1
|
Gupta SV, Campos L, Schmidt KH. Mitochondrial superoxide dismutase Sod2 suppresses nuclear genome instability during oxidative stress. Genetics 2023; 225:iyad147. [PMID: 37638880 PMCID: PMC10550321 DOI: 10.1093/genetics/iyad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Oxidative stress can damage DNA and thereby contribute to genome instability. To avoid an imbalance or overaccumulation of reactive oxygen species (ROS), cells are equipped with antioxidant enzymes that scavenge excess ROS. Cells lacking the RecQ-family DNA helicase Sgs1, which contributes to homology-dependent DNA break repair and chromosome stability, are known to accumulate ROS, but the origin and consequences of this oxidative stress phenotype are not fully understood. Here, we show that the sgs1 mutant exhibits elevated mitochondrial superoxide, increased mitochondrial mass, and accumulation of recombinogenic DNA lesions that can be suppressed by antioxidants. Increased mitochondrial mass in the sgs1Δ mutant is accompanied by increased mitochondrial branching, which was also inducible in wildtype cells by replication stress. Superoxide dismutase Sod2 genetically interacts with Sgs1 in the suppression of nuclear chromosomal rearrangements under paraquat (PQ)-induced oxidative stress. PQ-induced chromosome rearrangements in the absence of Sod2 are promoted by Rad51 recombinase and the polymerase subunit Pol32. Finally, the dependence of chromosomal rearrangements on the Rev1/Pol ζ mutasome suggests that under oxidative stress successful DNA synthesis during DNA break repair depends on translesion DNA synthesis.
Collapse
Affiliation(s)
- Sonia Vidushi Gupta
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Lillian Campos
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
| | - Kristina Hildegard Schmidt
- Department of Molecular Biosciences, University of South Florida, 4202 East Fowler Avenue, Tampa, FL 33620, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA
| |
Collapse
|
2
|
Sun C, Zhu L, Qin H, Su H, Zhang J, Wang S, Xu X, Zhao Z, Mao G, Chen J. Inhibition of mitochondrial calcium uptake by Ru360 enhances the effect of 1800 MHz radio-frequency electromagnetic fields on DNA damage. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115472. [PMID: 37716072 DOI: 10.1016/j.ecoenv.2023.115472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
Today, the existence of radio-frequency electromagnetic fields (RF-EMF) emitted from cell phones, wireless routers, base stations, and other sources are everywhere around our living environment, and the dose is increasing. RF-EMF have been reported to be cytotoxic and supposed to be a risk factor for various human diseases, thus, more attention is necessary. In recent years, interfere with mitochondrial calcium uptake by using mitochondrial calcium uniporter (MCU) inhibitor were suggested to be potential clinical treatment in mitochondrial calcium overload diseases, like neurodegeneration, ischemia/reperfusion injury, and cancer, but whether this approach increases the health risk of RF-EMF exposure are unknown. To address our concern, we did a preliminary study to determine whether inhibition of MCU will increase the genotoxicity of RF-EMF exposure in cells, and found that short-time (15 min) exposure to 1800 MHz RF-EMF induced significant DNA damage and cell apoptosis in mouse embryonic fibroblasts (MEFs) treated with Ruthenium 360 (Ru360), a specific inhibitor of MCU, but no significant effects on cell cycle, cell proliferation, or cell viability were observed. In conclusion, our results indicated that inhibiting MCU increases the genotoxicity of RF-EMF exposure, and more attention needs to be paid to the possible health impact of RF-EMF exposure under these treatments.
Collapse
Affiliation(s)
- Chuan Sun
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China.
| | - Longtao Zhu
- Bioelectromagnetics Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Houbing Qin
- Department of Respiratory Medicine, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Huili Su
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Jing Zhang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Sanying Wang
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Xiaogang Xu
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Zhenlei Zhao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China
| | - Genxiang Mao
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China.
| | - Jun Chen
- Zhejiang Provincial Key Lab of Geriatrics & Geriatrics Institute of Zhejiang Province, Department of Geriatrics, Zhejiang Hospital, Hangzhou, China.
