Karem, Jerusalem, Israel
| | - Eran Meshorer
- Department of Genetics, The Institute of Life Sciences, and The Edmond Lily Center for Brain Sciences (ELSC), The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Israel
| | - Dan Mishmar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
24
|
Gaweda-Walerych K, Zekanowski C. The impact of mitochondrial DNA and nuclear genes related to mitochondrial functioning on the risk of Parkinson's disease. Curr Genomics 2014; 14:543-59. [PMID: 24532986 PMCID: PMC3924249 DOI: 10.2174/1389202914666131210211033] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 07/30/2013] [Accepted: 08/29/2013] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial dysfunction and oxidative stress are the major factors implicated in Parkinson’s disease (PD)
pathogenesis. The maintenance of healthy mitochondria is a very complex process coordinated bi-genomically. Here, we
review association studies on mitochondrial haplogroups and subhaplogroups, discussing the underlying molecular
mechanisms. We also focus on variation in the nuclear genes (NDUFV2, PGC-1alpha, HSPA9, LRPPRC, MTIF3,
POLG1, and TFAM encoding NADH dehydrogenase (ubiquinone) flavoprotein 2, peroxisome proliferator-activated receptor
gamma coactivator 1-alpha, mortalin, leucine-rich pentatricopeptide repeat containing protein, translation initiation
factor 3, mitochondrial DNA polymerase gamma, and mitochondrial transcription factor A, respectively) primarily linked
to regulation of mitochondrial functioning that recently have been associated with PD risk. Possible interactions between
mitochondrial and nuclear genetic variants and related proteins are discussed.
Collapse
Affiliation(s)
- Katarzyna Gaweda-Walerych
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 str., 02-106 Warszawa, Poland
| | - Cezary Zekanowski
- Laboratory of Neurogenetics, Mossakowski Medical Research Centre, Polish Academy of Sciences, Pawinskiego 5 str., 02-106 Warszawa, Poland
| |
Collapse
|
25
|
Yakubovskaya E, Guja KE, Eng ET, Choi WS, Mejia E, Beglov D, Lukin M, Kozakov D, Garcia-Diaz M. Organization of the human mitochondrial transcription initiation complex. Nucleic Acids Res 2014; 42:4100-12. [PMID: 24413562 PMCID: PMC3973321 DOI: 10.1093/nar/gkt1360] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Initiation of transcription in human mitochondria involves two factors, TFAM and TFB2M, in addition to the mitochondrial RNA polymerase, POLRMT. We have investigated the organization of the human mitochondrial transcription initiation complex on the light-strand promoter (LSP) through solution X-ray scattering, electron microscopy (EM) and biochemical studies. Our EM results demonstrate a compact organization of the initiation complex, suggesting that protein–protein interactions might help mediate initiation. We demonstrate that, in the absence of DNA, only POLRMT and TFAM form a stable interaction, albeit one with low affinity. This is consistent with the expected transient nature of the interactions necessary for initiation and implies that the promoter DNA acts as a scaffold that enables formation of the full initiation complex. Docking of known crystal structures into our EM maps results in a model for transcriptional initiation that strongly correlates with new and existing biochemical observations. Our results reveal the organization of TFAM, POLRMT and TFB2M around the LSP and represent the first structural characterization of the entire mitochondrial transcriptional initiation complex.
Collapse
Affiliation(s)
- Elena Yakubovskaya
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, Cryo-Electron Microscopy Facility, New York Structural Biology Center, New York, NY 10027 and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Wang G, Yang E, Mandhan I, Brinkmeyer-Langford CL, Cai JJ. Population-level expression variability of mitochondrial DNA-encoded genes in humans. Eur J Hum Genet 2014; 22:1093-9. [PMID: 24398800 DOI: 10.1038/ejhg.2013.293] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 10/22/2013] [Accepted: 11/09/2013] [Indexed: 12/28/2022] Open
Abstract
Human mitochondria contain multiple copies of a circular genome made up of double-stranded DNA (mtDNA) that encodes proteins involved in cellular respiration. Transcript abundance of mtDNA-encoded genes varies between human individuals, yet the level of variation in the general population has not been systematically assessed. In the present study, we revisited large-scale RNA sequencing data generated from lymphoblastoid cell lines of HapMap samples of European and African ancestry to estimate transcript abundance and quantify expression variation for mtDNA-encoded genes. In both populations, we detected up to over 100-fold difference in mtDNA gene expression between individuals. The marked variation was not due to differences in mtDNA copy number between individuals, but was shaped by the transcription of hundreds of nuclear genes. Many of these nuclear genes were co-expressed with one another, resulting in a module-enriched co-expression network. Significant correlations in expression between genes of the mtDNA and nuclear genomes were used to identify factors involved with the regulation of mitochondrial functions. In conclusion, we determined the baseline amount of variability in mtDNA gene expression in general human populations and cataloged a complete set of nuclear genes whose expression levels are correlated with those of mtDNA-encoded genes. Our findings will enable the integration of information from both mtDNA and nuclear genetic systems, and facilitate the discovery of novel regulatory pathways involving mitochondrial functions.
