1
|
Al-Mareed AA, Farah MA, Al-Anazi KM, Hailan WAQ, Ali MA. Potassium bromate-induced oxidative stress, genotoxicity and cytotoxicity in the blood and liver cells of mice. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 878:503481. [PMID: 35649675 DOI: 10.1016/j.mrgentox.2022.503481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Potassium bromate (KBrO3) is an oxidising agent that is extensively used as a food additive, it is also a product of cosmetic and pharmaceutical relevance. The objective of this study was to evaluate the oxidative stress, genotoxicity, and apoptosis induced by KBrO3 in an experimental animal model. To study the toxic effects and oxidative stress, different doses of KBrO3 below LD50 (The half maximal lethal dose, 50, 100 and 150 mg/kg body weight) were given intraperitoneally to the mice for multiple time periods (24, 48, and 72 h). The results showed that KBrO3 significantly induces oxidative damage by increasing the levels of reactive oxygen species (ROS) and lipid peroxidase and depleted the levels of catalase (CAT), superoxide dismutase (SOD) and glutathione (GSH) enzymes in the serum and liver. Moreover, a significant increase of chromosomal aberrations in bone marrow cells and an elevated incidence of micronuclei in the peripheral blood of mice were observed. KBrO3 induces 3 ´ -OH end double-strand DNA breaks, which was evident in liver sections of the treated mice, and increases the percentage of apoptotic cells, as observed in TUNEL assays and flow cytometry analysis. The present findings indicate that KBrO3 induces oxidative stress, genotoxicity, and cytotoxicity in a dose- and time-dependent manner in mice.
Collapse
Affiliation(s)
- Ali Abdullah Al-Mareed
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Abul Farah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia.
| | - Khalid Mashay Al-Anazi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Waleed A Q Hailan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - M Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
2
|
Röhl C, Batke M, Damm G, Freyberger A, Gebel T, Gundert-Remy U, Hengstler JG, Mangerich A, Matthiessen A, Partosch F, Schupp T, Wollin KM, Foth H. New aspects in deriving health-based guidance values for bromate in swimming pool water. Arch Toxicol 2022; 96:1623-1659. [PMID: 35386057 PMCID: PMC9095538 DOI: 10.1007/s00204-022-03255-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
Bromate, classified as a EU CLP 1B carcinogen, is a typical by-product of the disinfection of drinking and swimming pool water. The aim of this study was (a) to provide data on the occurrence of bromate in pool water, (b) to re-evaluate the carcinogenic MOA of bromate in the light of existing data, (c) to assess the possible exposure to bromate via swimming pool water and (d) to inform the derivation of cancer risk-related bromate concentrations in swimming pool water. Measurements from monitoring analysis of 229 samples showed bromate concentrations in seawater pools up to 34 mg/L. A comprehensive non-systematic literature search was done and the quality of the studies on genotoxicity and carcinogenicity was assessed by Klimisch criteria (Klimisch et al., Regul Toxicol Pharmacol 25:1-5, 1997) and SciRAP tool (Beronius et al., J Appl Toxicol, 38:1460-1470, 2018) respectively. Benchmark dose (BMD) modeling was performed using the modeling average mode in BMDS 3.1 and PROAST 66.40, 67 and 69 (human cancer BMDL10; EFSA 2017). For exposure assessment, data from a wide range of sources were evaluated for their reliability. Different target groups (infants/toddlers, children and adults) and exposure scenarios (recreational, sport-active swimmers, top athletes) were considered for oral, inhalation and dermal exposure. Exposure was calculated according to the frequency of swimming events and duration in water. For illustration, cancer risk-related bromate concentrations in pool water were calculated for different target groups, taking into account their exposure using the hBMDL10 and a cancer risk of 1 in 100,000. Convincing evidence was obtained from a multitude of studies that bromate induces oxidative DNA damage and acts as a clastogen in vitro and in vivo. Since statistical modeling of the available genotoxicity data is compatible with both linear as well as non-linear dose-response relationships, bromate should be conservatively considered to be a non-threshold carcinogen. BMD modeling with model averaging for renal cancer studies (Kurokawa et al., J Natl. Cancer Inst, 1983 and 1986a; DeAngelo et al., Toxicol Pathol 26:587-594, 1998) resulted in a median hBMDL10 of 0.65 mg bromate/kg body weight (bw) per day. Evaluation of different age and activity groups revealed that top athletes had the highest exposure, followed by sport-active children, sport-active adults, infants and toddlers, children and adults. The predominant route of exposure was oral (73-98%) by swallowing water, followed by the dermal route (2-27%), while the inhalation route was insignificant (< 0.5%). Accepting the same risk level for all population groups resulted in different guidance values due to the large variation in exposure. For example, for an additional risk of 1 in 100,000, the bromate concentrations would range between 0.011 for top athletes, 0.015 for sport-active children and 2.1 mg/L for adults. In conclusion, the present study shows that health risks due to bromate exposure by swimming pool water cannot be excluded and that large differences in risk exist depending on the individual swimming habits and water concentrations.
