1
|
Graziano N, Arce-López B, Barbeyron T, Delage L, Gerometta E, Roullier C, Burgaud G, Poirier E, Martinelli L, Jany JL, Hymery N, Meslet-Cladiere L. Identification and Characterization of Two Aryl Sulfotransferases from Deep-Sea Marine Fungi and Their Implications in the Sulfation of Secondary Metabolites. Mar Drugs 2024; 22:572. [PMID: 39728146 DOI: 10.3390/md22120572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
Sulfation plays a critical role in the biosynthesis of small molecules, regulatory mechanisms such as hormone signaling, and detoxification processes (phase II enzymes). The sulfation reaction is catalyzed by a broad family of enzymes known as sulfotransferases (SULTs), which have been extensively studied in animals due to their medical importance, but also in plant key processes. Despite the identification of some sulfated metabolites in fungi, the mechanisms underlying fungal sulfation remain largely unknown. To address this knowledge gap, we conducted a comprehensive search of available genomes, resulting in the identification of 174 putative SULT genes in the Ascomycota phylum. Phylogenetic analysis and structural modeling revealed that these SULTs belong to the aryl sulfotransferase family, and they are divided into two potential distinct clusters of PAPS-dependent SULTs within the fungal kingdom. SULT genes from two marine fungi isolated from deep-sea hydrothermal vents, Hortaea werneckii UBOCC-A-208029 (HwSULT) and Aspergillus sydowii UBOCC-A-108050 SULT (AsSULT), were selected as representatives of each cluster. Recombinant proteins were expressed in Escherichia coli and biochemically characterized. HwSULT demonstrated high and versatile activity, while AsSULT appeared more substrate-specific. Here, HwSULT was used to sulfate the mycotoxin zearalenone, enhancing its cytotoxicity toward healthy feline intestinal cells.
Collapse
Affiliation(s)
- Nicolas Graziano
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Beatriz Arce-López
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Tristan Barbeyron
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, F-29688 Roscoff, France
| | - Ludovic Delage
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, Sorbonne Université, F-29688 Roscoff, France
| | - Elise Gerometta
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMER, UR 2160, F-44000 Nantes, France
| | - Catherine Roullier
- Institut des Substances et Organismes de la Mer, Nantes Université, ISOMER, UR 2160, F-44000 Nantes, France
| | - Gaëtan Burgaud
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Elisabeth Poirier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Laure Martinelli
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, 07455 Jena, Germany
| | - Jean-Luc Jany
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Nolwenn Hymery
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| | - Laurence Meslet-Cladiere
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Écologie Microbienne, F-29280 Plouzané, France
| |
Collapse
|
2
|
Glatt H, Meinl W. Sulphotransferase-mediated toxification of chemicals in mouse models: effect of knockout or humanisation of SULT genes. Essays Biochem 2024; 68:523-539. [PMID: 39611595 PMCID: PMC11625864 DOI: 10.1042/ebc20240030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024]
Abstract
Cytosolic sulphotransferase (SULT) enzymes catalyse reactions involved in xenobiotic elimination and hormone regulation. However, SULTs can also generate electrophilic reactive intermediates from certain substrates, including the activation of carcinogens. Here, we review toxicological studies of mouse strains with SULT status altered by genetic modification. Knockout mouse strains have been constructed for the enzymes Sult1a1, 1d1, 1e1, 2b1 and 4a1. In addition, transgenic strains are available for human SULT1A1/2. Among SULT knockout mouse strains, reduced fertility (Sult1e1) and early postnatal death (Sult4a1) were observed. In contrast, Sult1a1 or Sult1d1 knockouts and SULT1A1/2 transgenics were healthy and showed no obvious deficiencies. These strains were used in toxicological studies with 13 chemicals. Manipulation of the SULT system altered dramatically the adverse effects of many compounds; thus, very large differences in levels of DNA adducts formed in the liver or other tissues were seen with some chemicals - up to 99.2% decreases in knockouts and 83-fold increases in SULT1A1/2 transgenics. In many cases, these changes were restricted to the tissues in which the corresponding enzymes are expressed, arguing for local activation. However, with some compounds, the kidney was an important target tissue, due to the active transfer to that organ, via the circulation, of reactive sulphuric acid esters.
Collapse
Affiliation(s)
- Hansruedi Glatt
- Federal Institute for Risk Assessment (BfR), Department Food Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Department of Nutritional Toxicology (HG & WM) and Department of Molecular Toxicology (WM), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| | - Walter Meinl
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbrücke, Department of Nutritional Toxicology (HG & WM) and Department of Molecular Toxicology (WM), Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany
| |
Collapse
|
3
|
Mishra N, Srivastava R. Bacterial worth in genotoxicity assessment studies. J Microbiol Methods 2023; 215:106860. [PMID: 38008307 DOI: 10.1016/j.mimet.2023.106860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/18/2023] [Accepted: 11/19/2023] [Indexed: 11/28/2023]
Abstract
Bacterial-based genotoxicity test systems play a significant role in the detection and evaluation of genotoxicity in vitro and have gained importance due to attributes like wide applicability, speed, high sensitivity, good reproducibility, and simplicity. The Salmonella microsomal mutagenicity assay was created by Ames and colleagues at the beginning of the 1970s, and it was based on the fundamental notion that in auxotrophic bacterial strains with inhibited growth, a mutant gene would revert to its original state on exposure to genotoxicants. This is the most successful and widely used in vitro genotoxicity test. Later, a number of additional test systems that incorporated DNA repair mechanisms including the bacterial SOS response were created. Genetic engineering has further provided significant advancement in these test systems with the development of highly sophisticated bacterial tester strains with significantly increased sensitivity to evaluate the chemical nature of hazardous substances and pollutants. These bacterial bioassays render an opportunity to detect the defined effects of compounds at the molecular level. In this review, all the aspects related to the bacterial system in genotoxicity assessment have been summarized and their role is elaborated concerning real-time requirements and future perspectives.
