1
|
Huliganga E, Cho E, Swartz CD, Williams A, Recio L, Salk JJ, Marchetti F, Yauk CL. Adverse Outcome Pathway-Informed Integrated Testing to Identify Chemicals Causing Genotoxicity Through Oxidative DNA Damage: Case Study on 4-Nitroquinoline 1-Oxide. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2025; 66:185-198. [PMID: 40341686 PMCID: PMC12087725 DOI: 10.1002/em.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 05/10/2025]
Abstract
Adverse outcome pathways (AOPs) provide a framework to organize and weigh evidence linking molecular interactions of toxicants in cells to adverse outcomes relevant to risk assessment or regulatory decision-making. Applying this framework facilitates the interpretation of data produced using new test methods. We used an existing AOP (AOP #296) that describes how oxidative DNA damage leads to mutations and chromosomal aberrations to develop an integrated testing strategy to evaluate whether a chemical operates through this pathway. We exposed human TK6 cells to increasing concentrations of 4-nitroquinoline 1-oxide (4NQO), a tobacco mimetic that causes oxidative DNA damage, in a time-series design. We measured oxidative DNA damage and strand breaks using the high-throughput CometChip assay with and without formamidopyrimidine DNA glycosylase (Fpg), alongside analyses of micronucleus (MN) frequency by flow cytometry, and mutations by error-corrected sequencing (duplex sequencing-DS). Our analysis shows how these methods can be combined to quantify 4NQO-induced, concentration- and time-dependent increases in: (a) oxidative DNA damage (occurred early and at low concentrations); (b) strand breaks (remained elevated to 6 h post-exposure); (c) MN frequency (at 24 h); (d) mutation frequency (at 48 h); and (e) C > A transversions consistent with expected substitutions induced by oxidative DNA lesions. The time series shows the repair of oxidative DNA damage with persistent strand breaks remaining at 6 h. Overall, we provide an example of an AOP-informed testing strategy and contribute to the quantitative understanding of AOP #296. We also demonstrate the value of DS as an effective approach for mutagenicity assessment.
Collapse
Affiliation(s)
- Elizabeth Huliganga
- Department of BiologyUniversity of OttawaOttawaCanada
- Environmental Health Science and Research Bureau, Health CanadaOttawaCanada
| | - Eunnara Cho
- Environmental Health Science and Research Bureau, Health CanadaOttawaCanada
| | | | - Andrew Williams
- Environmental Health Science and Research Bureau, Health CanadaOttawaCanada
| | | | - Jesse J. Salk
- Division of Hematology and OncologyUniversity of Washington School of MedicineSeattleWAUSA
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health CanadaOttawaCanada
- Department of BiologyCarleton UniversityOttawaCanada
| | | |
Collapse
|
2
|
Huliganga E, Marchetti F, O'Brien JM, Chauhan V, Yauk CL. A Case Study on Integrating a New Key Event Into an Existing Adverse Outcome Pathway on Oxidative DNA Damage: Challenges and Approaches in a Data-Rich Area. FRONTIERS IN TOXICOLOGY 2022; 4:827328. [PMID: 35573276 PMCID: PMC9097222 DOI: 10.3389/ftox.2022.827328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Adverse outcome pathways (AOPs) synthesize toxicological information to convey and weigh evidence in an accessible format. AOPs are constructed in modules that include key events (KEs) and key event relationships (KERs). This modular structure facilitates AOP expansion and network development. AOP development requires finding relevant information to evaluate the weight of evidence supporting each KER. To do this, the use of transparent/reproducible search methods, such as systematic review (SR), have been proposed. Applying SR to AOP development in a data-rich area is difficult as SR requires screening each article returned from a search. Here we describe a case study to integrate a single new KE into an existing AOP. We explored the use of SR concepts and software to conduct a transparent and documented literature search to identify empirical data supporting the incorporation of a new KE, increase in cellular reactive oxygen species (ROS), upstream of an existing AOP: “Oxidative DNA Damage Leading to Chromosomal Aberrations and Mutations”. Connecting this KE to the AOP is supported by the development of five new KERs, the most important being the first adjacent KER (increase in ROS leading to oxidative DNA damage). We initially searched for evidence of all five KERs and screened 100 papers to develop a preliminary evidence map. After removing papers not containing relevant data based on our Population, Exposure, Comparator and Outcome statement, 39 articles supported one or more KERs; these primarily addressed temporal or dose concordance of the non-adjacent KERs with limited evidence supporting the first adjacent KER. We thus conducted a second focused set of searches using search terms for specific methodologies to measure these first two KEs. After screening, 12 articles were identified that contained quantitative evidence supporting the first adjacent KER. Given that integrating a new KE into an existing AOP requires the development of multiple KERs, this approach of building a preliminary evidence map, focusing evidence gathering on the first adjacent KER, and applying reproducible search strategies using specific methodologies for the first adjacent KER, enabled us to prioritize studies to support expansion of this data-rich AOP.