Collapse
Affiliation(s)
- C Röhl
- Institute of Toxicology and Pharmacology for Natural Scientists, Christiana Albertina University Kiel, Kiel, Germany.
- Department of Environmental Health Protection, State Agency for social Services (LAsD) Schleswig-Holstein, Neumünster, Germany.
| | - M Batke
- University Emden/Leer, Emden, Germany
| | - G Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - A Freyberger
- Research and Development, Pharmaceuticals, RED-PCD-TOX-P&PC Clinical Pathology, Bayer AG, Wuppertal, Germany
| | - T Gebel
- Federal Institute for Occupational Safety and Health (BAuA), Dortmund, Germany
| | - U Gundert-Remy
- Institute for Clinical Pharmacology and Toxicology, Universitätsmedizin Berlin, Charité Berlin, Germany
| | - J G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund University, Dortmund, Germany
| | - A Mangerich
- Molecular Toxicology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - A Matthiessen
- Central Unit for Environmental Hygiene, University Hospital Schleswig-Holstein (UKSH), Kiel, Germany
| | - F Partosch
- Department of Toxicology, Fraunhofer-Institute for Toxicology and Experimental Medicine (ITEM), Hannover, Germany
| | - T Schupp
- Department of Chemical Engineering, University of Applied Science Muenster, Steinfurt, Germany
| | - K M Wollin
- Formerly Public Health Agency of Lower Saxony, Hannover, Germany
| | - H Foth
- Institute of Environmental Toxicology, University of Halle, Halle/Saale, Germany
| |
Collapse
|
3
|
Mahmud SS, Moni M, Imran AB, Foyez T. Analysis of the suspected cancer-causing potassium bromate additive in bread samples available on the market in and around Dhaka City in Bangladesh. Food Sci Nutr 2021; 9:3752-3757. [PMID: 34262734 PMCID: PMC8269585 DOI: 10.1002/fsn3.2338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/12/2022] Open
Abstract
Bread is one of the most popular foods consumed worldwide. It is a very popular foodstuff consumed in almost every house in Bangladesh as breakfast. Bread is prepared predominantly from flour to meet the daily carbohydrate demand and enhances its overall nutrition value using various ingredients. Potassium bromate (KBrO3) is an alluring additive to improve bread quality by bread makers. But due to the well-known toxic and carcinogenic effect, certain levels of KBrO3 residue are not suitable for bread, and it is therefore forbidden in many countries. The key objective of this study is to evaluate the safety status of bread in Dhaka City and its proximity to Bangladesh. Twenty-one randomly collected bread samples were tested in this study from different bakeries or shops in and around Dhaka City. The levels of KBrO3 were analyzed spectrophotometrically, and the maximum concentration found in the bread sample was 9.29 μg/g. A total of 67% of collected bread samples showed elevated levels of KBrO3 relative to the allowable amount prescribed by various Food and Drug Administration worldwide. KBrO3 is toxic to consumers and could endanger their health over continuous regular consumption and thus need to be monitored strictly.