Collapse
Affiliation(s)
- Nidhi Mishra
- Department of Zoology, University of Lucknow, Lucknow, U.P. 226007, India.
| | - Rashmi Srivastava
- Department of Zoology, Babasaheb Bhimrao Ambedkar University, Lucknow, U.P. 226025, India
| |
Collapse
|
4
|
Ishii Y, Shi L, Takasu S, Ogawa K, Umemura T. A 13-week comprehensive toxicity study with adductome analysis demonstrates the toxicity, genotoxicity, and carcinogenicity of the natural flavoring agent elemicin. Food Chem Toxicol 2023; 179:113965. [PMID: 37495168 DOI: 10.1016/j.fct.2023.113965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/10/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
Elemicin, an alkenylbenzene flavoring, exists naturally in foods, herbs, and spices. Some alkenylbenzenes are hepatotoxic and hepatocarcinogenic in rodents. However, few studies have examined the toxicology of elemicin. In the current study, we comprehensively evaluated the general toxicity, genotoxicity, and carcinogenicity of elemicin using gpt delta rats and DNA adductome analysis. Groups of 10 male F344 gpt delta rats were treated with elemicin by gavage at a dose of 0, 25, 100, or 400 mg/kg bw/day for 13 weeks. Liver weights were significantly increased with histopathological changes in groups receiving 100 mg/kg bw/day or more. Significant increases in serum hepatotoxic parameters were observed in the 400 mg/kg bw/day group. Based on the observed changes in liver weights, 18.6 mg/kg bw was identified as the low benchmark dose. Significant increases in the number and area of glutathione S-transferase placental form-positive foci and gpt mutant frequencies were apparent only in the 400 mg/kg/day group, although elemicin-specific DNA adducts were detected from the lowest dose, suggesting that elemicin exhibited hepatocarcinogenicity in rats only at higher doses. Because elemicin showed no mutagenicity at lower doses, there was an adequate safety margin between the acceptable daily intake and the estimated daily intake of elemicin.
Collapse
Affiliation(s)
- Yuji Ishii
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan
| | - Liang Shi
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan
| | - Shinji Takasu
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan
| | - Takashi Umemura
- Division of Pathology, National Institute of Health Sciences, Kanagawa, Japan; Graduate School of Animal Health Technology, Yamazaki University of Animal Health Technology, Tokyo, Japan.
| |
Collapse
|
5
|
Li X, Li Y, Ning KG, Chen S, Guo L, Bonzo JA, Mei N. The expression of Phase II drug-metabolizing enzymes in human B-lymphoblastoid TK6 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:106-118. [PMID: 35895929 PMCID: PMC9346962 DOI: 10.1080/26896583.2022.2044242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In vitro genotoxicity testing plays an important role in chemical risk assessment. The human B-lymphoblastoid cell line TK6 is widely used as a standard cell line for regulatory safety evaluations. Like many other mammalian cell lines, TK6 cells have limited metabolic capacity; therefore, usually require a source of exogenous metabolic activation for use in genotoxicity testing. Previously, we developed a set of TK6-derived cell lines that individually express one of fourteen cytochrome P450s (CYPs). In the present study, we surveyed a panel of major Phase II drug-metabolizing enzymes to characterize their baseline expression in TK6 cells. These results may serve as a reference enzymatic profile of this commonly used cell line.
Collapse
Affiliation(s)
- Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kylie G. Ning
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Jessica A. Bonzo
- Division of Pharmacology/Toxicology for Immunology and Inflammation, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
6
|
Balabanič D, Filipič M, Krivograd Klemenčič A, Žegura B. Genotoxic activity of endocrine disrupting compounds commonly present in paper mill effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148489. [PMID: 34217092 DOI: 10.1016/j.scitotenv.2021.148489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/23/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
In the present study we evaluated cytotoxic and genotoxic activities of endocrine disrupting compounds (EDCs), including dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), di(2-ethylhexyl) phthalate (DEHP), bisphenol A (BPA), and nonylphenol (NP), which have been previously identified in effluents from two paper mills with different paper production technologies (virgin or recycled fibres). Moreover, we evaluated genotoxic activity of the effluents from these two paper mills and compared it to the activity of artificial complex mixtures consisting of the seven EDCs at concentrations detected in corresponding paper mill effluents. None of the EDCs was genotoxic in Salmonella typhimurium (SOS/umuC assay), while all induced DNA damage in human hepatocellular carcinoma (HepG2) cells (comet assay). After 4 h of exposure genotoxic effects were determined at concentrations ≥ 1 μg/L for BBP and DEHP, ≥10 μg/L for DMP, DEP, DBP, and BPA, and ≥100 μg/L for NP, while after 24 h of exposure DNA damage occurred at ≥10 μg/L for DBP, BPA and NP, and ≥100 μg/L for DMP, DEP, BBP and DEHP. The effluents and corresponding artificial mixtures of EDCs from paper mill that uses virgin fibres did not induce DNA damage in HepG2 cells, while the effluents and corresponding artificial mixtures for the paper mill that uses recycled fibres were genotoxic. Genotoxic activity of effluents was significantly higher compared to corresponding artificial mixtures suggesting the presence of further unknown compounds contributing to the effect. Wastewater monitoring based on chemical analysis is limited to determination of targeted compounds and does not take into account possible interactions between chemicals in mixtures. Therefore, it alone cannot provide an adequate information on potential toxic effects required for the assessment of genotoxic activity of real environmental samples and their potential threats to the environment and human health.