Collapse
Affiliation(s)
- Elizabeth Huliganga
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francesco Marchetti
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, ON, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada.,Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
3
|
O'Brien JM, Yauk CL. Introducing AOP Reports: Collaborative review and publication of adverse outcome pathways. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:116-117. [PMID: 35435297 DOI: 10.1002/em.22481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 05/22/2023]
Affiliation(s)
- Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
4
|
Cho E, Allemang A, Audebert M, Chauhan V, Dertinger S, Hendriks G, Luijten M, Marchetti F, Minocherhomji S, Pfuhler S, Roberts DJ, Trenz K, Yauk CL. AOP report: Development of an adverse outcome pathway for oxidative DNA damage leading to mutations and chromosomal aberrations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:118-134. [PMID: 35315142 PMCID: PMC9322445 DOI: 10.1002/em.22479] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/18/2022] [Indexed: 05/22/2023]
Abstract
The Genetic Toxicology Technical Committee (GTTC) of the Health and Environmental Sciences Institute (HESI) is developing adverse outcome pathways (AOPs) that describe modes of action leading to potentially heritable genomic damage. The goal was to enhance the use of mechanistic information in genotoxicity assessment by building empirical support for the relationships between relevant molecular initiating events (MIEs) and regulatory endpoints in genetic toxicology. Herein, we present an AOP network that links oxidative DNA damage to two adverse outcomes (AOs): mutations and chromosomal aberrations. We collected empirical evidence from the literature to evaluate the key event relationships between the MIE and the AOs, and assessed the weight of evidence using the modified Bradford-Hill criteria for causality. Oxidative DNA damage is constantly induced and repaired in cells given the ubiquitous presence of reactive oxygen species and free radicals. However, xenobiotic exposures may increase damage above baseline levels through a variety of mechanisms and overwhelm DNA repair and endogenous antioxidant capacity. Unrepaired oxidative DNA base damage can lead to base substitutions during replication and, along with repair intermediates, can also cause DNA strand breaks that can lead to mutations and chromosomal aberrations if not repaired adequately. This AOP network identifies knowledge gaps that could be filled by targeted studies designed to better define the quantitative relationships between key events, which could be leveraged for quantitative chemical safety assessment. We anticipate that this AOP network will provide the building blocks for additional genotoxicity-associated AOPs and aid in designing novel integrated testing approaches for genotoxicity.
Collapse
Affiliation(s)
- Eunnara Cho
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| | | | | | - Vinita Chauhan
- Consumer and Clinical Radiation Protection BureauHealth CanadaOttawaOntarioCanada
| | | | | | - Mirjam Luijten
- Centre for Health ProtectionNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Francesco Marchetti
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
| | - Sheroy Minocherhomji
- Amgen Research, Translational Safety and Bioanalytical SciencesAmgen Inc.Thousand OaksCaliforniaUSA
| | | | | | | | - Carole L. Yauk
- Environmental Health Science and Research BureauHealth CanadaOttawaOntarioCanada
- Department of BiologyCarleton UniversityOttawaOntarioCanada
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
| |
Collapse
|
5
|
Tanabe S, Sachana M, FitzGerald R. Adverse Outcome Pathways in reproductive and developmental toxicology. REPRODUCTIVE AND DEVELOPMENTAL TOXICOLOGY 2022:63-72. [DOI: 10.1016/b978-0-323-89773-0.00004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Tcheremenskaia O, Benigni R. Toward regulatory acceptance and improving the prediction confidence of in silico approaches: a case study of genotoxicity. Expert Opin Drug Metab Toxicol 2021; 17:987-1005. [PMID: 34078212 DOI: 10.1080/17425255.2021.1938540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Genotoxicity is an imperative component of the human health safety assessment of chemicals. Its secure forecast is of the utmost importance for all health prevention strategies and regulations.Areas covered: We surveyed several types of alternative, animal-free approaches ((quantitative) structure-activity relationship (Q)SAR, read-across, Adverse Outcome Pathway, Integrated Approaches to Testing and Assessment) for genotoxicity prediction within the needs of regulatory frameworks, putting special emphasis on data quality and uncertainties issues.Expert opinion: (Q)SAR models and read-across approaches for in vitro bacterial mutagenicity have sufficient reliability for use in prioritization processes, and as support in regulatory decisions in combination with other types of evidence. (Q)SARs and read-across methodologies for other genotoxicity endpoints need further improvements and should be applied with caution. It appears that there is still large room for improvement of genotoxicity prediction methods. Availability of well-curated high-quality databases, covering a broader chemical space, is one of the most important needs. Integration of in silico predictions with expert knowledge, weight-of-evidence-based assessment, and mechanistic understanding of genotoxicity pathways are other key points to be addressed for the generation of more accurate and trustable results.
Collapse
Affiliation(s)
- Olga Tcheremenskaia
- Environmental and Health Department, Istituto Superiore Di Sanità (ISS), Rome, Italy, Rome, Italy
| | | |
Collapse
|
7
|
Johnson GE, Dobo K, Gollapudi B, Harvey J, Kenny J, Kenyon M, Lynch A, Minocherhomji S, Nicolette J, Thybaud V, Wheeldon R, Zeller A. Permitted daily exposure limits for noteworthy N-nitrosamines. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:293-305. [PMID: 34089278 DOI: 10.1002/em.22446] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
A genotoxic carcinogen, N-nitrosodimethylamine (NDMA), was detected as a synthesis impurity in some valsartan drugs in 2018, and other N-nitrosamines, such as N-nitrosodiethylamine (NDEA), were later detected in other sartan products. N-nitrosamines are pro-mutagens that can react with DNA following metabolism to produce DNA adducts, such as O6 -alkyl-guanine. The adducts can result in DNA replication miscoding errors leading to GC>AT mutations and increased risk of genomic instability and carcinogenesis. Both NDMA and NDEA are known rodent carcinogens in male and female rats. The DNA repair enzyme, methylguanine DNA-methyltransferase can restore DNA integrity via the removal of alkyl groups from guanine in an error-free fashion and this can result in nonlinear dose responses and a point of departure or "practical threshold" for mutation at low doses of exposure. Following International recommendations (ICHM7; ICHQ3C and ICHQ3D), we calculated permissible daily exposures (PDE) for NDMA and NDEA using published rodent cancer bioassay and in vivo mutagenicity data to determine benchmark dose values and define points of departure and adjusted with appropriate uncertainty factors (UFs). PDEs for NDMA were 6.2 and 0.6 μg/person/day for cancer and mutation, respectively, and for NDEA, 2.2 and 0.04 μg/person/day. Both PDEs are higher than the acceptable daily intake values (96 ng for NDMA and 26.5 ng for NDEA) calculated by regulatory authorities using simple linear extrapolation from carcinogenicity data. These PDE calculations using a bench-mark approach provide a more robust assessment of exposure limits compared with simple linear extrapolations and can better inform risk to patients exposed to the contaminated sartans.