| |
Collapse
|
3
|
Hird C, Franklin CE, Cramp RL. Temperature causes species-specific responses to UV-induced DNA damage in amphibian larvae. Biol Lett 2022; 18:20220358. [PMID: 36475948 PMCID: PMC9554713 DOI: 10.1098/rsbl.2022.0358] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Anthropogenic ozone depletion has led to a 2-5% increase in ultraviolet B radiation (UVBR) levels reaching the earth's surface. Exposure to UVBR causes harmful DNA damage in amphibians, but this is minimized by DNA repair enzymes such as thermally sensitive cyclobutane pyrimidine dimer (CPD)-photolyase, with cool temperatures slowing repair rates. It is unknown whether amphibian species differ in the repair response to a given dose of UVBR across temperatures. We reared larvae of three species (Limnodynastes peronii, Limnodynastes tasmaniensis and Platyplectrum ornatum) at 25°C and acutely exposed them to 80 µW cm-2 UVBR for 2 h at either 20°C or 30°C. UVBR-mediated DNA damage was measured as larvae repaired damage in photoreactive light at their exposure temperatures. Cool temperatures increased DNA damage in two species and slowed DNA repair rate in P. ornatum. The magnitude of DNA damage incurred from UVBR was species-specific. Platyplectrum ornatum had the lowest CPDs and DNA repair rates, and the depressive effects of low temperature on photorepair were greater in L. tasmaniensis. Considering the susceptibility of most aquatic organisms to UVBR, this research highlighted a need to consider the complexity of species-specific physiology when forecasting the influence of changing UVBR and temperature in aquatic ecosystems.
Collapse
Affiliation(s)
- Coen Hird
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Craig E. Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Rebecca L. Cramp
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
4
|
Zeng Z, Zeng X, Guo Y, Wu Z, Cai Z, Pan D. Determining the Role of UTP-Glucose-1-Phosphate Uridylyltransferase (GalU) in Improving the Resistance of Lactobacillus acidophilus NCFM to Freeze-Drying. Foods 2022; 11:foods11121719. [PMID: 35741917 PMCID: PMC9223153 DOI: 10.3390/foods11121719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Lactobacillus acidophilus NCFM is widely used in the fermentation industry; using it as a freeze-dried powder can greatly reduce the costs associated with packaging and transportation, and even prolong the storage period. Previously published research has reported that the expression of galU (EC: 2.7.7.9) is significantly increased as a result of freezing and drying. Herein, we aimed to explore how galU plays an important role in improving the resistance of Lactobacillus acidophilus NCFM to freeze-drying. For this study, galU was first knocked out and then re-expressed in L. acidophilus NCFM to functionally characterize its role in the pertinent metabolic pathways. The knockout strain ΔgalU showed lactose/galactose deficiency and displayed irregular cell morphology, shortened cell length, thin and rough capsules, and abnormal cell division, and the progeny could not be separated. In the re-expression strain pgalU, these inhibited pathways were restored; moreover, the pgalU cells showed a strengthened cell wall and capsule, which enhanced their resistance to adverse environments. The pgalU cells showed GalU activity that was 229% higher than that shown by the wild-type strain, and the freeze-drying survival rate was 84%, this being 4.7 times higher than that of the wild-type strain. To summarize, expression of the galU gene can significantly enhance gene expression in galactose metabolic pathway and make the strain form a stronger cell wall and cell capsule and enhance the resistance of the bacteria to an adverse external environment, to improve the freeze-drying survival rate of L. acidophilus NCFM.
Collapse
Affiliation(s)
- Zhidan Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Xiaoqun Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
- Correspondence:
| | - Yuxing Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210097, China
| | - Zhen Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Zhendong Cai
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo 315211, China; (Z.Z.); (Y.G.); (Z.W.); (Z.C.); (D.P.)