Collapse
Affiliation(s)
- Gang Wang
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ence Yang
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Ishita Mandhan
- Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | | | - James J Cai
- 1] Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA [2] Interdisciplinary Program in Genetics, Texas A&M University, College Station, TX, USA
| |
Collapse
|
27
|
Guja KE, Venkataraman K, Yakubovskaya E, Shi H, Mejia E, Hambardjieva E, Karzai AW, Garcia-Diaz M. Structural basis for S-adenosylmethionine binding and methyltransferase activity by mitochondrial transcription factor B1. Nucleic Acids Res 2013; 41:7947-59. [PMID: 23804760 PMCID: PMC3763538 DOI: 10.1093/nar/gkt547] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Revised: 05/16/2013] [Accepted: 05/24/2013] [Indexed: 12/31/2022] Open
Abstract
Eukaryotic transcription factor B (TFB) proteins are homologous to KsgA/Dim1 ribosomal RNA (rRNA) methyltransferases. The mammalian TFB1, mitochondrial (TFB1M) factor is an essential protein necessary for mitochondrial gene expression. TFB1M mediates an rRNA modification in the small ribosomal subunit and thus plays a role analogous to KsgA/Dim1 proteins. This modification has been linked to mitochondrial dysfunctions leading to maternally inherited deafness, aminoglycoside sensitivity and diabetes. Here, we present the first structural characterization of the mammalian TFB1 factor. We have solved two X-ray crystallographic structures of TFB1M with (2.1 Å) and without (2.0 Å) its cofactor S-adenosyl-L-methionine. These structures reveal that TFB1M shares a conserved methyltransferase core with other KsgA/Dim1 methyltransferases and shed light on the structural basis of S-adenosyl-L-methionine binding and methyltransferase activity. Together with mutagenesis studies, these data suggest a model for substrate binding and provide insight into the mechanism of methyl transfer, clarifying the role of this factor in an essential process for mitochondrial function.
Collapse
Affiliation(s)
- Kip E. Guja
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA, Medical Scientist Training Program, Stony Brook University Medical Center, Stony Brook, NY 11794, USA and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Krithika Venkataraman
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA, Medical Scientist Training Program, Stony Brook University Medical Center, Stony Brook, NY 11794, USA and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Elena Yakubovskaya
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA, Medical Scientist Training Program, Stony Brook University Medical Center, Stony Brook, NY 11794, USA and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Hui Shi
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA, Medical Scientist Training Program, Stony Brook University Medical Center, Stony Brook, NY 11794, USA and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Edison Mejia
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA, Medical Scientist Training Program, Stony Brook University Medical Center, Stony Brook, NY 11794, USA and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Elena Hambardjieva
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA, Medical Scientist Training Program, Stony Brook University Medical Center, Stony Brook, NY 11794, USA and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - A. Wali Karzai
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA, Medical Scientist Training Program, Stony Brook University Medical Center, Stony Brook, NY 11794, USA and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Miguel Garcia-Diaz
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY 11794, USA, Medical Scientist Training Program, Stony Brook University Medical Center, Stony Brook, NY 11794, USA and Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
28
|
Identification of Pentatricopeptide Repeat Proteins in the Model Organism Dictyostelium discoideum. Int J Genomics 2013; 2013:586498. [PMID: 23998118 PMCID: PMC3753752 DOI: 10.1155/2013/586498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/11/2013] [Indexed: 11/18/2022] Open
Abstract
Pentatricopeptide repeat (PPR) proteins are RNA binding proteins with functions in organelle RNA metabolism. They are found in all eukaryotes but have been most extensively studied in plants. We report on the identification of 12 PPR-encoding genes in the genome of the protist Dictyostelium discoideum, with potential homologs in other members of the same lineage and some predicted novel functions for the encoded gene products in protists. For one of the gene products, we show that it localizes to the mitochondria, and we also demonstrate that antisense inhibition of its expression leads to slower growth, a phenotype associated with mitochondrial dysfunction.
Collapse
|
29
|
Bestwick ML, Shadel GS. Accessorizing the human mitochondrial transcription machinery. Trends Biochem Sci 2013; 38:283-91. [PMID: 23632312 PMCID: PMC3698603 DOI: 10.1016/j.tibs.2013.03.006] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 03/18/2013] [Accepted: 03/26/2013] [Indexed: 12/29/2022]
Abstract
The human genome comprises large chromosomes in the nucleus and mitochondrial DNA (mtDNA) housed in the dynamic mitochondrial network. Human cells contain up to thousands of copies of the double-stranded, circular mtDNA molecule that encodes essential subunits of the oxidative phosphorylation complexes and the rRNAs and tRNAs needed to translate these in the organelle matrix. Transcription of human mtDNA is directed by a single-subunit RNA polymerase, POLRMT, which requires two primary transcription factors, TFB2M (transcription factor B2, mitochondrial) and TFAM (transcription factor A, mitochondrial), to achieve basal regulation of the system. Here, we review recent advances in understanding the structure and function of the primary human transcription machinery and the other factors that facilitate steps in transcription beyond initiation and provide more intricate control over the system.