Collapse
Affiliation(s)
- Damjan Balabanič
- Faculty of Industrial Engineering, Šegova ulica 112, SI-8000 Novo mesto, Slovenia.
| | - Metka Filipič
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| | - Aleksandra Krivograd Klemenčič
- University of Ljubljana, Faculty of Civil and Geodetic Engineering, Institute for Sanitary Engineering, Hajdrihova 28, SI-1000 Ljubljana, Slovenia.
| | - Bojana Žegura
- National Institute of Biology, Department of Genetic Toxicology and Cancer Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
7
|
Yu H, Li Z, Yang Z, Song M, Liu Y. 1-Methylpyrene induces chromosome loss and mitotic apparatus damage in a Chinese hamster V79-derived cell line expressing both human CYP1A2 and sulfotransferase 1A1. Chem Biol Interact 2020; 332:109283. [PMID: 33035519 DOI: 10.1016/j.cbi.2020.109283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
1-Methylpyrene (1-MP) is a ubiquitous environmental pollutant and rodent carcinogen. Its mutagenic activity depends on sequential activation by various CYP and sulfotransferase (SULT) enzymes. Previously we have observed induction of micronuclei and mitotic arrest by 1-MP in a Chinese hamster (V79)-derived cell line expressing both human CYP1A2 and SULT1A1 (V79-hCYP1A2-hSULT1A1), however, the mode of chromosome damage and the involvement of mitotic tubulin structures have not been clarified. In this study, we used immunofluorescent staining of centromere protein B (CENP-B) with the formed micronuclei, and that of β- and γ-tubulin reflecting the structures of mitotic spindle and centrioles, respectively, in V79-hCYP1A2-hSULT1A1 cells. The results indicated that 1-MP induced micronuclei in V79-hCYP1A2-hSULT1A1 cells from 0.125 to 2 μM under a 24 h/0 h (exposure/recovery) regime, while in the parental V79-Mz cells micronuclei were induced by 1-MP only at concentrations ≥ 8 μM; in both cases, the micronuclei induced by 1-MP were predominantly CENP-B positive. Following 54 h of exposure, 1-MP induced mitotic spindle non-congression and centrosome amplification (multipolar mitosis) in V79-hCYP1A2-hSULT1A1 cells, and anaphase/telophase retardation, at concentrations ≥ 0.125 μM with concentration-dependence; while in V79-Mz cells it was inactive up to 8 μM. This study suggests that in mammalian cells proficient in activating enzymes 1-MP may induce chromosome loss and mitotic disturbance, probably by interfering with the mitotic spindle and centrioles.
Collapse
Affiliation(s)
- Hang Yu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zihuan Li
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Zongying Yang
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Meiqi Song
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
8
|
Li Z, Yu H, Song M, Glatt H, Liu J, Liu Y. Potent aneugenicity of 1-methylpyrene in human cells dependent on metabolic activation by endogenous enzymes. Arch Toxicol 2020; 95:703-713. [PMID: 33057863 DOI: 10.1007/s00204-020-02933-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/08/2020] [Indexed: 02/04/2023]
Abstract
1-Methylpyrene (1-MP) is a common environmental pollutant and animal carcinogen. After sequential activation by cytochromes P450 and sulfotransferases, it induced gene mutations and micronuclei in mammalian cells. The type of micronuclei formed, entire chromosomes or fragments, was not analysed. In this study, 1-MP and its primary metabolite, 1-hydroxymethylpyrene (1-HMP), were investigated for the induction of centromere-positive and -negative micronuclei in the human hepatoma cell line HepG2 and its derivative C3A, expressing relevant enzymes at higher levels. Under a short-exposure (9 h)/long-recovery regime (2 cell cycles in total), 1-MP and 1-HMP provided negative test results in HepG2 cells. However, they induced micronuclei in C3A cells, the effect being blocked by 1-aminobenzotriazole (inhibitor of cytochromes P450s) and reduced by pentachlorophenol (inhibitor of sulfotransferases). Immunofluorescence staining of centromere protein B in the micronuclei revealed purely clastogenic effects under this regime. Unexpectedly, 1-MP and 1-HMP at concentrations 1/5-1/4 of that required for micronuclei formation led to mitotic arrest and spindle aberrations, as detected by immunofluorescence staining of β- and γ-tubulin. Following extended exposure (72 h, 2 cell cycles, no recovery), damage to the spindle apparatus and centrosomes was detected at even lower concentrations, with concurrent formation of micronuclei. At low concentrations (1-8 µM 1-MP, 0.25-0.5 µM 1-HMP), the micronuclei induced were unexceptionally centromere-positive. Thus, the chromosome-damaging mechanism of 1-MP was regime and concentration dependent: potently aneugenic under persistent exposure, while clastogenic at higher concentrations following a short-exposure/long-recovery regime. This is a convincing evidence for the existence of metabolic activation-dependent aneugens.