Collapse
Affiliation(s)
- Syed Sadman Mahmud
- Department of Pharmaceutical SciencesSchool of Health and Life SciencesNorth South UniversityDhakaBangladesh
| | - Mukta Moni
- Department of Pharmaceutical SciencesSchool of Health and Life SciencesNorth South UniversityDhakaBangladesh
| | - Abu Bin Imran
- Department of ChemistryFaculty of EngineeringBangladesh University of Engineering and TechnologyDhakaBangladesh
| | - Tahmina Foyez
- Department of Pharmaceutical SciencesSchool of Health and Life SciencesNorth South UniversityDhakaBangladesh
| |
Collapse
|
4
|
Al-Anazi KM, Al-Mareed AA, Farah MA, Ali MA, Hailan WAQ, Al-Hemaid FM. Protective Effect of Capparis spinosa Extract against Potassium Bromate Induced Oxidative Stress and Genotoxicity in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:8875238. [PMID: 33531925 PMCID: PMC7837764 DOI: 10.1155/2021/8875238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/20/2020] [Accepted: 01/10/2021] [Indexed: 11/17/2022]
Abstract
Despite the commercial value of potassium bromate (KBrO3), it has been linked to many diseases including cancer. Capparis spinosa possesses exceptional ethnobotanical, pharmaceutical, and economic prominence by virtue of its bioactive components. The present study was designed to explore the protective role and antioxidant potential of ethanolic leaves extract of C. spinosa against the oxidative stress, genotoxicity, and apoptosis induced by KBrO3 in an experimental animal model. The results of the study revealed remarkable diminution in the levels of oxidative stress in all the treatment groups. C. spinosa extract attenuated the toxic effects of KBrO3 significantly (p < 0.05) in a time- and dose-dependent manner by restoring the normal levels of ROS and antioxidative enzymes in serum and liver tissues. The extract also abolished the oxidative DNA damage as it was evident in decreased frequency of micronuclei. A marked increase in viable cells was observed in annexin-V apoptosis assay. In conclusion, the findings of the present study demonstrate that ethanolic leaves extract of C. spinosa has considerable protective effects against KBrO3-induced toxicity in experimental mice which is attributed to its antioxidant activity. Therefore, leaves of C. spinosa could be used as a potential source of natural antioxidant and bioactive compounds.
Collapse
Affiliation(s)
- Khalid Mashai Al-Anazi
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ali Abdullah Al-Mareed
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammed Abul Farah
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - M. Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Waleed A. Q. Hailan
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Fahad M. Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Spassova MA. Statistical Approach to Identify Threshold and Point of Departure in Dose-Response Data. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2019; 39:940-956. [PMID: 30253453 DOI: 10.1111/risa.13191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/09/2018] [Accepted: 08/18/2018] [Indexed: 06/08/2023]
Abstract
The study presents an integrated, rigorous statistical approach to define the likelihood of a threshold and point of departure (POD) based on dose-response data using nested family of bent-hyperbola models. The family includes four models: the full bent-hyperbola model, which allows for transition between two linear regiments with various levels of smoothness; a bent-hyperbola model reduced to a spline model, where the transition is fixed to a knot; a bent-hyperbola model with a restricted negative asymptote slope of zero, named hockey-stick with arc (HS-Arc); and spline model reduced further to a hockey-stick type model (HS), where the first linear segment has a slope of zero. A likelihood-ratio test is used to discriminate between the models and determine if the more flexible versions of the model provide better or significantly better fit than a hockey-stick type model. The full bent-hyperbola model can accommodate both threshold and nonthreshold behavior, can take on concave up and concave down shapes with various levels of curvature, can approximate the biochemically relevant Michaelis-Menten model, and even be reduced to a straight line. Therefore, with the use of this model, the presence or absence of a threshold may even become irrelevant and the best fit of the full bent-hyperbola model be used to characterize the dose-response behavior and risk levels, with no need for mode of action (MOA) information. Point of departure (POD), characterized by exposure level at which some predetermined response is reached, can be defined using the full model or one of the better fitting reduced models.