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315800, China
| |
Collapse
|
5
|
Chen J, Sridharan D, Cross C, Pluth J. Cellular DNA effects of radiation and cancer risk assessment in cells with mitochondrial defects. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2022. [DOI: 10.1016/j.jrras.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Kaminaga K, Hamada R, Usami N, Suzuki K, Yokoya A. Targeted Nuclear Irradiation with an X-Ray Microbeam Enhances Total JC-1 Fluorescence from Mitochondria. Radiat Res 2020; 194:511-518. [PMID: 33045074 DOI: 10.1667/rr15110.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/02/2020] [Indexed: 11/03/2022]
Abstract
Several studies have demonstrated that mitochondria are critically involved in the pleiotropic manifestation of radiation effects. While conventional whole-cell irradiation compromises the function of mitochondria, the effects of subcellular targeted radiation are not yet fully understood. In this study, normal human diploid cells with cell-cycle indicators were irradiated using a synchrotron X-ray microbeam, and mitochondrial membrane potential was quantified by JC-1 over the 72-h period postirradiation. Cytoplasmic irradiation was observed to temporarily enlarge the mitochondrial area with high membrane potential, while the total mitochondrial area did not change significantly. Unexpectedly, cell-nucleus irradiation promoted a similar increase not only in the mitochondrial areas with high membrane potential, but also in those with low membrane potential, which gave rise to the apparent increase in the total mitochondrial area. Augmentation of the mitochondrial area with low membrane potential was predominantly observed among G1 cells, suggesting that nucleus irradiation during the G1 phase regulated the mitochondrial dynamics of the cytoplasm, presumably through DNA damage in the nucleus.
Collapse
Affiliation(s)
- Kiichi Kaminaga
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Sciences and Technology, Tokai, Ibaraki 319-1106, Japan
| | - Ryo Hamada
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Sciences and Technology, Tokai, Ibaraki 319-1106, Japan
| | - Noriko Usami
- Photon Factory, Institute of Material Structure Sciences, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Akinari Yokoya
- Graduate School of Science and Engineering, Ibaraki University, Mito, Ibaraki 310-8512, Japan.,Institute for Quantum Life Science, National Institutes for Quantum and Radiological Sciences and Technology, Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
7
|
Dan X, Babbar M, Moore A, Wechter N, Tian J, Mohanty J, Croteau DL, Bohr VA. DNA damage invokes mitophagy through a pathway involving Spata18. Nucleic Acids Res 2020; 48:6611-6623. [PMID: 32453416 PMCID: PMC7337932 DOI: 10.1093/nar/gkaa393] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are vital for cellular energy supply and intracellular signaling after stress. Here, we aimed to investigate how mitochondria respond to acute DNA damage with respect to mitophagy, which is an important mitochondrial quality control process. Our results show that mitophagy increases after DNA damage in primary fibroblasts, murine neurons and Caenorhabditis elegans neurons. Our results indicate that modulation of mitophagy after DNA damage is independent of the type of DNA damage stimuli used and that the protein Spata18 is an important player in this process. Knockdown of Spata18 suppresses mitophagy, disturbs mitochondrial Ca2+ homeostasis, affects ATP production, and attenuates DNA repair. Importantly, mitophagy after DNA damage is a vital cellular response to maintain mitochondrial functions and DNA repair.
Collapse
Affiliation(s)
- Xiuli Dan
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Mansi Babbar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Anthony Moore
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Noah Wechter
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Jingyan Tian
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Joy G Mohanty
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
- Danish Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
8
|
Xie B, Wang S, Jiang N, Li JJ. Cyclin B1/CDK1-regulated mitochondrial bioenergetics in cell cycle progression and tumor resistance. Cancer Lett 2018; 443:56-66. [PMID: 30481564 DOI: 10.1016/j.canlet.2018.11.019] [Citation(s) in RCA: 142] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 10/27/2018] [Accepted: 11/11/2018] [Indexed: 02/08/2023]
Abstract
A mammalian cell houses two genomes located separately in the nucleus and mitochondria. During evolution, communications and adaptations between these two genomes occur extensively to achieve and sustain homeostasis for cellular functions and regeneration. Mitochondria provide the major cellular energy and contribute to gene regulation in the nucleus, whereas more than 98% of mitochondrial proteins are encoded by the nuclear genome. Such two-way signaling traffic presents an orchestrated dynamic between energy metabolism and consumption in cells. Recent reports have elucidated the way how mitochondrial bioenergetics synchronizes with the energy consumption for cell cycle progression mediated by cyclin B1/CDK1 as the communicator. This review is to recapitulate cyclin B1/CDK1 mediated mitochondrial activities in cell cycle progression and stress response as well as its potential link to reprogram energy metabolism in tumor adaptive resistance. Cyclin B1/CDK1-mediated mitochondrial bioenergetics is applied as an example to show how mitochondria could timely sense the cellular fuel demand and then coordinate ATP output. Such nucleus-mitochondria oscillation may play key roles in the flexible bioenergetics required for tumor cell survival and compromising the efficacy of anti-cancer therapy. Further deciphering the cyclin B1/CDK1-controlled mitochondrial metabolism may invent effect targets to treat resistant cancers.