Collapse
Affiliation(s)
- George E Johnson
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Krista Dobo
- Genetic Toxicology, Drug Safety Research and Development, Pfizer, Groton, Connecticut, USA
| | - Bhaskar Gollapudi
- Center for Toxicology and Mechanistic Biology, Exponent Consulting, Midland, Michigan, USA
| | | | | | - Michelle Kenyon
- Genetic Toxicology, Drug Safety Research and Development, Pfizer, Groton, Connecticut, USA
| | | | | | - John Nicolette
- Genetic, Environmental and Occupational Toxicology, AbbVie, Chicago, Illinois, USA
| | | | - Ryan Wheeldon
- Swansea University Medical School, Swansea University, Swansea, Wales, UK
| | - Andreas Zeller
- Pharmaceutical Sciences, pRED Innovation Center Basel, Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
8
|
Chauhan V, Wilkins RC, Beaton D, Sachana M, Delrue N, Yauk C, O’Brien J, Marchetti F, Halappanavar S, Boyd M, Villeneuve D, Barton-Maclaren TS, Meek B, Anghel C, Heghes C, Barber C, Perkins E, Leblanc J, Burtt J, Laakso H, Laurier D, Lazo T, Whelan M, Thomas R, Cool D. Bringing together scientific disciplines for collaborative undertakings: a vision for advancing the adverse outcome pathway framework. Int J Radiat Biol 2021; 97:431-441. [PMID: 33539251 PMCID: PMC10711570 DOI: 10.1080/09553002.2021.1884314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Decades of research to understand the impacts of various types of environmental occupational and medical stressors on human health have produced a vast amount of data across many scientific disciplines. Organizing these data in a meaningful way to support risk assessment has been a significant challenge. To address this and other challenges in modernizing chemical health risk assessment, the Organisation for Economic Cooperation and Development (OECD) formalized the adverse outcome pathway (AOP) framework, an approach to consolidate knowledge into measurable key events (KEs) at various levels of biological organisation causally linked to disease based on the weight of scientific evidence (http://oe.cd/aops). Currently, AOPs have been considered predominantly in chemical safety but are relevant to radiation. In this context, the Nuclear Energy Agency's (NEA's) High-Level Group on Low Dose Research (HLG-LDR) is working to improve research co-ordination, including radiological research with chemical research, identify synergies between the fields and to avoid duplication of efforts and resource investments. To this end, a virtual workshop was held on 7 and 8 October 2020 with experts from the OECD AOP Programme together with the radiation and chemical research/regulation communities. The workshop was a coordinated effort of Health Canada, the Electric Power Research Institute (EPRI), and the Nuclear Energy Agency (NEA). The AOP approach was discussed including key issues to fully embrace its value and catalyze implementation in areas of radiation risk assessment. CONCLUSIONS A joint chemical and radiological expert group was proposed as a means to encourage cooperation between risk assessors and an initial vision was discussed on a path forward. A global survey was suggested as a way to identify priority health outcomes of regulatory interest for AOP development. Multidisciplinary teams are needed to address the challenge of producing the appropriate data for risk assessments. Data management and machine learning tools were highlighted as a way to progress from weight of evidence to computational causal inference.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Ruth C. Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | | | - Magdalini Sachana
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Nathalie Delrue
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-operation and Development (OECD), Paris, France
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Canada
| | - Jason O’Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, Canada
| | - Francesco Marchetti
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Sabina Halappanavar
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Canada
| | - Michael Boyd
- U.S. Environmental Protection Agency, Office of Air and Radiation, Washington, DC, USA
| | - Daniel Villeneuve
- U.S. Environmental Protection Agency, Office of Research and Development, Duluth, MN, USA
| | | | - Bette Meek
- McLaughlin Centre, University of Ottawa, Ottawa, Canada
| | | | | | | | - Edward Perkins
- US Army Engineer Research and Development Center Jackson, Vicksburg, MS, USA
| | - Julie Leblanc
- Directorate of Environment and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Julie Burtt
- Directorate of Environment and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Holly Laakso
- Canadian Nuclear Laboratories, Chalk River, Canada
| | - Dominique Laurier
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Ted Lazo
- Radiological Protection and Human Aspects of Nuclear Safety Division, OECD Nuclear Energy Agency, Paris, France
| | - Maurice Whelan
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Russell Thomas
- U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Donald Cool
- Electric Power Research Institute, Charlotte, NC, USA
| |
Collapse
|
9
|
White PA, Long AS, Johnson GE. Quantitative Interpretation of Genetic Toxicity Dose-Response Data for Risk Assessment and Regulatory Decision-Making: Current Status and Emerging Priorities. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:66-83. [PMID: 31794061 DOI: 10.1002/em.22351] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 11/27/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
The screen-and-bin approach for interpretation of genotoxicity data is predicated on three false assumptions: that genotoxicants are rare, that genotoxicity dose-response functions do not contain a low-dose region mechanistically characterized by zero-order kinetics, and that genotoxicity is not a bona fide toxicological endpoint. Consequently, there is a need to develop and implement quantitative methods to interpret genotoxicity dose-response data for risk assessment and regulatory decision-making. Standardized methods to analyze dose-response data, and determine point-of-departure (PoD) metrics, have been established; the most robust PoD is the benchmark dose (BMD). However, there are no standards for regulatory interpretation of mutagenicity BMDs. Although 5-10% is often used as a critical effect size (CES) for BMD determination, values for genotoxicity endpoints have not been established. The use of BMDs to determine health-based guidance values (HBGVs) requires assessment factors (AFs) to account for interspecies differences and variability in human sensitivity. Default AFs used for other endpoints may not be appropriate for interpretation of in vivo mutagenicity BMDs. Analyses of published dose-response data showing the effects of compensatory pathway deficiency indicate that AFs for sensitivity differences should be in the range of 2-20. Additional analyses indicate that the AF to compensate for short treatment durations should be in the range of 5-15. Future work should use available data to empirically determine endpoint-specific CES values; similarly, to determine AF values for BMD adjustment. Future work should also evaluate the ability to use in vitro dose-response data for risk assessment, and the utility of probabilistic methods for determination of mutagenicity HBGVs. Environ. Mol. Mutagen. 61:66-83, 2020. © 2019 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alexandra S Long