Collapse
Affiliation(s)
- Zihuan Li
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hang Yu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Meiqi Song
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE), Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany.,Department of Food Safety, Federal Institute for Risk Assessment (BfR), Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Jianjun Liu
- Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Shenzhen, 518055, China
| | - Yungang Liu
- Department of Toxicology, School of Public Health, Southern Medical University, 1023 S. Shatai Road, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Okuno Y, Bonala R, Attaluri S, Johnson F, Grollman AP, Sidorenko VS, Oda Y. Bioactivation mechanisms of N-hydroxyaristolactams: Nitroreduction metabolites of aristolochic acids. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2019; 60:792-806. [PMID: 31374128 PMCID: PMC6899766 DOI: 10.1002/em.22321] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Aristolochic acids (AAs) are human nephrotoxins and carcinogens found in concoctions of Aristolochia plants used in traditional medicinal practices worldwide. Genotoxicity of AAs is associated with the formation of active species catalyzed by metabolic enzymes, the full repertoire of which is unknown. Recently, we provided evidence that sulfonation is important for bioactivation of AAs. Here, we employ Salmonella typhimurium umu tester strains expressing human N-acetyltransferases (NATs) and sulfotransferases (SULTs), to study the role of conjugation reactions in the genotoxicities of N-hydroxyaristolactams (AL-I-NOH and AL-II-NOH), metabolites of AA-I and AA-II. Both N-hydroxyaristolactams show stronger genotoxic effects in umu strains expressing human NAT1 and NAT2, than in the parent strain. Additionally, AL-I-NOH displays increased genotoxicity in strains expressing human SULT1A1 and SULT1A2, whereas AL-II-NOH shows enhanced genotoxicity in SULT1A1/2 and SULT1A3 strains. 2,6-Dichloro-4-nitrophenol, SULTs inhibitor, reduced umuC gene expression induced by N-hydroxyaristolactams in SULT1A2 strain. N-hydroxyaristolactams are also mutagenic in parent strains, suggesting that an additional mechanism(s) may contribute to their genotoxicities. Accordingly, using putative SULT substrates and inhibitors, we found that cytosols obtained from human kidney HK-2 cells activate N-hydroxyaristolactams in aristolactam-DNA adducts with the limited involvement of SULTs. Removal of low-molecular-weight reactants in the 3.5-10 kDa range inhibits the formation of aristolactam-DNA by 500-fold, which could not be prevented by the addition of cofactors for SULTs and NATs. In conclusion, our results demonstrate that the genotoxicities of N-hydroxyaristolactams depend on the cell type and involve not only sulfonation but also N,O-acetyltransfer and an additional yet unknown mechanism(s). Environ. Mol. Mutagen. 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yoshiharu Okuno
- Department of Applied Chemistry and Biochemistry, National Institute of TechnologyWakayama College77 Noshima, Nada, Gobo‐shi, Wakayama644‐0023Japan
- Department of Material Science and Engineering, Material Science and EngineeringWakayama National College of Technology, Gobo‐shiWakayama644‐0023Japan
| | - Radha Bonala
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNew York11794USA
| | - Sivaprasad Attaluri
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNew York11794USA
| | - Francis Johnson
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNew York11794USA
- Department of ChemistryStony Brook UniversityStony BrookNew York11794USA
| | - Arthur P. Grollman
- Department of Pharmacological SciencesStony Brook UniversityStony BrookNew York11794USA
- Department of MedicineStony Brook UniversityStony BrookNew York11794USA
| | | | - Yoshimitsu Oda
- Institute of Life and Environmental SciencesOsaka Shin‐Ai College6‐2‐28 Tsurumi, Tsurumi‐ku, Osaka538‐0053Japan
| |
Collapse
|
10
|
Martins C, Rueff J, Rodrigues AS. Genotoxic alkenylbenzene flavourings, a contribution to risk assessment. Food Chem Toxicol 2018; 118:861-879. [DOI: 10.1016/j.fct.2018.06.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/09/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022]
|
11
|
Advanced Approaches to Model Xenobiotic Metabolism in Bacterial Genotoxicology In Vitro. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017. [PMID: 27619490 DOI: 10.1007/10_2016_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
During the past 30 years there has been considerable progress in the development of bacterial test systems for use in genotoxicity testing by the stable introduction of expression vectors (cDNAs) coding for xenobiotic-metabolizing enzymes into bacterial cells. The development not only provides insights into the mechanisms of bioactivation of xenobiotic compounds but also evaluates the roles of enzymes involved in metabolic activation or inactivation in chemical carcinogenesis. This review describes recent advances in bacterial genotoxicity assays and their future prospects, with a focus on the development and application of genetically engineering bacterial cells to incorporate some of the enzymatic activities involved in the bio-activation process of xenobiotics. Various genes have been introduced into bacterial umu tester strains encoding enzymes for genotoxic bioactivation, including bacterial nitroreductase and O-acetyltransferase, human cytochrome P450 monooxygenases, rat glutathione S-transferases, and human N-acetyltransferases and sulfotransferases. Their application has provided new tools for genotoxicity assays and for studying the role of biotransformation in chemical carcinogenesis in humans.