Collapse
Affiliation(s)
- Bowen Xie
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Shuangyan Wang
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Nian Jiang
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA
| | - Jian Jian Li
- Department of Radiation Oncology, School of Medicine, University of California at Davis, Sacramento, CA, USA.
| |
Collapse
|
9
|
Wei Y, Chen L, Xu H, Xie C, Zhou Y, Zhou F. Mitochondrial Dysfunctions Regulated Radioresistance through Mitochondria-to-Nucleus Retrograde Signaling Pathway of NF-κB/PI3K/AKT2/mTOR. Radiat Res 2018; 190:204-215. [PMID: 29863983 DOI: 10.1667/rr15021.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
We investigated the relationship between significantly different genes of the mitochondria-to-nucleus retrograde signaling pathway (RTG) in H1299 ρ0 cells (mtDNA depleted cell) and compared their radiosensitivity to that of parental ρ+ cells, to determine the possible intervention targets of radiosensitization. ρ0 cells were depleted of mitochondrial DNA by chronic culturing in ethidium bromide at low concentration. Radiosensitivity was analyzed using clonogenic assay. Western blot was used to analyze the cell cycle-related proteins, serine/threonine kinase ataxia telangiectasia mutant (ATM), ataxia telangiectasia and Rad3-related protein (ATR) and cyclin B1 (CCNB1). The γ-H2AX foci were detected using confocal fluorescence microscopy. RNA samples were hybridized using the Agilent human genome expression microarray. The Kyoto Encyclopedia of Genes and Genomes (KEGG) database was used for Gene Ontology (GO) Consortium and pathway annotations of differentially expressed genes, respectively. The H1299 ρ0 cells were found to be more radioresistant than ρ+ cells. The ATP production of H1299 ρ0 cells was lower than that of the ρ+ cells before or after irradiation. Both H1299 ρ0 and ρ+ cells had higher ROS levels after irradiation, however, the radiation-induced ROS production in ρ0 cells was significantly lower than in ρ+ cells. In addition, the percentage of apoptosis in H1299 ρ0 cells was lower than in ρ+ cells after 6 Gy irradiation. As for the cell cycle and DNA damage response-related proteins ATM, ATR and CCNB1, the expression levels in ρ0 cells were significantly higher than in ρ+ cells, and there were less γ-H2AX foci in the ρ0 than ρ+ cells after irradiation. Furthermore, the results of the human genome expression microarray demonstrated that the phosphorylated protein levels of the NF-κB/PI3K/AKT2/mTOR signaling pathway were increased after 6 Gy irradiation and were decreased after treatment with the AKT2-specific inhibitor MK-2206 combined with radiation in H1299 ρ0 cells. MK-2206 treatment also led to an increase in pro-apoptotic proteins. In conclusion, these results demonstrate that mtDNA depletion might activate the mitochondria-to-nucleus retrograde signaling pathway of NF-κB/PI3K/AKT2/mTOR and induce radioresistance in H1299 ρ0 cells by evoking mitochondrial dysfunctions.