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
| | - George E Johnson
- Swansea University Medical School, Swansea, Wales, United Kingdom
| |
Collapse
|
10
|
Heflich RH, Johnson GE, Zeller A, Marchetti F, Douglas GR, Witt KL, Gollapudi BB, White PA. Mutation as a Toxicological Endpoint for Regulatory Decision-Making. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:34-41. [PMID: 31600846 DOI: 10.1002/em.22338] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/09/2019] [Accepted: 09/14/2019] [Indexed: 05/23/2023]
Abstract
Mutations induced in somatic cells and germ cells are responsible for a variety of human diseases, and mutation per se has been considered an adverse health concern since the early part of the 20th Century. Although in vitro and in vivo somatic cell mutation data are most commonly used by regulatory agencies for hazard identification, that is, determining whether or not a substance is a potential mutagen and carcinogen, quantitative mutagenicity dose-response data are being used increasingly for risk assessments. Efforts are currently underway to both improve the measurement of mutations and to refine the computational methods used for evaluating mutation data. We recommend continuing the development of these approaches with the objective of establishing consensus regarding the value of including the quantitative analysis of mutation per se as a required endpoint for comprehensive assessments of toxicological risk. Environ. Mol. Mutagen. 61:34-41, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Robert H Heflich
- U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, Arkansas
| | | | - Andreas Zeller
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Kristine L Witt
- National Institutes of Health, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | | | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
11
|
Sasaki JC, Allemang A, Bryce SM, Custer L, Dearfield KL, Dietz Y, Elhajouji A, Escobar PA, Fornace AJ, Froetschl R, Galloway S, Hemmann U, Hendriks G, Li HH, Luijten M, Ouedraogo G, Peel L, Pfuhler S, Roberts DJ, Thybaud V, van Benthem J, Yauk CL, Schuler M. Application of the adverse outcome pathway framework to genotoxic modes of action. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:114-134. [PMID: 31603995 DOI: 10.1002/em.22339] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 05/22/2023]
Abstract
In May 2017, the Health and Environmental Sciences Institute's Genetic Toxicology Technical Committee hosted a workshop to discuss whether mode of action (MOA) investigation is enhanced through the application of the adverse outcome pathway (AOP) framework. As AOPs are a relatively new approach in genetic toxicology, this report describes how AOPs could be harnessed to advance MOA analysis of genotoxicity pathways using five example case studies. Each of these genetic toxicology AOPs proposed for further development includes the relevant molecular initiating events, key events, and adverse outcomes (AOs), identification and/or further development of the appropriate assays to link an agent to these events, and discussion regarding the biological plausibility of the proposed AOP. A key difference between these proposed genetic toxicology AOPs versus traditional AOPs is that the AO is a genetic toxicology endpoint of potential significance in risk characterization, in contrast to an adverse state of an organism or a population. The first two detailed case studies describe provisional AOPs for aurora kinase inhibition and tubulin binding, leading to the common AO of aneuploidy. The remaining three case studies highlight provisional AOPs that lead to chromosome breakage or mutation via indirect DNA interaction (inhibition of topoisomerase II, production of cellular reactive oxygen species, and inhibition of DNA synthesis). These case studies serve as starting points for genotoxicity AOPs that could ultimately be published and utilized by the broader toxicology community and illustrate the practical considerations and evidence required to formalize such AOPs so that they may be applied to genetic toxicity evaluation schemes. Environ. Mol. Mutagen. 61:114-134, 2020. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | | | | | - Laura Custer
- Bristol-Myers Squibb Company, Drug Safety Evaluation, New Brunswick, New Jersey
| | | | - Yasmin Dietz
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | | | | | | | | | | | | | - Heng-Hong Li
- Georgetown University, Washington, District of Columbia
| | - Mirjam Luijten
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Lauren Peel
- Health and Environmental Sciences Institute, Washington, District of Columbia
| | | | | | - Véronique Thybaud
- Sanofi, Research and Development, Preclinical Safety, Vitry-sur-Seine, France
| | - Jan van Benthem
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Maik Schuler
- Pfizer Inc, World Wide Research and Development, Groton, Connecticut
| |
Collapse
|
12
|
Marchetti F, Douglas GR, Yauk CL. A Return to the Origin of the EMGS: Rejuvenating the Quest for Human Germ Cell Mutagens and Determining the Risk to Future Generations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:42-54. [PMID: 31472026 DOI: 10.1002/em.22327] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/21/2019] [Accepted: 08/28/2019] [Indexed: 05/23/2023]
Abstract