Collapse
|
12
|
Kim JK, Strapazzon N, Gallaher CM, Stoll DR, Thomas W, Gallaher DD, Trudo SP. Comparison of short- and long-term exposure effects of cruciferous and apiaceous vegetables on carcinogen metabolizing enzymes in Wistar rats. Food Chem Toxicol 2017; 108:194-202. [PMID: 28764905 DOI: 10.1016/j.fct.2017.07.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Revised: 05/13/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
Abstract
Cruciferous and apiaceous vegetables may be chemopreventive due to their ability to modulate carcinogen-metabolizing enzymes but whether the effects on such enzymes are sustained over time is unknown. To examine the short- and long-term effects of the vegetables, rats were fed one of four diets for 7, 30, or 60 d: AIN-93G, CRU (21% cruciferous vegetables-fresh broccoli, green cabbage, watercress), API (9% apiaceous vegetables - fresh parsnips, celery), or API + CRU (10.5% CRU + 4.5% API). Although CRU increased activity and protein expression of cytochrome P450 (CYP) 1A1 and CYP1A2 after 7 d, only activity was sustained after 30 and 60 d. There was a trend towards an interaction between the length of feeding period and CRU for CYP1A1 activity; activity increased with greater time of feeding. API increased CYP1A2 activity but decreased sulfotransferase 1A1 activity after 7 d, although not at later times. Altogether, increased CYP1A activity by CRU was maintained with long term feeding while protein amount decreased, suggesting influence by mechanisms other than, or in addition to, transcriptional regulation. Thus, response patterns and interactions with length of feeding may differ, depending upon the types of vegetables and enzymes, requiring caution when interpreting the results of short-term feeding studies.
Collapse
Affiliation(s)
- Jae Kyeom Kim
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Noemia Strapazzon
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Cynthia M Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Dwight R Stoll
- Department of Chemistry, Gustavus Adolphus College, Saint Peter, MN 56082, USA
| | - William Thomas
- Division of Biostatistics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Daniel D Gallaher
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA
| | - Sabrina P Trudo
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
13
|
Hori H, Hirata D, Fujii W, Oda Y. Development of a high-throughput genotoxicity assay using Umu test strains expressing human cytochrome P450s and NADPH-P450 reductase and bacterial O-acetyltransferase. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:209-216. [PMID: 28436560 DOI: 10.1002/em.22092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/06/2017] [Accepted: 04/07/2017] [Indexed: 06/07/2023]
Abstract
Umu test is one of the in vitro genotoxicity test that has been used widely. It was developed as a high-throughput test system using the 96-well microplate. We have previously constructed new umu test strains for the evaluation of genotoxicity of procarcinogenic metabolic products formed by cytochrome P450 (CYP) enzymes. In this study, a highly sensitive high-throughput genotoxicity test was developed using four umu test strains (OY1002/1A1, OY1002/1B1, OY1002/1A2, and OY1002/3A4) that express human CYPs and NADPH-P450 reductase. We found that the modified umu-microplate method was more sensitive than the conventional microplate method using strain OY1002/1A2. In addition, the new microplate method was better able to detect genotoxicity than the test tube method when the strain OY1002/1A2 was used and had similar sensitivity for the remaining three strains. When the microplate method was used, OY1002/1A2 showed stronger umuC gene expression in the presence of 2-amino-6-methyldipyrido[1,2-a:3',2'-d]imidazole, 2-amino-3-methylimidazo[4,5-f]quinoline, 2-amino-3,4-dimethylimidazo[4,5-f]quinoline, 2-amino-3,8-dimethylimidazo[4,5-f]quinoxaline, 2-aminofluorene, and 2-aminoanthracene compared to other strains. We also confirmed CYP1A2 expression in OY1002/1A2 in this condition. These results indicate that the microplate version of this test system can detect the genotoxicity of heterocyclic and aromatic amines with high sensitivity and can be used for high-throughput screening of potentially genotoxic compounds. Environ. Mol. Mutagen. 58:209-216, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hisako Hori
- Safety Science Institute, Suntory MONOZUKURI Expert Limited, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Daisuke Hirata
- Protein Purify Co. Ltd, Magarisawa-cho, Isesaki-city, Gunma, Japan
| | - Wataru Fujii
- Safety Science Institute, Suntory MONOZUKURI Expert Limited, Seika-cho, Soraku-gun, Kyoto, Japan
| | - Yoshimitsu Oda
- Institute of Life and Environmental Sciences, Osaka Shin-Ai College, Tsurumi-ku, Japan
| |
Collapse
|
14
|
Oda Y. Development and progress for three decades in umu test systems. Genes Environ 2016; 38:24. [PMID: 27980699 PMCID: PMC5131509 DOI: 10.1186/s41021-016-0054-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/27/2016] [Indexed: 11/10/2022] Open
Abstract
Umu test have been widely used to predict the detection and assessment of DNA- damaging chemicals in environmental genotoxicity field for three decades. This test system is more useful with respect to simplicity, sensitivity, rapidity, and reproducibility. A review of the literature on the development of the umu test is presented in this article. The contents of this article are included a description of numerous data using the umu test. This test have been fully evaluated and used in many directions. Different genetically engineered umu systems introducing bacterial and rat or human drug metabolizing enzymes into the umu tester strains, have been successfully established and are considered as useful tools for genotoxicity assays to study the mechanisms of biotransformation in chemical carcinogenesis. Actually, we developed that two types of bacterial metabolizing enzymes and 4 types of rat and human metabolizing enzyme DNAs are expressed in these strains such as nitroreductase and O-acetyltransferase, cytochrome P450, N-acetyltransferases, sulfotransferases, and glutathione S-transferases, respectively. Due to increasing numbers of minute environmental samples and new pharmaceuticals, a high-throughput umu test system using Salmonella typhimurium TA1535/pSK1002, NM2009, and NM3009 strains provides a useful for these genotoxicity screening. I also briefly describe the first attempts to incorporate such umu tester strain into photo-genotoxicity test.