Collapse
Affiliation(s)
- Yuehua Wei
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,d Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lulu Chen
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China.,d Cancer Center, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Hui Xu
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Conghua Xie
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Yunfeng Zhou
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| | - Fuxiang Zhou
- a Department of Radiation and Medical Oncology.,b Hubei Key Laboratory of Tumor Biological Behaviors.,c Hubei Clinical Cancer Study Centre, Zhongnan Hospital, Wuhan University, Wuhan, 430071, China
| |
Collapse
|
10
|
Fu S, Jin L, Gong T, Pan S, Zheng S, Zhang X, Yang T, Sun Y, Wang Y, Guo J, Hui B, Zhang X. Effect of sinomenine hydrochloride on radiosensitivity of esophageal squamous cell carcinoma cells. Oncol Rep 2018; 39:1601-1608. [PMID: 29393484 PMCID: PMC5868396 DOI: 10.3892/or.2018.6228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/17/2018] [Indexed: 01/08/2023] Open
Abstract
Radiation therapy is one of the most important treatments for unresectable and locally advanced esophageal squamous cell carcinoma (ESCC), however, the response to radiotherapy is sometimes limited by the development of radioresistance. Sinomenine hydrochloride (SH) has anticancer activity, but its effect on the radiosensitivity of ESCC is unclear. We determined the effect of SH on the radiosensitivity of ESCC cells and elucidated its potential radiosensitization mechanisms in vitro and in vivo. ESCC cells were subjected to SH and radiation, both separately and in combination. Untreated cells served as controls. The CCK-8 assay was used to evaluate cell proliferation, and the clonogenic assay to estimate radiosensitization. Flow cytometry was used to investigate cell cycle phases and cell apoptosis. Bcl-2, Bax, cyclin B1, CDK1, Ku86, Ku70, and Rad51 expression was evaluated using western blotting. In vivo, tumor xenografts were created using BALB/c nude mice. Tumor-growth inhibition was recorded, and Ki-67 and Bax expression in the tumor tissues was assessed using immunohistochemistry. SH inhibited ESCC cell growth and markedly increased their radiosensitivity by inducing G2/M phase arrest. SH combined with radiation therapy significantly increased ESCC cell apoptosis. The molecular mechanism by which SH enhanced radiosensitivity of ESCC cells was related to Bcl-2, cyclin B1, CDK1, Ku86, Ku70, and Rad51 downregulation and Bax protein expression upregulation. SH combined with radiation considerably delayed the growth of tumor xenografts in vivo. Immunohistochemical analysis showed that in the SH combined with radiation group, the expression of Bax was significantly higher while that of Ki-67 was lower than the expressions in the control groups. Taken together, our findings showed that SH could improve the sensitivity of radiation in ESCC cells by inducing G2/M phase arrest, promoting radiation-induced apoptosis and inhibiting DSB-repair pathways. SH appears to be a prospective radiosensitizer for improving the efficacy of radiotherapy for ESCC.
Collapse
Affiliation(s)
- Shenbo Fu
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Long Jin
- Department of Radiation Oncology, Shaanxi Province People's Hospital, Xi'an, Shaanxi 710068, P.R. China
| | - Tuotuo Gong
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shupei Pan
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Shuyu Zheng
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xuanwei Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Tian Yang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yuchen Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Ya Wang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jia Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Beina Hui
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xiaozhi Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
11
|
Djavid GE, Bigdeli B, Goliaei B, Nikoofar A, Hamblin MR. Photobiomodulation leads to enhanced radiosensitivity through induction of apoptosis and autophagy in human cervical cancer cells. JOURNAL OF BIOPHOTONICS 2017; 10:1732-1742. [PMID: 28464474 PMCID: PMC5668202 DOI: 10.1002/jbio.201700004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/05/2017] [Accepted: 02/15/2017] [Indexed: 06/07/2023]
Abstract
The radiomodulatory effect of photobiomodulation (PBM) has recently been studied in cancer cells. The aim of this study was to investigate cellular mechanisms involved in the X-ray radiosensitivity of HeLa cells pre-exposed to PBM. HeLa cells were irradiated with 685 nm laser at different energy densities prior to X-ray ionizing radiation. After irradiation, clonogenic cell survival, cell death due to apoptosis and autophagy were determined. Levels of intracellular reactive oxygen species (ROS), DNA damage and, cell cycle distribution after PBM were measured. PBM at different energy densities (5-20 J/cm2 ) was not cytotoxic. However, HeLa cells pre-exposed to 20 J/cm2 showed enhanced inhibition of colony formation following ionizing radiation. Enhanced radiosensitivity was due to increased oxidative stress, DNA damage, and radiation-induced apoptosis and autophagy. These results suggest that 685 nm PBM at a higher energy density could possibly be a promising radiosensitizing agent in cervical cancer, to decrease the radiation dose delivered, and therefore prevent the side-effects that are associated with cancer radiotherapy.