Fifty years ago, the Environmental Mutagen Society (now Environmental Mutagenesis and Genomics Society) was founded with a laser-focus on germ cell mutagenesis and the protection of "our most vital assets"-the sperm and egg genomes. Yet, five decades on, despite the fact that many agents have been demonstrated to induce inherited changes in the offspring of exposed laboratory rodents, there is no consensus on whether human germ cell mutagens exist. We argue that it is time to reevaluate the available data and conclude that we already have evidence for the existence of environmental exposures that impact human germ cells. What is missing are definite data to demonstrate a significant increase in de novo mutations in the offspring of exposed parents. We believe that with over two decades of research advancing knowledge and technologies in genomics, we are at the cusp of generating data to conclusively show that environmental exposures cause heritable de novo changes in the human offspring. We call on the research community to harness our technologies, synergize our efforts, and return to our Founders' original focus. The next 50 years must involve collaborative work between clinicians, epidemiologists, genetic toxicologists, genomics experts and bioinformaticians to precisely define how environmental exposures impact germ cell genomes. It is time for the research and regulatory communities to prepare to interpret the coming outpouring of data and develop a framework for managing, communicating and mitigating the risk of exposure to human germ cell mutagens. Environ. Mol. Mutagen. 61:42-54, 2020. © 2019 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Francesco Marchetti
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - George R Douglas
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Carole L Yauk
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
13
|
Taylor J, Baumgartner A, Schmid T, Brinkworth M. Responses to genotoxicity in mouse testicular germ cells and epididymal spermatozoa are affected by increased age. Toxicol Lett 2019; 310:1-6. [DOI: 10.1016/j.toxlet.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 03/06/2019] [Accepted: 04/08/2019] [Indexed: 12/25/2022]
|
14
|
Lynch AM, Eastmond D, Elhajouji A, Froetschl R, Kirsch-Volders M, Marchetti F, Masumura K, Pacchierotti F, Schuler M, Tweats D. Targets and mechanisms of chemically induced aneuploidy. Part 1 of the report of the 2017 IWGT workgroup on assessing the risk of aneugens for carcinogenesis and hereditary diseases. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:403025. [PMID: 31699346 DOI: 10.1016/j.mrgentox.2019.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
An aneuploidy workgroup was established as part of the 7th International Workshops on Genotoxicity Testing. The workgroup conducted a review of the scientific literature on the biological mechanisms of aneuploidy in mammalian cells and methods used to detect chemical aneugens. In addition, the current regulatory framework was discussed, with the objective to arrive at consensus statements on the ramifications of exposure to chemical aneugens for human health risk assessment. As part of these efforts, the workgroup explored the use of adverse outcome pathways (AOPs) to document mechanisms of chemically induced aneuploidy in mammalian somatic cells. The group worked on two molecular initiating events (MIEs), tubulin binding and binding to the catalytic domain of aurora kinase B, which result in several adverse outcomes, including aneuploidy. The workgroup agreed that the AOP framework provides a useful approach to link evidence for MIEs with aneuploidy on a cellular level. The evidence linking chemically induced aneuploidy with carcinogenicity and hereditary disease was also reviewed and is presented in two companion papers. In addition, the group came to the consensus that the current regulatory test batteries, while not ideal, are sufficient for the identification of aneugens and human risk assessment. While it is obvious that there are many different MIEs that could lead to the induction of aneuploidy, the most commonly observed mechanisms involving chemical aneugens are related to tubulin binding and, to a lesser extent, inhibition of mitotic kinases. The comprehensive review presented here should help with the identification and risk management of aneugenic agents.
Collapse
Affiliation(s)
| | | | - Azeddine Elhajouji
- Novartis Institutes for Biomedical Research, Preclinical Safety, Basel, Switzerland
| | | | | | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Kenichi Masumura
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, Kanagawa, Japan
| | - Francesca Pacchierotti
- Health Protection Technology Division, Laboratory of Biosafety and Risk Assessment, ENEA, CR Casaccia, Rome, Italy
| | | | | |
Collapse
|
15
|
Chauhan V, Said Z, Daka J, Sadi B, Bijlani D, Marchetti F, Beaton D, Gaw A, Li C, Burtt J, Leblanc J, Desrosiers M, Stuart M, Brossard M, Vuong NQ, Wilkins R, Qutob S, McNamee J, Wang Y, Yauk C. Is there a role for the adverse outcome pathway framework to support radiation protection? Int J Radiat Biol 2018; 95:225-232. [PMID: 30373433 DOI: 10.1080/09553002.2019.1532617] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
PURPOSE In 2012, the Organization for Economic Cooperation and Development (OECD) formally launched the Adverse Outcome Pathway (AOP) Programme. The AOP framework has the potential for predictive utility in identifying early biological endpoints linked to adverse effects. It uses the weight of correlative evidence to identify a minimal set of measurable key events that link molecular initiating events to an adverse outcome. AOPs have the capability to identify knowledge gaps and priority areas for future research based on relevance to an adverse outcome. In addition, AOPs can identify pathways that are common among multiple stressors, thereby allowing for the possibility of refined risk assessments based on co-exposure considerations. The AOP framework is increasingly being used in chemical and ecological risk assessment; however, its use in the development of radiation-specific pathways has yet to be fully explored. To bring awareness of the AOP framework to the Canadian radiation community, a workshop was held in Canada in June 2018 that brought together radiation experts from Health Canada, the Canadian Nuclear Laboratories, and the Canadian Nuclear Safety Commission. METHODS The purpose of the workshop was to share knowledge on the AOP framework, specifically (1) to introduce the concept of the AOP framework and its possible utility to Canadian radiation experts; (2) to provide examples on how it has advanced risk assessment; (3) to discuss an illustrative example specific to ionizing radiation; and lastly (4) to identify the broad benefits and challenges of the AOP framework to the radiation community. RESULTS The participants showed interest in the framework, case examples were described and areas of challenge were identified. Herein, we summarize the outcomes of the workshop. CONCLUSIONS Overall, participants agreed that by building AOPs in the radiation field, a network of data-sharing initiatives will enhance our interpretation of existing knowledge where current scientific evidence is minimal. They would provide new avenues to understand effects at low-dose and dose-rates and help to quantify the combined effect of multiple stressors on shared mechanistic pathways.