Collapse
Affiliation(s)
- Megan L. Bestwick
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520
| |
Collapse
|
30
|
Raval AP, Borges-Garcia R, Diaz F, Sick TJ, Bramlett H. Oral contraceptives and nicotine synergistically exacerbate cerebral ischemic injury in the female brain. Transl Stroke Res 2013; 4:402-12. [PMID: 24323338 DOI: 10.1007/s12975-013-0253-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 02/06/2023]
Abstract
Oral contraceptives (OC) and smoking-derived nicotine (N) are known to synergistically increase the risk and severity of cerebral ischemia in women. Although it has been known for some time that long-term use of OC and nicotine will have an increased risk of peripheral thrombus formation, little is known about how the combination of OC and nicotine increases severity of brain ischemia. Recent laboratory studies simulating the conditions of nicotine exposure produced by cigarette smoking and OC regimen of women in female rats confirms that the severity of ischemic hippocampal damage is far greater in female rats simultaneously exposed to OC than to nicotine alone. These studies also demonstrated that the concurrent exposure of OC and nicotine reduces endogenous 17β-estradiol levels and inhibits estrogen signaling in the brain of female rats. The endogenous 17β-estradiol plays a key role in cerebrovascular protection in women during their pre-menopausal life and loss of circulating estrogen at reproductive senescence increases both the incidence and severity of cerebrovascular diseases. Therefore, OC and nicotine induced severe post-ischemic damage might be a consequence of lack of estrogen signaling in the brain. In the present review we highlight possible mechanisms by which OC and nicotine inhibits estrogen signaling that could be responsible for severe ischemic damage in females.
Collapse
Affiliation(s)
- Ami P Raval
- Cerebral Vascular Disease Research Center, Department of Neurology, Leonard M. Miller School of Medicine, University of Miami, Two Story Lab (TSL), Room # 230A, 1420 NW 9th Avenue, Miami, FL, 33101, USA,
| | | | | | | | | |
Collapse
|
31
|
Surovtseva YV, Shadel GS. Transcription-independent role for human mitochondrial RNA polymerase in mitochondrial ribosome biogenesis. Nucleic Acids Res 2013; 41:2479-88. [PMID: 23303773 PMCID: PMC3575816 DOI: 10.1093/nar/gks1447] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 12/07/2012] [Accepted: 12/12/2012] [Indexed: 12/05/2022] Open
Abstract
Human mitochondrial RNA polymerase, POLRMT, is required for mitochondrial DNA (mtDNA) transcription and forms initiation complexes with human mitochondrial transcription factor B2 (h-mtTFB2). However, POLRMT also interacts with the paralogue of h-mtTFB2, h-mtTFB1, which is a 12S ribosomal RNA methyltransferase required for small (28S) mitochondrial ribosome subunit assembly. Herein, we show that POLRMT associates with h-mtTFB1 in 28S mitochondrial ribosome complexes that are stable in the absence of mitochondrial transcription and distinct from transcription complexes containing POLRMT and h-mtTFB2. Overexpression of POLRMT in HeLa cells increases 12S rRNA methylation by h-mtTFB1 and reduces the steady-state levels of mtDNA-encoded proteins and respiration, apparently because of a decrease in fully assembled 55S mitochondrial ribosomes. We propose that POLRMT interacts directly with h-mtTFB1 in 28S mitochondrial ribosomes to augment its 12S rRNA methyltransferase activity, and that together they provide a checkpoint for proper 28S and 55S mitochondrial ribosome assembly. Thus, POLRMT is multi-functional, forming distinct protein complexes that regulate different steps in mitochondrial gene expression, at least one of which does not involve transcription per se. The significance of these results is discussed with regard to the mechanism and regulation of human mitochondrial gene expression and the potential multi-functionality of RNA polymerases in general.
Collapse
Affiliation(s)
- Yulia V Surovtseva
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | |
Collapse
|
32
|
Wredenberg A, Lagouge M, Bratic A, Metodiev MD, Spåhr H, Mourier A, Freyer C, Ruzzenente B, Tain L, Grönke S, Baggio F, Kukat C, Kremmer E, Wibom R, Polosa PL, Habermann B, Partridge L, Park CB, Larsson NG. MTERF3 regulates mitochondrial ribosome biogenesis in invertebrates and mammals. PLoS Genet 2013; 9:e1003178. [PMID: 23300484 PMCID: PMC3536695 DOI: 10.1371/journal.pgen.1003178] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
Regulation of mitochondrial DNA (mtDNA) expression is critical for the control of oxidative phosphorylation in response to physiological demand, and this regulation is often impaired in disease and aging. We have previously shown that mitochondrial transcription termination factor 3 (MTERF3) is a key regulator that represses mtDNA transcription in the mouse, but its molecular mode of action has remained elusive. Based on the hypothesis that key regulatory mechanisms for mtDNA expression are conserved in metazoans, we analyzed Mterf3 knockout and knockdown flies. We demonstrate here that decreased expression of MTERF3 not only leads to activation of mtDNA transcription, but also impairs assembly of the large mitochondrial ribosomal subunit. This novel function of MTERF3 in mitochondrial ribosomal biogenesis is conserved in the mouse, thus we identify a novel and unexpected role for MTERF3 in coordinating the crosstalk between transcription and translation for the regulation of mammalian mtDNA gene expression.