Collapse
Affiliation(s)
- Gholamreza Esmaeeli Djavid
- Medical Laser Research Center, Academic Center for Education, Culture, and Research (ACECR), Tehran, Iran
| | - Bahareh Bigdeli
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Bahram Goliaei
- Laboratory of Biophysics and Molecular Biology, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Alireza Nikoofar
- Radiotherapy Department, Firoozgar Hospital, Iran University of Medical sciences. Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USAHarvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
12
|
van Gisbergen MW, Voets AM, Biemans R, Hoffmann RF, Drittij-Reijnders MJ, Haenen GRMM, Heijink IH, Rouschop KMA, Dubois LJ, Lambin P. Distinct radiation responses after in vitro mtDNA depletion are potentially related to oxidative stress. PLoS One 2017; 12:e0182508. [PMID: 28771582 PMCID: PMC5542624 DOI: 10.1371/journal.pone.0182508] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/19/2017] [Indexed: 01/29/2023] Open
Abstract
Several clinically used drugs are mitotoxic causing mitochondrial DNA (mtDNA) variations, and thereby influence cancer treatment response. We hypothesized that radiation responsiveness will be enhanced in cellular models with decreased mtDNA content, attributed to altered reactive oxygen species (ROS) production and antioxidant capacity. For this purpose BEAS-2B, A549, and 143B cell lines were depleted from their mtDNA (ρ0). Overall survival after irradiation was increased (p<0.001) for BEAS-2B ρ0 cells, while decreased for both tumor ρ0 lines (p<0.05). In agreement, increased residual DNA damage was observed after mtDNA depletion for A549 and 143B cells. Intrinsic radiosensitivity (surviving fraction at 2Gy) was not influenced. We investigated whether ROS levels, oxidative stress and/or antioxidant responses were responsible for altered radiation responses. Baseline ROS formation was similar between BEAS-2B parental and ρ0 cells, while reduced in A549 and 143B ρ0 cells, compared to their parental counterparts. After irradiation, ROS levels significantly increased for all parental cell lines, while levels for ρ0 cells remained unchanged. In order to investigate the presence of oxidative stress upon irradiation reduced glutathione: oxidized glutathione (GSH:GSSG) ratios were determined. Irradiation reduced GSH:GSSG ratios for BEAS-2B parental and 143B ρ0, while for A549 this ratio remained equal. Additionally, changes in antioxidant responses were observed. Our results indicate that mtDNA depletion results in varying radiation responses potentially involving variations in cellular ROS and antioxidant defence mechanisms. We therefore suggest when mitotoxic drugs are combined with radiation, in particular at high dose per fraction, the effect of these drugs on mtDNA copy number should be explored.
Collapse
Affiliation(s)
- Marike W. van Gisbergen
- Department of Radiation Oncology (MaastRO Lab), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
- * E-mail:
| | - An M. Voets
- Department of Radiation Oncology (MaastRO Lab), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Clinical Genomics, GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Rianne Biemans
- Department of Radiation Oncology (MaastRO Lab), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Roland F. Hoffmann
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Marie-José Drittij-Reijnders
- Department of Toxicology, NUTRIM - School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Guido R. M. M. Haenen
- Department of Toxicology, NUTRIM - School for Nutrition, Toxicology, and Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Irene H. Heijink
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Pulmonology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, Groningen, The Netherlands
| | - Kasper M. A. Rouschop
- Department of Radiation Oncology (MaastRO Lab), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ludwig J. Dubois
- Department of Radiation Oncology (MaastRO Lab), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Philippe Lambin
- Department of Radiation Oncology (MaastRO Lab), GROW – School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
13
|
Qin L, Fan M, Candas D, Jiang G, Papadopoulos S, Tian L, Woloschak G, Grdina DJ, Li JJ. CDK1 Enhances Mitochondrial Bioenergetics for Radiation-Induced DNA Repair. Cell Rep 2015; 13:2056-63. [PMID: 26670043 DOI: 10.1016/j.celrep.2015.11.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/04/2015] [Accepted: 11/02/2015] [Indexed: 01/01/2023] Open
Abstract
Nuclear DNA repair capacity is a critical determinant of cell fate under genotoxic stress conditions. DNA repair is a well-defined energy-consuming process. However, it is unclear how DNA repair is fueled and whether mitochondrial energy production contributes to nuclear DNA repair. Here, we report a dynamic enhancement of oxygen consumption and mitochondrial ATP generation in irradiated normal cells, paralleled with increased mitochondrial relocation of the cell-cycle kinase CDK1 and nuclear DNA repair. The basal and radiation-induced mitochondrial ATP generation is reduced significantly in cells harboring CDK1 phosphorylation-deficient mutant complex I subunits. Similarly, mitochondrial ATP generation and nuclear DNA repair are also compromised severely in cells harboring mitochondrially targeted, kinase-deficient CDK1. These results demonstrate a mechanism governing the communication between mitochondria and the nucleus by which CDK1 boosts mitochondrial bioenergetics to meet the increased cellular fuel demand for DNA repair and cell survival under genotoxic stress conditions.