Collapse
Affiliation(s)
- Vinita Chauhan
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Zakaria Said
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada.,b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Joseph Daka
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Baki Sadi
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Deepti Bijlani
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Francesco Marchetti
- e Environmental Health Sciences and Research Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Danielle Beaton
- f Canadian Nuclear Laboratories , Chalk River , Ontario , Canada
| | - Adelene Gaw
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Chunsheng Li
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Julie Burtt
- d Canadian Nuclear Safety Commission , Ottawa , Ontario , Canada
| | - Julie Leblanc
- d Canadian Nuclear Safety Commission , Ottawa , Ontario , Canada
| | - Marc Desrosiers
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Marilyne Stuart
- f Canadian Nuclear Laboratories , Chalk River , Ontario , Canada
| | - Mathieu Brossard
- c Regulatory Operations and Regions Branch , Health Canada , Ottawa , Ontario , Canada
| | - Ngoc Q Vuong
- b Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Ruth Wilkins
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Sami Qutob
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - James McNamee
- a Consumer and Clinical Radiation Protection Bureau , Health Canada , Ottawa , Ontario , Canada
| | - Yi Wang
- f Canadian Nuclear Laboratories , Chalk River , Ontario , Canada
| | - Carole Yauk
- e Environmental Health Sciences and Research Bureau , Health Canada , Ottawa , Ontario , Canada
| |
Collapse
|
16
|
Maurice C, O'Brien JM, Yauk CL, Marchetti F. Integration of sperm DNA damage assessment into OECD test guidelines for genotoxicity testing using the MutaMouse model. Toxicol Appl Pharmacol 2018; 357:10-18. [PMID: 30165057 DOI: 10.1016/j.taap.2018.08.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/23/2018] [Accepted: 08/24/2018] [Indexed: 11/26/2022]
Abstract
The Organisation for Economic Co-operation and Development (OECD) endorses test guidelines (TG) for identifying chemicals that are genotoxic, such as the transgenic rodent gene mutation assay (TG 488). Current OECD TG do not include assays for sperm DNA damage resulting in a critical testing gap. We evaluated the performance of the Sperm Chromatin Structure Assay (SCSA) and the Terminal Deoxynucleotidyl Transferase-Mediated Deoxyuridine Triphosphate Nick end Labeling (TUNEL) assay to detect sperm DNA damage within the recommended TG 488 protocol. MutaMouse males received 0, 0.5, 1, or 2 mg/kg/day triethylenemelamine (TEM), a multifunctional alkylating agent, for 28 days orally and tissues were collected two (blood) and three (sperm and bone marrow) days later. TEM significantly increased the frequency of lacZ mutants in bone marrow, and of micronuclei (MN) in both reticulocytes (%MN-RET) and normochromatic erythrocytes (%MN-NCE) in a dose-dependent manner (P < 0.05). The percentage of DNA fragmentation index (%DFI) and %TUNEL positive cells demonstrated dose-related increases in sperm (P < 0.05), and the two assay results were strongly correlated (R = 0.9298). Within the same animal, a good correlation was observed between %MN-NCE and %DFI (R = 0.7189). Finally, benchmark dose modelling (BMD) showed comparable BMD10 values among the somatic and germ cell assays. Our results suggest that sperm DNA damage assays can be easily integrated into standard OECD designs investigating genotoxicity in somatic tissues to provide key information on whether a chemical is genotoxic in germ cells and impact its risk assessment.
Collapse
Affiliation(s)
- Clotilde Maurice
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture, 0803A, Ottawa, ON K1A 0K9, Canada
| | - Jason M O'Brien
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON K1A 0H3, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture, 0803A, Ottawa, ON K1A 0K9, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture, 0803A, Ottawa, ON K1A 0K9, Canada.
| |
Collapse
|
17
|
Fay KA, Villeneuve DL, Swintek J, Edwards SW, Nelms MD, Blackwell BR, Ankley GT. Differentiating Pathway-Specific From Nonspecific Effects in High-Throughput Toxicity Data: A Foundation for Prioritizing Adverse Outcome Pathway Development. Toxicol Sci 2018; 163:500-515. [PMID: 29529260 PMCID: PMC6820004 DOI: 10.1093/toxsci/kfy049] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The U.S. Environmental Protection Agency's ToxCast program has screened thousands of chemicals for biological activity, primarily using high-throughput in vitro bioassays. Adverse outcome pathways (AOPs) offer a means to link pathway-specific biological activities with potential apical effects relevant to risk assessors. Thus, efforts are underway to develop AOPs relevant to pathway-specific perturbations detected in ToxCast assays. Previous work identified a "cytotoxic burst" (CTB) phenomenon wherein large numbers of the ToxCast assays begin to respond at or near test chemical concentrations that elicit cytotoxicity, and a statistical approach to defining the bounds of the CTB was developed. To focus AOP development on the molecular targets corresponding to ToxCast assays indicating pathway-specific effects, we conducted a meta-analysis to identify which assays most frequently respond at concentrations below the CTB. A preliminary list of potentially important, target-specific assays was determined by ranking assays by the fraction of chemical hits below the CTB compared with the number of chemicals tested. Additional priority assays were identified using a diagnostic-odds-ratio approach which gives greater ranking to assays with high specificity but low responsivity. Combined, the two prioritization methods identified several novel targets (e.g., peripheral benzodiazepine and progesterone receptors) to prioritize for AOP development, and affirmed the importance of a number of existing AOPs aligned with ToxCast targets (e.g., thyroperoxidase, estrogen receptor, aromatase). The prioritization approaches did not appear to be influenced by inter-assay differences in chemical bioavailability. Furthermore, the outcomes were robust based on a variety of different parameters used to define the CTB.