Collapse
Affiliation(s)
- Anna Wredenberg
- Max-Planck Institute for Biology of Ageing, Köln, Germany
- Department Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Marie Lagouge
- Max-Planck Institute for Biology of Ageing, Köln, Germany
| | - Ana Bratic
- Max-Planck Institute for Biology of Ageing, Köln, Germany
- Department Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Henrik Spåhr
- Max-Planck Institute for Biology of Ageing, Köln, Germany
| | - Arnaud Mourier
- Max-Planck Institute for Biology of Ageing, Köln, Germany
| | - Christoph Freyer
- Max-Planck Institute for Biology of Ageing, Köln, Germany
- Department Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Luke Tain
- Max-Planck Institute for Biology of Ageing, Köln, Germany
| | | | | | | | - Elisabeth Kremmer
- Helmholtz Center, Institute for Molecular Immunology, Munich, Germany
| | - Rolf Wibom
- Department Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Paola Loguercio Polosa
- Department of Biosciences, Biotechnologies, and Pharmacological Sciences, University of Bari Aldo Moro, Bari, Italy
| | | | | | - Chan Bae Park
- Institute for Medical Sciences, Ajou University School of Medicine, Suwon, Korea
- Mitochondria Hub Regulation Center, Dong-A University College of Medicine, Busan, Republic of Korea
- * E-mail: (CBP); (N-GL)
| | - Nils-Göran Larsson
- Max-Planck Institute for Biology of Ageing, Köln, Germany
- Department Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (CBP); (N-GL)
| |
Collapse
|
33
|
Qattan AT, Radulovic M, Crawford M, Godovac-Zimmermann J. Spatial distribution of cellular function: the partitioning of proteins between mitochondria and the nucleus in MCF7 breast cancer cells. J Proteome Res 2012; 11:6080-101. [PMID: 23051583 PMCID: PMC4261608 DOI: 10.1021/pr300736v] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Concurrent proteomics analysis of the nuclei and mitochondria of MCF7 breast cancer cells identified 985 proteins (40% of all detected proteins) present in both organelles. Numerous proteins from all five complexes involved in oxidative phosphorylation (e.g., NDUFA5, NDUFB10, NDUFS1, NDUF2, SDHA, UQRB, UQRC2, UQCRH, COX5A, COX5B, MT-CO2, ATP5A1, ATP5B, ATP5H, etc.), from the TCA-cycle (DLST, IDH2, IDH3A, OGDH, SUCLAG2, etc.), and from glycolysis (ALDOA, ENO1, FBP1, GPI, PGK1, TALDO1, etc.) were distributed to both the nucleus and mitochondria. In contrast, proteins involved in nuclear/mitochondrial RNA processing/translation and Ras/Rab signaling showed different partitioning patterns. The identity of the OxPhos, TCA-cycle, and glycolysis proteins distributed to both the nucleus and mitochondria provides evidence for spatio-functional integration of these processes over the two different subcellular organelles. We suggest that there are unrecognized aspects of functional coordination between the nucleus and mitochondria, that integration of core functional processes via wide subcellular distribution of constituent proteins is a common characteristic of cells, and that subcellular spatial integration of function may be a vital aspect of cancer.
Collapse
Affiliation(s)
- Amal T. Qattan
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, Royal Free Campus, Rowland Hill Street NW3 2PF, United Kingdom
| | - Marko Radulovic
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, Royal Free Campus, Rowland Hill Street NW3 2PF, United Kingdom
| | - Mark Crawford
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, Royal Free Campus, Rowland Hill Street NW3 2PF, United Kingdom
| | - Jasminka Godovac-Zimmermann
- Proteomics and Molecular Cell Dynamics, Division of Medicine, School of Life and Medical Sciences, University College London, Royal Free Campus, Rowland Hill Street NW3 2PF, United Kingdom
| |
Collapse
|
34
|
Chaudhry MA, Omaruddin RA. Transcriptional changes of mitochondrial genes in irradiated cells proficient or deficient in p53. J Genet 2012; 91:105-10. [PMID: 22546833 DOI: 10.1007/s12041-012-0138-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Affiliation(s)
- M Ahmad Chaudhry
- Department of Medical Laboratory and Radiation Sciences, University of Vermont, Burlington, VT 05405, USA.
| | | |
Collapse
|
35
|
Bruni F, Manzari C, Filice M, Loguercio Polosa P, Colella M, Carmone C, Hambardjieva E, Garcia-Diaz M, Cantatore P, Roberti M. D-MTERF5 is a novel factor modulating transcription in Drosophila mitochondria. Mitochondrion 2012; 12:492-9. [PMID: 22784680 PMCID: PMC3447168 DOI: 10.1016/j.mito.2012.06.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 06/20/2012] [Accepted: 06/28/2012] [Indexed: 11/08/2022]
Abstract
The MTERF protein family comprises members from Metazoans and plants. All the Metazoan MTERF proteins characterized to date, including the mitochondrial transcription termination factors, play a key role in mitochondrial gene expression. In this study we report the characterization of Drosophila MTERF5 (D-MTERF5), a mitochondrial protein existing only in insects, probably originated from a duplication event of the transcription termination factor DmTTF. D-MTERF5 knock-down in D.Mel-2 cells alters transcript levels with an opposite pattern to that produced by DmTTF knock-down. D-MTERF5 is able to interact with mtDNA at the same sites contacted by DmTTF, but only in the presence of the termination factor. We propose that the two proteins participate in the transcription termination process, with D-MTERF5 engaged in relieving the block exerted by DmTTF. This hypothesis is supported also by D-MTERF5 homology modeling, which suggests that this protein contains protein–protein interaction domains. Co-regulation by DREF (DNA Replication-related Element binding Factor) of D-MTERF5 and DmTTF implies that expression of the two factors needs to be co-ordinated to ensure fine modulation of Drosophila mitochondrial transcription.