Collapse
Affiliation(s)
- Lili Qin
- Department of Radiation Oncology, National Cancer Institute-Designated Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Ming Fan
- Department of Radiation Oncology, National Cancer Institute-Designated Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Demet Candas
- Department of Radiation Oncology, National Cancer Institute-Designated Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA
| | - Guochun Jiang
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA 95616, USA
| | - Stelios Papadopoulos
- Departments of Biochemistry and Molecular Medicine and Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Lin Tian
- Departments of Biochemistry and Molecular Medicine and Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Davis, CA 95616, USA
| | - Gayle Woloschak
- Department of Radiation Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - David J Grdina
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL 60637, USA
| | - Jian Jian Li
- Department of Radiation Oncology, National Cancer Institute-Designated Comprehensive Cancer Center, University of California Davis School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
14
|
How do changes in the mtDNA and mitochondrial dysfunction influence cancer and cancer therapy? Challenges, opportunities and models. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 764:16-30. [DOI: 10.1016/j.mrrev.2015.01.001] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 01/11/2015] [Accepted: 01/12/2015] [Indexed: 12/28/2022]
|
15
|
X-ray-induced changes in the expression of inflammation-related genes in human peripheral blood. Int J Mol Sci 2014; 15:19516-34. [PMID: 25350114 PMCID: PMC4264126 DOI: 10.3390/ijms151119516] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 10/16/2014] [Accepted: 10/20/2014] [Indexed: 01/28/2023] Open
Abstract
Using quantitative real-time polymerase chain reaction (PCR) array, we explored and compared the expression changes of inflammation-related genes in human peripheral blood irradiated with 0.5, 3, and 10 Gy doses of X-rays 24 h after exposure. Results indicated that the expression of 62 out of 84 genes was significantly altered after X-ray radiation. Among these 62 genes, 35 (such as TNFSF4) are known to be associated with radiation response, but others are novel. At a low radiation dose (0.5 Gy), 9 genes were up-regulated and 19 were down-regulated. With further increased dose to 3 Gy, 8 unique genes were up-regulated and 19 genes were down-regulated. We also identified 48 different genes that were differentially expressed significantly after 10 Gy of irradiation, and among these transcripts, up-regulated genes accounted for only one-third (16 genes) of the total. Of the 62 genes, 31 were significantly altered only at a specific dose, and a total of 10 genes were significantly expressed at all 3 doses. The dose- and time-dependent expression of CCL2 was confirmed by quantitative real-time reverse-transcription PCR. A number of candidate genes reported herein may be useful molecular biomarkers of radiation exposure in human peripheral blood.
Collapse
|
16
|
Martin NT, Nakamura K, Paila U, Woo J, Brown C, Wright JA, Teraoka SN, Haghayegh S, McCurdy D, Schneider M, Hu H, Quinlan AR, Gatti RA, Concannon P. Homozygous mutation of MTPAP causes cellular radiosensitivity and persistent DNA double-strand breaks. Cell Death Dis 2014; 5:e1130. [PMID: 24651433 PMCID: PMC3973239 DOI: 10.1038/cddis.2014.99] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/29/2014] [Accepted: 02/03/2014] [Indexed: 02/03/2023]
Abstract
The study of rare human syndromes characterized by radiosensitivity has been instrumental in identifying novel proteins and pathways involved in DNA damage responses to ionizing radiation. In the present study, a mutation in mitochondrial poly-A-polymerase (MTPAP), not previously recognized for its role in the DNA damage response, was identified by exome sequencing and subsequently associated with cellular radiosensitivity. Cell lines derived from two patients with the homozygous MTPAP missense mutation were radiosensitive, and this radiosensitivity could be abrogated by transfection of wild-type mtPAP cDNA into mtPAP-deficient cell lines. Further analysis of the cellular phenotype revealed delayed DNA repair, increased levels of DNA double-strand breaks, increased reactive oxygen species (ROS), and increased cell death after irradiation (IR). Pre-IR treatment of cells with the potent anti-oxidants, α-lipoic acid and n-acetylcysteine, was sufficient to abrogate the DNA repair and clonogenic survival defects. Our results firmly establish that mutation of the MTPAP gene results in a cellular phenotype of increased DNA damage, reduced repair kinetics, increased cell death by apoptosis, and reduced clonogenic survival after exposure to ionizing radiation, suggesting a pathogenesis that involves the disruption of ROS homeostasis.