Collapse
Affiliation(s)
- Kellie A. Fay
- University of Minnesota-Duluth, Biology Department; 1035 Kirby Drive, Swenson Science Building 207, Duluth, MN 55812
- CSRA Inc, Science and Engineering, 6201 Congdon Blvd, Duluth, MN 55804
| | - Daniel L. Villeneuve
- U.S. EPA National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804
| | - Joe Swintek
- Badger Technical Services, 6201 Congdon Blvd, Duluth, MN 55804
| | - Stephen W. Edwards
- U.S. EPA National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, 109 TW Alexander Dr. (MD B105-03), RTP, NC 27711
- RTI International, Research Computing Division, 3040 E Cornwallis Rd, Durham, NC 27709
| | - Mark D. Nelms
- U.S. EPA National Health and Environmental Effects Research Laboratory, Integrated Systems Toxicology Division, 109 TW Alexander Dr. (MD B105-03), RTP, NC 27711
| | - Brett R. Blackwell
- U.S. EPA National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804
| | - Gerald T. Ankley
- U.S. EPA National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804
| |
Collapse
|
18
|
Motwani HV, Eriksson L, Göpfert L, Larsen K. Reaction kinetic studies for comparison of mutagenic potency between butadiene monoxide and glycidamide. Chem Biol Interact 2018; 288:57-64. [PMID: 29653098 DOI: 10.1016/j.cbi.2018.03.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/13/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022]
Abstract
DNA adducts can be formed from covalent binding of electrophilic reactive compounds to the nucleophilic N- and O-atoms of the biomolecule. The O-sites on DNA, with nucleophilic strength (n) of ca. 2, is recognized as a critical site for mutagenicity. Characterization of the reactivity of electrophilic compounds at the O-sites can be used to predict their mutagenic potency in relative terms. In the present study, reaction kinetic experiments were performed for butadiene monoxide (BM) in accordance with the Swain-Scott relation using model nucleophiles representing N- and O-sites on DNA, and earlier for glycidamide (GA) using a similar approach. The epoxide from the kinetic experiments was trapped by cob(I)alamin, resulting in formation of an alkylcobalamin which was analyzed by liquid chromatography tandem mass spectrometry. The Swain-Scott relationship was used to determine selectivity constant (s) of BM and GA as 0.86 and 1.0, respectively. The rate constant for the reaction at n of 2 was extrapolated to 0.023 and 0.038 M-1 h-1 for BM and GA, respectively, implying a higher mutagenic potency per dose unit of GA compared to BM. The reaction kinetic parameters associated with mutagenic potency were also estimated by a density functional theory approach, which were in accordance to the experimental determined values. These types of reaction kinetic measures could be useful in development of a chemical reactivity based prediction tool that could aid in reduction of animal experiments in cancer risk assessment procedures for relative mutagenicity.
Collapse
Affiliation(s)
- Hitesh V Motwani
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Lars Eriksson
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Lisa Göpfert
- Department of Environmental Science and Analytical Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| | - Kristian Larsen
- Department of Materials and Environmental Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
19
|
Moore MM, Schoeny RS, Becker RA, White K, Pottenger LH. Development of an adverse outcome pathway for chemically induced hepatocellular carcinoma: case study of AFB1, a human carcinogen with a mutagenic mode of action. Crit Rev Toxicol 2018; 48:312-337. [PMID: 29431554 DOI: 10.1080/10408444.2017.1423462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adverse outcome pathways (AOPs) are frameworks starting with a molecular initiating event (MIE), followed by key events (KEs) linked by KE relationships (KERs), ultimately resulting in a specific adverse outcome. Relevant data for the pathway and each KE/KER are evaluated to assess biological plausibility, weight-of-evidence, and confidence. We aimed to describe an AOP relevant to chemicals directly inducing mutation in cancer critical gene(s), via the formation of chemical-specific pro-mutagenic DNA adduct(s), as an early critical step in tumor etiology. Such chemicals have mutagenic modes-of-action (MOA) for tumor induction. To assist with developing this AOP, Aflatoxin B1 (AFB1) was selected as a case study because it has a rich database and is considered to have a mutagenic MOA. AFB1 information was used to define specific KEs, KERs, and to inform development of a generic AOP for mutagen-induced hepatocellular carcinoma (HCC). In assessing the AFB1 information, it became clear that existing data are, in fact, not optimal and for some KEs/KERs, the definitive data are not available. In particular, while there is substantial information that AFB1 can induce mutations (based on a number of mutation assays), the definitive evidence - the ability to induce mutation in the cancer critical gene(s) in the tumor target tissue - is not available. Thus, it is necessary to consider the patterns of results in the weight-of-evidence for KEs and KERs. It was important to determine whether there was sufficient evidence that AFB1 can induce the necessary critical mutations early in the carcinogenic process, which was the case.
Collapse
Affiliation(s)
- Martha M Moore
- a Ramboll Environ US Corporation , Little Rock , AR , USA
| | | | | | | | | |
Collapse
|
20
|
Sakuratani Y, Horie M, Leinala E. Integrated Approaches to Testing and Assessment: OECD Activities on the Development and Use of Adverse Outcome Pathways and Case Studies. Basic Clin Pharmacol Toxicol 2018; 123 Suppl 5:20-28. [DOI: 10.1111/bcpt.12955] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/21/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Yuki Sakuratani
- Environment Health and Safety Division; Environment Directorate; Organisation for Economic Co-operation and Development (OECD); Paris France
| | - Masashi Horie
- Environment Health and Safety Division; Environment Directorate; Organisation for Economic Co-operation and Development (OECD); Paris France
| | - Eeva Leinala
- Environment Health and Safety Division; Environment Directorate; Organisation for Economic Co-operation and Development (OECD); Paris France
| |
Collapse
|
21
|
Dearfield KL, Gollapudi BB, Bemis JC, Benz RD, Douglas GR, Elespuru RK, Johnson GE, Kirkland DJ, LeBaron MJ, Li AP, Marchetti F, Pottenger LH, Rorije E, Tanir JY, Thybaud V, van Benthem J, Yauk CL, Zeiger E, Luijten M. Next generation testing strategy for assessment of genomic damage: A conceptual framework and considerations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:264-283. [PMID: 27650663 DOI: 10.1002/em.22045] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/08/2016] [Indexed: 06/06/2023]
Abstract