Collapse
|
6
|
Bruno KA, Mathews JE, Yang AL, Frisancho JA, Scott AJ, Greyner HD, Molina FA, Greenaway MS, Cooper GM, Bucek A, Morales-Lara AC, Hill AR, Mease AA, Di Florio DN, Sousou JM, Coronado AC, Stafford AR, Fairweather D. BPA Alters Estrogen Receptor Expression in the Heart After Viral Infection Activating Cardiac Mast Cells and T Cells Leading to Perimyocarditis and Fibrosis. Front Endocrinol (Lausanne) 2019; 10:598. [PMID: 31551929 PMCID: PMC6737078 DOI: 10.3389/fendo.2019.00598] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 08/14/2019] [Indexed: 01/17/2023] Open
Abstract
Myocarditis is an inflammatory heart disease that leads to dilated cardiomyopathy (DCM) and heart failure. Sex hormones play an important role in the development of myocarditis with testosterone driving disease in males and estrogen being cardioprotective in females. The human population is widely exposed to the endocrine disruptor bisphenol A (BPA) from plastics such as water bottles, plastic food containers, copy paper, and receipts. Several clinical and numerous animal studies have found an association between elevated BPA levels and cardiovascular disease. A recent report found elevated levels of BPA in the serum of patients with DCM compared to healthy controls. In this study we examined whether exposure to BPA for 2 weeks prior to viral infection and leading up to myocarditis at day 10 altered inflammation in female BALB/c mice housed in standard plastic cages/water bottles with soy-free food and bedding. We found that a human relevant dose of BPA (25 μg/L) in drinking water, with an estimated exposure of 5 μg BPA/kg BW, significantly increased myocarditis and pericarditis compared to control water without altering viral genome levels in the heart. BPA exposure activated ERα and ERβ in the spleen 24 h after infection and phosphorylated ERα and ERβ during myocarditis, but decreased ERα and increased ERβ mRNA in the heart as measured by qRT-PCR. Exposure to BPA significantly increased CD4+ T cells, IFNγ, IL-17A, TLR4, caspase-1, and IL-1β in the heart. BPA exposure also increased cardiac fibrosis compared to controls. Mast cells, which are associated with cardiac remodeling, were found to increase in number and degranulation, particularly along the pericardium. Interestingly, plastic caging/water bottle exposure alone led to increased mast cell numbers, pericardial degranulation and fibrosis in female BALB/c mice compared to animals housed in glass cages/water bottles with soy-free food and bedding. These data suggest that BPA exposure may increase the risk of developing myocarditis after a viral infection in women.
Collapse
Affiliation(s)
- Katelyn Ann Bruno
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Alex Lingyun Yang
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - J. Augusto Frisancho
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Ashley Jennie Scott
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Henry David Greyner
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Frank Anthony Molina
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Merci Shekinah Greenaway
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - George Maxwell Cooper
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Adriana Bucek
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | | | - Anneliese Ruth Hill
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Anna Alisa Mease
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - Damian Nicolas Di Florio
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
| | - John Michael Sousou
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | | | - Allison Ray Stafford
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
| | - DeLisa Fairweather
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, United States
- Center for Clinical and Translational Science, Mayo Clinic, Jacksonville, FL, United States
- Department of Immunology, Mayo Clinic, Jacksonville, FL, United States
- Department of Environmental Health Sciences, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
- *Correspondence: DeLisa Fairweather
| |
Collapse
|
7
|
Akagi J, Yokoi M, Cho YM, Toyoda T, Ohmori H, Hanaoka F, Ogawa K. Hypersensitivity of mouse embryonic fibroblast cells defective for DNA polymerases η, ι and κ to various genotoxic compounds: Its potential for application in chemical genotoxic screening. DNA Repair (Amst) 2017; 61:76-85. [PMID: 29247828 DOI: 10.1016/j.dnarep.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 10/19/2017] [Accepted: 11/23/2017] [Indexed: 12/11/2022]
Abstract
Genotoxic agents cause modifications of genomic DNA, such as alkylation, oxidation, bulky adduct formation, and strand breaks, which potentially induce mutations and changes to the structure or number of genes. Majority of point mutations are generated during error-prone bypass of modified nucleotides (translesion DNA synthesis, TLS); however, when TLS fails, replication forks stalled at lesions eventually result in more lethal effects, formation of double-stranded breaks (DSBs). Here we compared sensitivities to various compounds among mouse embryonic fibroblasts derived from wild-type and knock-out mice lacking one of the three Y-family TLS DNA polymerases (Polη, Polι, and Polκ) or all of them (TKO). The compounds tested in this study include genotoxins such as methyl methanesulfonate (MMS) and nongenotoxins such as ammonium chloride. We found that TKO cells exhibited the highest sensitivities to most of the tested genotoxins, but not to the non-genotoxins. In order to quantitatively evaluate the hypersensitivity of TKO cells to different chemicals, we calculated ratios of half-maximal inhibitory concentration for WT and TKO cells. The ratios for 9 out of 10 genotoxins ranged from 2.29 to 5.73, while those for 5 nongenotoxins ranged from 0.81 to 1.63. Additionally, the two markers for DNA damage, ubiquitylated proliferating cell nuclear antigen and γ-H2AX after MMS treatment, were accumulated in TKO cells more greatly than in WT cells. Furthermore, following MMS treatment, TKO cells exhibited increased frequency of sister chromatid exchange compared with WT cells. These results indicated that the hypersensitivity of TKO cells to genotoxins resulted from replication fork stalling and subsequent DNA double-strand breaks, thus demonstrating that TKO cells should be useful for evaluating chemical genotoxicity.