Collapse
Affiliation(s)
- Francesco Bruni
- Dipartimento di Bioscienze, Biotecnologie e Scienze Farmacologiche, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
Neuroepigenetics, which includes nuclear DNA modifications such as 5-methylcytosine and 5-hydoxymethylcytosine and modifications of nuclear proteins such as histones, is emerging as the leading field in molecular neuroscience. Historically, a functional role for epigenetic mechanisms, including in neuroepigenetics, has been sought in the area of the regulation of nuclear transcription. However, one important compartment of mammalian cell DNA, different from nuclear but equally important for physiological and pathological processes (including in the brain), mitochondrial DNA has for the most part not had a systematic epigenetic characterization. The importance of mitochondria and mitochondrial DNA (particularly its mutations) in central nervous system physiology and pathology has long been recognized. Only recently have mechanisms of mitochondrial DNA methylation and hydroxymethylation, including the discovery of mitochondrial DNA-methyltransferases and the presence and the functionality of 5-methylcytosine and 5-hydroxymethylcytosine in mitochondrial DNA (e.g., in modifying the transcription of mitochondrial genome), been unequivocally recognized as a part of mammalian mitochondrial physiology. Here we summarize for the first time evidence supporting the existence of these mechanisms and we propose the term "mitochondrial epigenetics" to be used when referring to them. Currently, neuroepigenetics does not include mitochondrial epigenetics - a gap that we expect to close in the near future.
Collapse
Affiliation(s)
- Hari Manev
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | |
Collapse
|
37
|
Kočevar N, Odreman F, Vindigni A, Grazio SF, Komel R. Proteomic analysis of gastric cancer and immunoblot validation of potential biomarkers. World J Gastroenterol 2012; 18:1216-28. [PMID: 22468085 PMCID: PMC3309911 DOI: 10.3748/wjg.v18.i11.1216] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2011] [Revised: 05/26/2011] [Accepted: 06/03/2011] [Indexed: 02/06/2023] Open
Abstract
AIM: To search for and validate differentially expressed proteins in patients with gastric adenocarcinoma.
METHODS: We used two-dimensional gel electrophoresis and mass spectrometry to search for differentially expressed proteins in patients with gastric adenocarcinoma. A set of proteins was validated with immunoblotting.
RESULTS: We identified 30 different proteins involved in various biological processes: metabolism, development, death, response to stress, cell cycle, cell communication, transport, and cell motility. Eight proteins were chosen for further validation by immunoblotting. Our results show that gastrokine-1, 39S ribosomal protein L12 (mitochondrial precursor), plasma cell-induced resident endoplasmic reticulum protein, and glutathione S-transferase mu 3 were significantly underexpressed in gastric adenocarcinoma relative to adjacent non-tumor tissue samples. On the other hand, septin-2, ubiquitin-conjugating enzyme E2 N, and transaldolase were significantly overexpressed. Translationally controlled tumor protein was shown to be differentially expressed only in patients with cancer of the gastric cardia/esophageal border.
CONCLUSION: This work presents a set of possible diagnostic biomarkers, validated for the first time. It might contribute to the efforts of understanding gastric cancer carcinogenesis.
Collapse
|
38
|
Mechanism of transcription initiation by the yeast mitochondrial RNA polymerase. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:930-8. [PMID: 22353467 DOI: 10.1016/j.bbagrm.2012.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 02/03/2012] [Accepted: 02/04/2012] [Indexed: 02/03/2023]
Abstract
Mitochondria are the major supplier of cellular energy in the form of ATP. Defects in normal ATP production due to dysfunctions in mitochondrial gene expression are responsible for many mitochondrial and aging related disorders. Mitochondria carry their own DNA genome which is transcribed by relatively simple transcriptional machinery consisting of the mitochondrial RNAP (mtRNAP) and one or more transcription factors. The mtRNAPs are remarkably similar in sequence and structure to single-subunit bacteriophage T7 RNAP but they require accessory transcription factors for promoter-specific initiation. Comparison of the mechanisms of T7 RNAP and mtRNAP provides a framework to better understand how mtRNAP and the transcription factors work together to facilitate promoter selection, DNA melting, initiating nucleotide binding, and promoter clearance. This review focuses primarily on the mechanistic characterization of transcription initiation by the yeast Saccharomyces cerevisiae mtRNAP (Rpo41) and its transcription factor (Mtf1) drawing insights from the homologous T7 and the human mitochondrial transcription systems. We discuss regulatory mechanisms of mitochondrial transcription and the idea that the mtRNAP acts as the in vivo ATP "sensor" to regulate gene expression. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
|
39
|
Schrier SA, Wong LJ, Place E, Ji JQ, Pierce EA, Golden J, Santi M, Anninger W, Falk MJ. Mitochondrial tRNA-serine (AGY) m.C12264T mutation causes severe multisystem disease with cataracts. DISCOVERY MEDICINE 2012; 13:143-150. [PMID: 22369973 PMCID: PMC3618896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Progressive multisystem disease should invoke consideration of potential mitochondrial etiologies. Mitochondrial disease can affect any organ system at any time, particularly involving neurologic, cardiac, muscular, gastroenterologic, and/or ophthalmologic manifestations. We report here a 19-year-old Caucasian man who was followed since birth in multiple pediatric subspecialty clinics for myelomeningocele complications. However, he progressively developed a host of additional problems that were not readily attributable to his neural tube defect involving developmental, ophthalmologic, cardiac, muscular, endocrine, and intermediary metabolic manifestations. Clinical diagnostic testing limited to analysis for common point mutations and deletions in his blood mitochondrial DNA (mtDNA) was not revealing. Skeletal muscle biopsy revealed abnormal mitochondrial morphology and immunostaining, mitochondrial proliferation, and mildly reduced respiratory chain complex I-III activity. Whole mitochondrial genome sequencing analysis in muscle identified an apparently homoplasmic, novel, m.12264C>T transition in the tRNA serine (AGY) gene. The pathogenicity of this mutation was supported by identification of it being present at low heteroplasmy load in his blood (34%) as well as in blood from his maternal grandmother (1%). The proband developed severe nuclear cataracts that proved to be homoplasmic for the pathogenic mtDNA m.12264C>T mutation. This case highlights the value of pursuing whole mitochondrial genome sequencing in symptomatic tissues in the diagnostic evaluation of suspected mitochondrial disease. Furthermore, it is the first report to directly implicate a single mtDNA mutation in the pathogenesis of ocular cataracts and clearly illustrates the important contribution of normal metabolic activity to the function of the ocular lens.