Collapse
Affiliation(s)
- Yoshimitsu Oda
- Institute of Life and Environmental Sciences, Osaka Shin-Ai College, 6-2-28 Tsurumi, Tsurumi-ku, Osaka 538-0053 Japan
| |
Collapse
|
15
|
Glatt H, Sabbioni G, Monien BH, Meinl W. Use of genetically manipulated Salmonella typhimurium strains to evaluate the role of human sulfotransferases in the bioactivation of nitro- and aminotoluenes. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:299-311. [PMID: 26924705 DOI: 10.1002/em.22005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 02/02/2016] [Accepted: 12/20/2015] [Indexed: 06/05/2023]
Abstract
Various nitro- and aminotoluenes demonstrated carcinogenic activity in rodent studies, but were inactive or weakly active in conventional in vitro mutagenicity assays. Standard in vitro tests do not take into account activation by certain classes of enzymes. This is true in particular for sulfotransferases (SULTs). These enzymes may convert aromatic hydroxylamines and benzylic alcohols, two major classes of phase-I metabolites of nitro- and aminotoluenes, to reactive esters. Here it is shown that expression of certain human SULTs in Salmonella typhimurium TA1538 or TA100 strongly enhanced the mutagenicity of various nitrotoluenes and nitro- and amino-substituted benzyl alcohols. Human SULT1A1, SULT1A2, and SULT1C2 showed the strongest activation. The observation that some nitrotoluenes as well as some aminobenzyl alcohols were activated by SULTs in the absence of cytochromes P450 implies that mutagenic sulfuric esters were formed at both the exocyclic nitrogen and the benzylic carbon, respectively. Nitroreductase deficiency (using strain YG7131 instead of TA1538 for SULT1A1 expression) did not affect the SULT-dependent mutagenicity of 1-hydroxymethylpyrene (containing no nitro group), moderately enhanced that of 2-amino-4-nitrobenzyl alcohol, and drastically attenuated the effects of nitrobenzyl alcohols without other substituents. The last finding suggests that either activation occurred at the hydroxylamino group formed by nitroreductase or the nitro group (having a strong -M effect) had to be reduced to an electron-donating substituent to enhance the reactivity of the benzylic sulfuric esters. The results pointed to an important role of SULTs in the genotoxicity of nitrotoluenes and alkylated anilines. Activation occurs at nitrogen functions as well as benzylic positions.
Collapse
Affiliation(s)
- Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
- Department of Food Safety, Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| | - Gabriele Sabbioni
- Institute of Environmental and Occupational Toxicology, Casella Postale 108, Airolo, 6780, Switzerland
| | - Bernhard H Monien
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
- Department of Food Safety, Federal Institute for Risk Assessment (BfR), Max-Dohrn-Strasse 8-10, Berlin, 10589, Germany
| | - Walter Meinl
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, Nuthetal, 14558, Germany
| |
Collapse
|
16
|
Honda H, Minegawa K, Fujita Y, Yamaguchi N, Oguma Y, Glatt H, Nishiyama N, Kasamatsu T. Modified Ames test using a strain expressing human sulfotransferase 1C2 to assess the mutagenicity of methyleugenol. Genes Environ 2016; 38:1. [PMID: 27350821 PMCID: PMC4918123 DOI: 10.1186/s41021-016-0028-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/05/2016] [Indexed: 02/01/2023] Open
Abstract
Introduction Several alkenylbenzenes, including methyleugenol (ME), are present in a wide range of botanicals and exhibit carcinogenic and mutagenic properties. Negative results are generally obtained for alkenylbenzenes in standard in vitro genotoxicity tests, including the Ames test. A lack of mutagenicity observed in such tests is thought to result from impaired metabolic activation of alkenylbenzenes via hydroxylation, with subsequent sulfoconjugation to its ultimate mutagenic or carcinogenic form. Although recent studies have reported the mutagenicity of hydroxylated ME metabolites in the Ames test using modified TA100 strains expressing human sulfotransferases (SULTs), to our knowledge, the detection of ME mutagenicity has not yet been reported. Findings Using strain TA100-hSULT1C2, which expresses human SULT1C2, we optimized the protein content of S9 Mix and the pre-incubation time required to promote metabolic activation in the Ames test. This procedure enabled us to obtain a positive response with ME. Conclusions We established Ames-test conditions enabling the detection of ME-induced mutagenicity, using a strain expressing human SULT1C2 in the presence of induced-rat S9 Mix. This simple approach will help assess the mutagenicity of other alkenylbenzenes and related chemicals.