Collapse
Affiliation(s)
- Junichi Akagi
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan.
| | - Masayuki Yokoi
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo Prefecture 657-8501, Japan
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Haruo Ohmori
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan
| | - Fumio Hanaoka
- Department of Life Science, Faculty of Science, Gakushuin University, 1-5-1 Mejiro, Toshima-ku, Tokyo 171-8588, Japan; Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki Prefecture 305-8577, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| |
Collapse
|
8
|
Katsnelson BA, Panov VG, Varaksin AN, Minigalieva IA, Privalova LI, Sutunkova MP. Changes in the Dose-Response Relationship of One Toxicant Under Simultaneous Exposure to Another Toxicant. Dose Response 2016; 14:1559325816672935. [PMID: 27867320 PMCID: PMC5105299 DOI: 10.1177/1559325816672935] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We considered, in general form for a 22 full factorial experiment, linear approximations of the organism's dose-response relationship for some factors operating alone and modification of this relationship by another factor operating in the background. A typological classification of such modifications is suggested. An analysis of the outcomes obtained in a number of subchronic animal experiments on rats in which this response was assessed by changes in a large number of biomedical indices revealed that all theoretically possible variants (types) of the modification under consideration are actually observed depending on a specific index and specific harmful exposure. Statistical significance estimation procedures are formulated for each of them.
Collapse
Affiliation(s)
- B. A. Katsnelson
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - V. G. Panov
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - A. N. Varaksin
- Institute of Industrial Ecology, The Urals Branch of the Russian Academy of Sciences, Ekaterinburg, Russia
| | - I. A. Minigalieva
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - L. I. Privalova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| | - M. P. Sutunkova
- The Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, Ekaterinburg, Russia
| |
Collapse
|
9
|
Kinetic Modeling Reveals the Roles of Reactive Oxygen Species Scavenging and DNA Repair Processes in Shaping the Dose-Response Curve of KBrO₃-Induced DNA Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:764375. [PMID: 26448819 PMCID: PMC4581570 DOI: 10.1155/2015/764375] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 07/21/2015] [Indexed: 11/24/2022]
Abstract
We have developed a kinetic model to investigate how DNA repair processes and scavengers of reactive oxygen species (ROS) can affect the dose-response shape of prooxidant induced DNA damage. We used as an example chemical KBrO3 which is activated by glutathione and forms reactive intermediates that directly interact with DNA to form 8-hydroxy-2-deoxyguanosine DNA adducts (8-OH-dG). The single strand breaks (SSB) that can result from failed base excision repair of these adducts were considered as an effect downstream from 8-OH-dG. We previously demonstrated that, in the presence of effective base excision repair, 8-OH-dG can exhibit threshold-like dose-response dependence, while the downstream SSB can still exhibit a linear dose-response. Here we demonstrate that this result holds for a variety of conditions, including low levels of GSH, the presence of additional SSB repair mechanisms, or a scavenger. It has been shown that melatonin, a terminal scavenger, inhibits KBrO3-caused oxidative damage. Our modeling revealed that sustained exposure to KBrO3 can lead to fast scavenger exhaustion, in which case the dose-response shapes for both endpoints are not substantially affected. The results are important to consider when forming conclusions on a chemical's toxicity dose dependence based on the dose-response of early genotoxic events.