Collapse
Affiliation(s)
- Samantha A. Schrier
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
- Division of Child Development and Metabolic Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Emily Place
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
- Division of Child Development and Metabolic Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114
| | - Jack Q. Ji
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030
| | - Eric A. Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Boston, MA, 02114
- Department of Ophthalmology, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Jeffrey Golden
- Department of Pathology and Lab. Medicine, The Children’s Hospital of Philadelphia and University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104
| | - Mariarita Santi
- Department of Pathology and Lab. Medicine, The Children’s Hospital of Philadelphia and University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, 19104
| | - William Anninger
- Department of Ophthalmology, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Marni J. Falk
- Division of Human Genetics, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
- Division of Child Development and Metabolic Disease, Department of Pediatrics, The Children’s Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| |
Collapse
|
40
|
Arzuffi P, Lamperti C, Fernandez-Vizarra E, Tonin P, Morandi L, Zeviani M. Partial tandem duplication of mtDNA-tRNA(Phe) impairs mtDNA translation in late-onset mitochondrial myopathy. Neuromuscul Disord 2012; 22:50-5. [PMID: 22227277 PMCID: PMC3334271 DOI: 10.1016/j.nmd.2011.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/01/2011] [Accepted: 07/13/2011] [Indexed: 11/04/2022]
Abstract
An 80-year-old woman (PI) has been suffering of late onset progressive weakness and wasting of lower-limb muscles, accompanied by high creatine kinase levels in blood. A muscle biopsy, performed at 63 years, showed myopathic features with partial deficiency of cytochrome c oxidase. A second biopsy taken 7 years later confirmed the presence of a mitochondrial myopathy but also of vacuolar degeneration and other morphological features resembling inclusion body myopathy. Her 46-year-old daughter (PII) and 50-year-old son (PIII) are clinically normal, but the creatine kinase levels were moderately elevated and the EMG was consistently myopathic in both. Analysis of mitochondrial DNA sequence revealed in all three patients a novel, homoplasmic 15 bp tandem duplication adjacent to the 5′ end of mitochondrial tRNAPhe gene, encompassing the first 11 nucleotides of this gene and the four terminal nucleotides of the adjacent D-loop region. Both mutant fibroblasts and cybrids showed low oxygen consumption rate, reduced mitochondrial protein synthesis, and decreased mitochondrial tRNAPhe amount. These findings are consistent with an unconventional pathogenic mechanism causing the tandem duplication to interfere with the maturation of the mitochondrial tRNAPhe transcript.
Collapse
Affiliation(s)
- Paola Arzuffi
- Unit of Molecular Neurogenetics, The Foundation "Carlo Besta" Institute of Neurology-IRCCS, Milan, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Guja KE, Garcia-Diaz M. Hitting the brakes: termination of mitochondrial transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:939-47. [PMID: 22137970 DOI: 10.1016/j.bbagrm.2011.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 11/07/2011] [Accepted: 11/15/2011] [Indexed: 10/15/2022]
Abstract
Deficiencies in mitochondrial protein production are associated with human disease and aging. Given the central role of transcription in gene expression, recent years have seen a renewed interest in understanding the molecular mechanisms controlling this process. In this review, we have focused on the mostly uncharacterized process of transcriptional termination. We review how several recent breakthroughs have provided insight into our understanding of the termination mechanism, the protein factors that mediate termination, and the functional relevance of different termination events. Furthermore, the identification of termination defects resulting from a number of mtDNA mutations has led to the suggestion that this could be a common mechanism influencing pathogenesis in a number of mitochondrial diseases, highlighting the importance of understanding the processes that regulate transcription in human mitochondria. We discuss how these recent findings set the stage for future studies on this important regulatory mechanism. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Kip E Guja
- Medical Scientist Training Program, Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
42
|
Mitochondrial transcription: lessons from mouse models. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:961-9. [PMID: 22120174 DOI: 10.1016/j.bbagrm.2011.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/09/2011] [Accepted: 11/10/2011] [Indexed: 11/22/2022]
Abstract
Mammalian mitochondrial DNA (mtDNA) is a circular double-stranded DNA genome of ~16.5 kilobase pairs (kb) that encodes 13 catalytic proteins of the ATP-producing oxidative phosphorylation system (OXPHOS), and the rRNAs and tRNAs required for the translation of the mtDNA transcripts. All the components needed for transcription and replication of the mtDNA are, therefore, encoded in the nuclear genome, as are the remaining components of the OXPHOS system and the mitochondrial translation machinery. Regulation of mtDNA gene expression is very important for modulating the OXPHOS capacity in response to metabolic requirements and in pathological processes. The combination of in vitro and in vivo studies has allowed the identification of the core machinery required for basal mtDNA transcription in mammals and a few proteins that regulate mtDNA transcription. Specifically, the generation of knockout mouse strains in the last several years, has been key to understanding the basis of mtDNA transcription in vivo. However, it is well accepted that many components of the transcription machinery are still unknown and little is known about mtDNA gene expression regulation under different metabolic requirements or disease processes. In this review we will focus on how the creation of knockout mouse models and the study of their phenotypes have contributed to the understanding of mitochondrial transcription in mammals. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