Collapse
Affiliation(s)
- Hiroshi Honda
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497 Japan
| | - Kazuyuki Minegawa
- Tokyo Laboratory, BoZo Research Center Inc., 1-3-11, Hanegi, Setagaya-Ku, Tokyo 156-0042 Japan
| | - Yurika Fujita
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497 Japan
| | - Noriko Yamaguchi
- Tokyo Laboratory, BoZo Research Center Inc., 1-3-11, Hanegi, Setagaya-Ku, Tokyo 156-0042 Japan
| | - Yoshihiro Oguma
- Tokyo Laboratory, BoZo Research Center Inc., 1-3-11, Hanegi, Setagaya-Ku, Tokyo 156-0042 Japan
| | - Hansruedi Glatt
- Department of Nutritional Toxicology, German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, D-14558 Nuthetal, Germany
| | - Naohiro Nishiyama
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497 Japan
| | - Toshio Kasamatsu
- R&D Safety Science Research, Kao Corporation, 2606 Akabane, Ichikai-Machi, Haga-Gun, Tochigi 321-3497 Japan
| |
Collapse
|
17
|
Jiang H, Lai Y, Hu K, Chen D, Liu B, Liu Y. Genotoxicity of 1-methylpyrene and 1-hydroxymethylpyrene in Chinese hamster V79-derived cells expressing both human CYP2E1 and SULT1A1. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:404-411. [PMID: 25243916 DOI: 10.1002/em.21912] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 06/03/2023]
Abstract
1-Methylpyrene (1-MP) is a widespread pollutant that is carcinogenic in animals following metabolic activation. Previous studies have shown that benzylic hydroxylation of 1-MP, catalyzed by multiple CYP isoforms, gives rise to 1-hydroxymethylpyrene (1-HMP), which becomes bioreactive following further metabolism by various sulfotransferase (SULT) isoforms. However, the mutagenic and chromosome damaging effects of 1-MP and 1-HMP in mammalian cells have not been investigated. In this study a Chinese hamster V79-derived cell line expressing both human CYP2E1 and human SULT1A1 was used to investigate the ability of 1-MP and 1-HMP to induce cytotoxicity (using the CCK-8 assay), micronuclei and Hprt gene mutations. The role of each enzyme was investigated through co-exposure in the presence of an enzyme inhibitor. We found that at concentrations of 0.5-4 μM and 5-20 μM, under conditions where no reduction in cell viability/growth occurred, 1-HMP and 1-MP induced micronuclei in V79-hCYP2E1-hSULT1A1 cells in a concentration-dependent manner; however, both compounds were inactive in V79 cells. Similarly, they both caused an increase in Hprt mutant frequency in V79-hCYP2E1-hSULT1A1 cells in these concentration ranges, with 1-MP impairing cell viability/growth at 10 μM and above in the mutagenicity assay. The compounds were again both inactive in V79 cells. The effects of 1-HMP in V79-hCYP2E1-hSULT1A1 cells were blocked or reduced by addition of pentachlorophenol (PCP), a SULT1 inhibitor; the genotoxicity of 1-MP was significantly reduced by either 1-aminobenotrazole, a CYP2E1 inhibitor, or PCP. The results suggest that human CYP2E1 and SULT1A1 cooperate to activate 1-MP and cause genotoxicity in mammalian cells.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Toxicology, School of Public Health and Tropical Medicine, Southern Medical University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
18
|
Ding W, Levy DD, Bishop ME, Pearce MG, Davis KJ, Jeffrey AM, Duan JD, Williams GM, White GA, Lyn-Cook LE, Manjanatha MG. In vivo genotoxicity of estragole in male F344 rats. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:356-365. [PMID: 25361439 DOI: 10.1002/em.21918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 10/03/2014] [Indexed: 06/04/2023]
Abstract
Estragole, a naturally occurring constituent of various herbs and spices, is a rodent liver carcinogen which requires bio-activation. To further understand the mechanisms underlying its carcinogenicity, genotoxicity was assessed in F344 rats using the comet, micronucleus (MN), and DNA adduct assays together with histopathological analysis. Oxidative damage was measured using human 8-oxoguanine-DNA-N-glycosylase (hOGG1) and EndonucleaseIII (EndoIII)-modified comet assays. Results with estragole were compared with the structurally related genotoxic carcinogen, safrole. Groups of seven-week-old male F344 rats received corn oil or corn oil containing 300, 600, or 1,000 mg/kg bw estragole and 125, 250, or 450 mg/kg bw safrole by gavage at 0, 24, and 45 hr and terminated at 48 hr. Estragole-induced dose-dependent increases in DNA damage following EndoIII or hOGG1 digestion and without enzyme treatment in liver, the cancer target organ. No DNA damage was detected in stomach, the non-target tissue for cancer. No elevation of MN was observed in reticulocytes sampled from peripheral blood. Comet assays, both without digestion or with either EndoIII or hOGG1 digestion, also detected DNA damage in the liver of safrole-dosed rats. No DNA damage was detected in stomach, nor was MN elevated in peripheral blood following dosing with safrole suggesting that, as far both safrole and estragole, oxidative damage may contribute to genotoxicity. Taken together, these results implicate multiple mechanisms of estragole genotoxicity. DNA damage arises from chemical-specific interaction and is also mediated by oxidative species.