Collapse
|
10
|
Guérard M, Baum M, Bitsch A, Eisenbrand G, Elhajouji A, Epe B, Habermeyer M, Kaina B, Martus H, Pfuhler S, Schmitz C, Sutter A, Thomas A, Ziemann C, Froetschl R. Assessment of mechanisms driving non-linear dose–response relationships in genotoxicity testing. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2015; 763:181-201. [DOI: 10.1016/j.mrrev.2014.11.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/31/2014] [Accepted: 11/01/2014] [Indexed: 01/15/2023]
|
11
|
Hoffmann GR, Moczula AV, Laterza AM, Macneil LK, Tartaglione JP. Adaptive response to hydrogen peroxide in yeast: induction, time course, and relationship to dose-response models. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:384-396. [PMID: 23740476 DOI: 10.1002/em.21785] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 04/02/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
The assay for trp5 gene conversion and ilv1-92 reversion in Saccharomyces cerevisiae strain D7 was used to characterize the induction of an adaptive response by hydrogen peroxide (H(2)O(2)). Effects of a small priming dose on the genotoxic effects of a larger challenge dose were measured in exponential cultures and in early stationary phase. An adaptive response, indicated by smaller convertant and revertant frequencies after the priming dose, occurred at lower priming and challenge doses in young, well-aerated cultures. Closely spaced priming doses from 0.000975 to 2 mM, followed by a 1 mM challenge, showed that the induction of the adaptive response is biphasic. In exponential cultures it was maximal with a priming dose of 0.125-0.25 mM. Very small priming doses were insufficient to induce the adaptive response, whereas higher doses contributed to damage. A significant adaptive response was detected when the challenge dose was administered 10-20 min after the priming exposure. It was fully expressed within 45 min, and the yeast began to return to the nonadapted state after 4-6 hr. Because of the similarity of the biphasic induction to hormetic curves and the proposal that adaptive responses are a manifestation of hormesis, we evaluated whether the low doses of H(2)O(2) that induce the adaptive response show a clear hormetic response without a subsequent challenge dose. Hormesis was not evident, but there was an apparent threshold for genotoxicity at or slightly below 0.125 mM. The results are discussed with respect to linear, threshold, and hormesis dose-response models.
Collapse
Affiliation(s)
- George R Hoffmann
- Department of Biology, College of the Holy Cross, Worcester, MA 01610-2395, USA.
| | | | | | | | | |
Collapse
|
12
|
Heard PL, Rubitski EE, Spellman RA, Schuler MJ. Phenolphthalein induces centrosome amplification and tubulin depolymerization in vitro. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2013; 54:308-316. [PMID: 23677914 DOI: 10.1002/em.21781] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 03/27/2013] [Accepted: 03/26/2013] [Indexed: 06/02/2023]
Abstract
Aneuploidy is a major cause of human reproductive failure and plays a large role in cancer. Phenolphthalein (PHT) induces tumors in rodents but its primary mechanism does not seem to be DNA damage. In heterozygous TSG-p53(®) mice, PHT induces lymphomas and also micronuclei (MN), many containing kinetochores (K), implying chromosome loss (aneuploidy). The induction of aneuploidy would be compatible with the loss of the normal p53 gene seen in the lymphomas. In this study, we confirm PHT's aneugenicity and determine the aneugenic mechanism of PHT by combining traditional genetic toxicology assays with image and flow cytometry methods. The data revealed that PHT induces tubulin polymerization abnormalities and deregulates the centrosome duplication cycle causing centrosome amplification. We also show that one of the consequences of these events is apoptosis.
Collapse
Affiliation(s)
- Pamela L Heard
- Pfizer Worldwide Research and Development, Genetic Toxicology Center of Emphasis, Groton, Connecticut, USA.
| | | | | | | |
Collapse
|