|
43
|
Mitochondrial genome instability and ROS enhance intestinal tumorigenesis in APC(Min/+) mice. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:24-31. [PMID: 22056359 DOI: 10.1016/j.ajpath.2011.10.003] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2011] [Revised: 09/01/2011] [Accepted: 10/03/2011] [Indexed: 12/13/2022]
Abstract
Alterations in mitochondrial oxidative phosphorylation have long been documented in tumors. Other types of mitochondrial dysfunction, including altered reactive oxygen species (ROS) production and apoptosis, also can contribute to tumorigenesis and cancer phenotypes. Furthermore, mutation and altered amounts of mitochondrial DNA (mtDNA) have been observed in cancer cells. However, how mtDNA instability per se contributes to cancer remains largely undetermined. Mitochondrial transcription factor A (TFAM) is required for expression and maintenance of mtDNA. Tfam heterozygous knock-out (Tfam(+/-)) mice show mild mtDNA depletion, but have no overt phenotypes. We show that Tfam(+/-) mouse cells and tissues not only possess less mtDNA but also increased oxidative mtDNA damage. Crossing Tfam(+/-) mice to the adenomatous polyposis coli multiple intestinal neoplasia (APC(Min/+)) mouse cancer model revealed that mtDNA instability increases tumor number and growth in the small intestine. This was not a result of enhancement of Wnt/β-catenin signaling, but rather appears to involve a propensity for increased mitochondrial ROS production. Direct involvement of mitochondrial ROS in intestinal tumorigenesis was shown by crossing APC(Min/+) mice to those that have catalase targeted to mitochondria, which resulted in a significant reduction in tumorigenesis in the colon. Thus, mitochondrial genome instability and ROS enhance intestinal tumorigenesis and Tfam(+/-) mice are a relevant model to address the role of mtDNA instability in disease states in which mitochondrial dysfunction is implicated, such as cancer, neurodegeneration, and aging.
Collapse
|
44
|
Mitochondrial ribosomal protein L12 selectively associates with human mitochondrial RNA polymerase to activate transcription. Proc Natl Acad Sci U S A 2011; 108:17921-6. [PMID: 22003127 DOI: 10.1073/pnas.1108852108] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Basal transcription of human mitochondrial DNA (mtDNA) in vitro requires the single-subunit, bacteriophage-related RNA polymerase, POLRMT, and transcription factor h-mtTFB2. This two-component system is activated differentially at mtDNA promoters by human mitochondrial transcription factor A (h-mtTFA). Mitochondrial ribosomal protein L7/L12 (MRPL12) binds directly to POLRMT, but whether it does so in the context of the ribosome or as a "free" protein in the matrix is unknown. Furthermore, existing evidence that MRPL12 activates mitochondrial transcription derives from overexpression studies in cultured cells and transcription experiments using crude mitochondrial lysates, precluding direct effects of MRPL12 on transcription to be assigned. Here, we report that depletion of MRPL12 from HeLa cells by shRNA results in decreased steady-state levels of mitochondrial transcripts, which are not accounted for by changes in RNA stability. We also show that a significant "free" pool of MRPL12 exists in human mitochondria not associated with ribosomes. "Free" MRPL12 binds selectively to POLRMT in vivo in a complex distinct from those containing h-mtTFB2. Finally, using a fully recombinant mitochondrial transcription system, we demonstrate that MRPL12 stimulates promoter-dependent and promoter-independent transcription directly in vitro. Based on these results, we propose that, when not associated with ribosomes, MRPL12 has a second function in transcription, perhaps acting to facilitate the transition from initiation to elongation. We speculate that this is one mechanism to coordinate mitochondrial ribosome biogenesis and transcription in human mitochondria, where transcription of rRNAs from the mtDNA presumably needs to be adjusted in accordance with the rate of import and assembly of the nucleus-encoded MRPs into ribosomes.
Collapse
|
45
|
Chatenay-Lapointe M, Shadel GS. Repression of mitochondrial translation, respiration and a metabolic cycle-regulated gene, SLF1, by the yeast Pumilio-family protein Puf3p. PLoS One 2011; 6:e20441. [PMID: 21655263 PMCID: PMC3105058 DOI: 10.1371/journal.pone.0020441] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/26/2011] [Indexed: 11/25/2022] Open
Abstract
Synthesis and assembly of the mitochondrial oxidative phosphorylation (OXPHOS) system requires genes located both in the nuclear and mitochondrial genomes, but how gene expression is coordinated between these two compartments is not fully understood. One level of control is through regulated expression mitochondrial ribosomal proteins and other factors required for mitochondrial translation and OXPHOS assembly, which are all products of nuclear genes that are subsequently imported into mitochondria. Interestingly, this cadre of genes in budding yeast has in common a 3′-UTR element that is bound by the Pumilio family protein, Puf3p, and is coordinately regulated under many conditions, including during the yeast metabolic cycle. Multiple functions have been assigned to Puf3p, including promoting mRNA degradation, localizing nucleus-encoded mitochondrial transcripts to the outer mitochondrial membrane, and facilitating mitochondria-cytoskeletal interactions and motility. Here we show that Puf3p has a general repressive effect on mitochondrial OXPHOS abundance, translation, and respiration that does not involve changes in overall mitochondrial biogenesis and largely independent of TORC1-mitochondrial signaling. We also identified the cytoplasmic translation factor Slf1p as yeast metabolic cycle-regulated gene that is repressed by Puf3p at the post-transcriptional level and promotes respiration and extension of yeast chronological life span when over-expressed. Altogether, these results should facilitate future studies on which of the many functions of Puf3p is most relevant for regulating mitochondrial gene expression and the role of nuclear-mitochondrial communication in aging and longevity.