Collapse
Affiliation(s)
- Wei Ding
- Division of Genetic and Molecular Toxicology, US FDA/National Center for Toxicological Research, Jefferson, Arkansas
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gadkari VV, Tokarsky EJ, Malik CK, Basu AK, Suo Z. Mechanistic investigation of the bypass of a bulky aromatic DNA adduct catalyzed by a Y-family DNA polymerase. DNA Repair (Amst) 2014; 21:65-77. [PMID: 25048879 DOI: 10.1016/j.dnarep.2014.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 06/09/2014] [Accepted: 06/09/2014] [Indexed: 01/09/2023]
Abstract
3-Nitrobenzanthrone (3-NBA), a nitropolyaromatic hydrocarbon (NitroPAH) pollutant in diesel exhaust, is a potent mutagen and carcinogen. After metabolic activation, the primary metabolites of 3-NBA react with DNA to form dG and dA adducts. One of the three major adducts identified is N-(2'-deoxyguanosin-8-yl)-3-aminobenzanthrone (dG(C8-N-ABA)). This bulky adduct likely stalls replicative DNA polymerases but can be traversed by lesion bypass polymerases in vivo. Here, we employed running start assays to show that a site-specifically placed dG(C8-N-ABA) is bypassed in vitro by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. However, the nucleotide incorporation rate of Dpo4 was significantly reduced opposite both the lesion and the template position immediately downstream from the lesion site, leading to two strong pause sites. To investigate the kinetic effect of dG(C8-N-ABA) on polymerization, we utilized pre-steady-state kinetic methods to determine the kinetic parameters for individual nucleotide incorporations upstream, opposite, and downstream from the dG(C8-N-ABA) lesion. Relative to the replication of the corresponding undamaged DNA template, both nucleotide incorporation efficiency and fidelity of Dpo4 were considerably decreased during dG(C8-N-ABA) lesion bypass and the subsequent extension step. The lower nucleotide incorporation efficiency caused by the lesion is a result of a significantly reduced dNTP incorporation rate constant and modestly weaker dNTP binding affinity. At both pause sites, nucleotide incorporation followed biphasic kinetics with a fast and a slow phase and their rates varied with nucleotide concentration. In contrast, only the fast phase was observed with undamaged DNA. A kinetic mechanism was proposed for the bypass of dG(C8-N-ABA) bypass catalyzed by Dpo4.
Collapse
Affiliation(s)
- Varun V Gadkari
- The Ohio State Biochemistry Program, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, Columbus, OH 43210, USA
| | - E John Tokarsky
- Department of Chemistry and Biochemistry, Columbus, OH 43210, USA; The Ohio State University Biophysics Program, The Ohio State University, Columbus, OH 43210, USA
| | - Chanchal K Malik
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Zucai Suo
- The Ohio State Biochemistry Program, Columbus, OH 43210, USA; Department of Chemistry and Biochemistry, Columbus, OH 43210, USA; The Ohio State University Biophysics Program, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
20
|
Sidorenko VS, Attaluri S, Zaitseva I, Iden CR, Dickman KG, Johnson F, Grollman AP. Bioactivation of the human carcinogen aristolochic acid. Carcinogenesis 2014; 35:1814-22. [PMID: 24743514 DOI: 10.1093/carcin/bgu095] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Aristolochic acids are potent human carcinogens; the role of phase II metabolism in their bioactivation is unclear. Accordingly, we tested the ability of the partially reduced metabolites, N-hydroxyaristolactams (AL-NOHs), and their N-O-sulfonated and N-O-acetylated derivatives to react with DNA to form aristolactam-DNA adducts. AL-NOHs displayed little or no activity in this regard while the sulfo- and acetyl compounds readily form DNA adducts, as detected by (32)P-post-labeling analysis. Mouse hepatic and renal cytosols stimulated binding of AL-NOHs to DNA in the presence of adenosine 3'-phosphate 5'-phosphosulfate (PAPS) but not of acetyl-CoA. Using Time of Flight liquid chromatography/mass spectrometry, N-hydroxyaristolactam I formed the sulfated compound in the presence of PAPS and certain human sulfotransferases, SULT1B1 >>> SULT1A2 > SULT1A1 >>> SULT1A3. The same pattern of SULT reactivity was observed when N-hydroxyaristolactam I was incubated with these enzymes and PAPS and the reaction was monitored by formation of aristolactam-DNA adducts. In the presence of human NAD(P)H quinone oxidoreductase, the ability of aristolochic acid I to bind DNA covalently was increased significantly by addition of PAPS and SULT1B1. We conclude from these studies that AL-NOHs, formed following partial nitroreduction of aristolochic acids, serve as substrates for SULT1B1, producing N-sulfated esters, which, in turn, are converted to highly active species that react with DNA and, potentially, cellular proteins, resulting in the genotoxicity and nephrotoxicity associated with ingestion of aristolochic acids by humans.
Collapse
Affiliation(s)
| | | | | | | | | | - Francis Johnson
- Department of Pharmacological Sciences, Department of Chemistry, Stony Brook University, Stony Brook, NY 11794, USA
| | | |
Collapse
|
21
|
Hégarat LL, Mourot A, Huet S, Vasseur L, Camus S, Chesné C, Fessard V. Performance of Comet and Micronucleus Assays in Metabolic Competent HepaRG Cells to Predict In Vivo Genotoxicity. Toxicol Sci 2014; 138:300-9. [DOI: 10.1093/toxsci/kfu004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Abstract
Considerable support exists for the roles of metabolism in modulating the carcinogenic properties of chemicals. In particular, many of these compounds are pro-carcinogens that require activation to electrophilic forms to exert genotoxic effects. We systematically analyzed the existing literature on the metabolism of carcinogens by human enzymes, which has been developed largely in the past 25 years. The metabolism and especially bioactivation of carcinogens are dominated by cytochrome P450 enzymes (66% of bioactivations). Within this group, six P450s--1A1, 1A2, 1B1, 2A6, 2E1, and 3A4--accounted for 77% of the P450 activation reactions. The roles of these P450s can be compared with those estimated for drug metabolism and should be considered in issues involving enzyme induction, chemoprevention, molecular epidemiology, interindividual variations, and risk assessment.
Collapse
|