Collapse
Affiliation(s)
- N T Martin
- 1] UCLA Department of Pathology and Laboratory Medicine, MacDonald Research Laboratories, Los Angeles, CA, USA [2] UCLA Biomedical Physics Interdepartmental Graduate Program, Los Angeles, CA, USA
| | - K Nakamura
- UCLA Department of Pathology and Laboratory Medicine, MacDonald Research Laboratories, Los Angeles, CA, USA
| | - U Paila
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - J Woo
- UCLA Department of Pathology and Laboratory Medicine, MacDonald Research Laboratories, Los Angeles, CA, USA
| | - C Brown
- UCLA Department of Pathology and Laboratory Medicine, MacDonald Research Laboratories, Los Angeles, CA, USA
| | - J A Wright
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - S N Teraoka
- Genetics Institute, University of Florida, Gainesville, FL, USA
| | - S Haghayegh
- UCLA Department of Pathology and Laboratory Medicine, MacDonald Research Laboratories, Los Angeles, CA, USA
| | - D McCurdy
- UCLA Department of Pediatrics, Los Angeles, CA, USA
| | | | - H Hu
- UCLA Department of Pathology and Laboratory Medicine, MacDonald Research Laboratories, Los Angeles, CA, USA
| | - A R Quinlan
- Department of Public Health Sciences, Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R A Gatti
- 1] UCLA Department of Pathology and Laboratory Medicine, MacDonald Research Laboratories, Los Angeles, CA, USA [2] UCLA Biomedical Physics Interdepartmental Graduate Program, Los Angeles, CA, USA [3] UCLA Department of Human Genetics, Los Angeles, CA, USA
| | - P Concannon
- 1] Genetics Institute, University of Florida, Gainesville, FL, USA [2] Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
17
|
Kuroda K, Hibi D, Ishii Y, Takasu S, Kijima A, Matsushita K, Masumura KI, Watanabe M, Sugita-Konishi Y, Sakai H, Yanai T, Nohmi T, Ogawa K, Umemura T. Ochratoxin A induces DNA double-strand breaks and large deletion mutations in the carcinogenic target site of gpt delta rats. Mutagenesis 2013; 29:27-36. [DOI: 10.1093/mutage/get054] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
18
|
Cheong HSJ, Seth I, Joiner MC, Tucker JD. Relationships among micronuclei, nucleoplasmic bridges and nuclear buds within individual cells in the cytokinesis-block micronucleus assay. Mutagenesis 2013; 28:433-40. [PMID: 23702692 DOI: 10.1093/mutage/get020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Micronuclei have been used extensively in studies as an easily evaluated indicator of DNA damage but little is known about their association with other types of damage such as nucleoplasmic bridges and nuclear buds. Here, radiation-induced clastogenic events were evaluated via the cytokinesis-block micronucleus assay in two normal human lymphoblastoid cell lines exposed to neutrons or γ-radiation. DNA damage induced by the chemical agents mitomycin C and phleomycin was also evaluated in two normal and two mitochondrial mutant human lymphoblastoid cell lines. In addition to micronuclei, nucleoplasmic bridges and nuclear buds were enumerated by recording the coincident presence of these end points within individual cells, and the associations among these three end points were evaluated for all treatment conditions. The common odds ratios for micronuclei and nucleoplasmic bridges were found to be significantly larger than unity, indicating that the presence of one or more micronuclei in a cell imposes a significant risk of having one or more nucleoplasmic bridges in that same cell, and vice versa. The strength of this association did not change significantly with radiation dose or concentration of the chemical clastogens. Common odds ratios for association between micronuclei and buds, and between bridges and buds were also found to be significantly higher than unity. However, associations between micronuclei and buds could not be calculated for some treatments due to heterogeneity in the odds ratios and hence may depend on chemical clastogen concentration or radiation dose. This study provides evidence of how paired analyses among genetic end points in the cytokinesis-block micronucleus assay can provide information concerning abnormalities of cell division and possibly about structural chromosomal rearrangements induced by clastogens.
Collapse
Affiliation(s)
- Han S J Cheong
- Department of Biological Sciences, 5047 Gullen Mall, Wayne State University, Detroit, MI 48202-3917, USA
| | | | | | | |
Collapse
|