Collapse
Affiliation(s)
- Marc Chatenay-Lapointe
- Department of Pathology, Yale University School of Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, Yale University, New Haven, Connecticut, United States of America
| | - Gerald S. Shadel
- Department of Pathology, Yale University School of Medicine, Yale University, New Haven, Connecticut, United States of America
- Department of Genetics, Yale University School of Medicine, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
46
|
Abstract
The small mammalian mitochondrial DNA (mtDNA) is very gene dense and encodes factors critical for oxidative phosphorylation. Mutations of mtDNA cause a variety of human mitochondrial diseases and are also heavily implicated in age-associated disease and aging. There has been considerable progress in our understanding of the role for mtDNA mutations in human pathology during the last two decades, but important mechanisms in mitochondrial genetics remain to be explained at the molecular level. In addition, mounting evidence suggests that most mtDNA mutations may be generated by replication errors and not by accumulated damage.
Collapse
Affiliation(s)
- Chan Bae Park
- Institute for Medical Sciences, Ajou University School of Medicine, Suwon 443-721, Korea
| | | |
Collapse
|
47
|
Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J 2011; 433:505-14. [PMID: 21044047 DOI: 10.1042/bj20100791] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Acetylation has recently emerged as an important mechanism for controlling a broad array of proteins mediating cellular adaptation to metabolic fuels. Acetylation is governed, in part, by SIRTs (sirtuins), class III NAD(+)-dependent deacetylases that regulate lipid and glucose metabolism in liver during fasting and aging. However, the role of acetylation or SIRTs in pathogenic hepatic fuel metabolism under nutrient excess is unknown. In the present study, we isolated acetylated proteins from total liver proteome and observed 193 preferentially acetylated proteins in mice fed on an HFD (high-fat diet) compared with controls, including 11 proteins not previously identified in acetylation studies. Exposure to the HFD led to hyperacetylation of proteins involved in gluconeogenesis, mitochondrial oxidative metabolism, methionine metabolism, liver injury and the ER (endoplasmic reticulum) stress response. Livers of mice fed on the HFD had reduced SIRT3 activity, a 3-fold decrease in hepatic NAD(+) levels and increased mitochondrial protein oxidation. In contrast, neither SIRT1 nor histone acetyltransferase activities were altered, implicating SIRT3 as a dominant factor contributing to the observed phenotype. In Sirt3⁻(/)⁻ mice, exposure to the HFD further increased the acetylation status of liver proteins and reduced the activity of respiratory complexes III and IV. This is the first study to identify acetylation patterns in liver proteins of HFD-fed mice. Our results suggest that SIRT3 is an integral regulator of mitochondrial function and its depletion results in hyperacetylation of critical mitochondrial proteins that protect against hepatic lipotoxicity under conditions of nutrient excess.
Collapse
|
48
|
Kloss-Brandstätter A, Schäfer G, Erhart G, Hüttenhofer A, Coassin S, Seifarth C, Summerer M, Bektic J, Klocker H, Kronenberg F. Somatic mutations throughout the entire mitochondrial genome are associated with elevated PSA levels in prostate cancer patients. Am J Hum Genet 2010; 87:802-12. [PMID: 21129724 DOI: 10.1016/j.ajhg.2010.11.001] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 10/15/2010] [Accepted: 11/02/2010] [Indexed: 12/16/2022] Open
Abstract
The genetic etiology of prostate cancer, the most common form of male cancer in western countries, is complex and the interplay of disease genes with environmental factors is far from being understood. Studies on somatic mitochondrial DNA (mtDNA) mutations have become an important aspect of cancer research because these mutations might have functional consequences and/or might serve as biosensors for tumor detection and progression. We sequenced the entire mitochondrial genome (16,569 bp) from 30 prospectively collected pairs of macrodissected cancerous and benign cells from prostate cancer patients and compared their genetic variability. Given recent concerns regarding the authenticity of newly discovered mtDNA mutations, we implemented a high-quality procedure for mtDNA whole-genome sequencing. In addition, the mitochondrial genes MT-CO2, MT-CO3, MT-ATP6, and MT-ND6 were sequenced in further 35 paired samples from prostate cancer patients. We identified a total of 41 somatic mutations in 22 out of 30 patients: the majority of these mutations have not previously been observed in the human phylogeny. The presence of somatic mutations in transfer RNAs (tRNAs) was found to be associated with elevated PSA levels (14.25 ± 5.44 versus 7.15 ± 4.32 ng/ml; p = 0.004). The level and degree of heteroplasmy increased with increasing tumor activity. In summary, somatic mutations in the mitochondrial genome are frequent events in prostate cancer. Mutations mapping to mitochondrial tRNAs, ribosomal RNAs, and protein coding genes might impair processes that occur within the mitochondrial compartment (e.g., transcription, RNA processing, and translation) and might finally affect oxidative phosphorylation.
Collapse
Affiliation(s)
- Anita Kloss-Brandstätter
- Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|