For several decades, regulatory testing schemes for genetic damage have been standardized where the tests being utilized examined mutations and structural and numerical chromosomal damage. This has served the genetic toxicity community well when most of the substances being tested were amenable to such assays. The outcome from this testing is usually a dichotomous (yes/no) evaluation of test results, and in many instances, the information is only used to determine whether a substance has carcinogenic potential or not. Over the same time period, mechanisms and modes of action (MOAs) that elucidate a wider range of genomic damage involved in many adverse health outcomes have been recognized. In addition, a paradigm shift in applied genetic toxicology is moving the field toward a more quantitative dose-response analysis and point-of-departure (PoD) determination with a focus on risks to exposed humans. This is directing emphasis on genomic damage that is likely to induce changes associated with a variety of adverse health outcomes. This paradigm shift is moving the testing emphasis for genetic damage from a hazard identification only evaluation to a more comprehensive risk assessment approach that provides more insightful information for decision makers regarding the potential risk of genetic damage to exposed humans. To enable this broader context for examining genetic damage, a next generation testing strategy needs to take into account a broader, more flexible approach to testing, and ultimately modeling, of genomic damage as it relates to human exposure. This is consistent with the larger risk assessment context being used in regulatory decision making. As presented here, this flexible approach for examining genomic damage focuses on testing for relevant genomic effects that can be, as best as possible, associated with an adverse health effect. The most desired linkage for risk to humans would be changes in loci associated with human diseases, whether in somatic or germ cells. The outline of a flexible approach and associated considerations are presented in a series of nine steps, some of which can occur in parallel, which was developed through a collaborative effort by leading genetic toxicologists from academia, government, and industry through the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC). The ultimate goal is to provide quantitative data to model the potential risk levels of substances, which induce genomic damage contributing to human adverse health outcomes. Any good risk assessment begins with asking the appropriate risk management questions in a planning and scoping effort. This step sets up the problem to be addressed (e.g., broadly, does genomic damage need to be addressed, and if so, how to proceed). The next two steps assemble what is known about the problem by building a knowledge base about the substance of concern and developing a rational biological argument for why testing for genomic damage is needed or not. By focusing on the risk management problem and potential genomic damage of concern, the next step of assay(s) selection takes place. The work-up of the problem during the earlier steps provides the insight to which assays would most likely produce the most meaningful data. This discussion does not detail the wide range of genomic damage tests available, but points to types of testing systems that can be very useful. Once the assays are performed and analyzed, the relevant data sets are selected for modeling potential risk. From this point on, the data are evaluated and modeled as they are for any other toxicology endpoint. Any observed genomic damage/effects (or genetic event(s)) can be modeled via a dose-response analysis and determination of an estimated PoD. When a quantitative risk analysis is needed for decision making, a parallel exposure assessment effort is performed (exposure assessment is not detailed here as this is not the focus of this discussion; guidelines for this assessment exist elsewhere). Then the PoD for genomic damage is used with the exposure information to develop risk estimations (e.g., using reference dose (RfD), margin of exposure (MOE) approaches) in a risk characterization and presented to risk managers for informing decision making. This approach is applicable now for incorporating genomic damage results into the decision-making process for assessing potential adverse outcomes in chemically exposed humans and is consistent with the ILSI HESI Risk Assessment in the 21st Century (RISK21) roadmap. This applies to any substance to which humans are exposed, including pharmaceuticals, agricultural products, food additives, and other chemicals. It is time for regulatory bodies to incorporate the broader knowledge and insights provided by genomic damage results into the assessments of risk to more fully understand the potential of adverse outcomes in chemically exposed humans, thus improving the assessment of risk due to genomic damage. The historical use of genomic damage data as a yes/no gateway for possible cancer risk has been too narrowly focused in risk assessment. The recent advances in assaying for and understanding genomic damage, including eventually epigenetic alterations, obviously add a greater wealth of information for determining potential risk to humans. Regulatory bodies need to embrace this paradigm shift from hazard identification to quantitative analysis and to incorporate the wider range of genomic damage in their assessments of risk to humans. The quantitative analyses and methodologies discussed here can be readily applied to genomic damage testing results now. Indeed, with the passage of the recent update to the Toxic Substances Control Act (TSCA) in the US, the new generation testing strategy for genomic damage described here provides a regulatory agency (here the US Environmental Protection Agency (EPA), but suitable for others) a golden opportunity to reexamine the way it addresses risk-based genomic damage testing (including hazard identification and exposure). Environ. Mol. Mutagen. 58:264-283, 2017. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kerry L Dearfield
- U.S. Department of Agriculture, Food Safety and Inspection Service, Washington, District of Columbia
| | - B Bhaskar Gollapudi
- Exponent® Inc, Center for Toxicology and Mechanistic Biology, Midland, Michigan
| | | | | | - George R Douglas
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Rosalie K Elespuru
- U.S. Food and Drug Administration, CDRH/OSEL DBCMS, Silver Spring, Maryland
| | - George E Johnson
- Institute of Life Science, College of Medicine, Swansea University, Swansea, SA2 8PP, United Kingdom
| | | | - Matthew J LeBaron
- The Dow Chemical Company, Molecular, Cellular, and Biochemical Toxicology, Midland, Michigan
| | - Albert P Li
- In Vitro ADMET Laboratories LLC, Columbia, Maryland
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Lynn H Pottenger
- Formerly of The Dow Chemical Company, Toxicology & Environmental Research and Consulting now with Olin Corporation, Midland, Michigan
| | - Emiel Rorije
- National Institute for Public Health and the Environment (RIVM), Center for Safety of Substances and Products, Bilthoven, 3720 BA, The Netherlands
| | - Jennifer Y Tanir
- ILSI Health and Environmental Sciences Institute (HESI), Washington, District of Columbia
| | - Veronique Thybaud
- Sanofi, Drug Disposition, Safety and Animal Research, Vitry-sur-Seine, France
| | - Jan van Benthem
- National Institute for Public Health and the Environment (RIVM), Center for Health Protection, Bilthoven, 3720 BA, The Netherlands
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Errol Zeiger
- Errol Zeiger Consulting, Chapel Hill, North Carolina
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Center for Health Protection, Bilthoven, 3720 BA, The Netherlands
| |
Collapse
|
22
|
Allen TEH, Goodman JM, Gutsell S, Russell PJ. A History of the Molecular Initiating Event. Chem Res Toxicol 2016; 29:2060-2070. [PMID: 27989138 DOI: 10.1021/acs.chemrestox.6b00341] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The adverse outcome pathway (AOP) framework provides an alternative to traditional in vivo experiments for the risk assessment of chemicals. AOPs consist of a number of key events (KEs) linked by key event relationships across a range of biological organization backed by scientific evidence. The first KE in the pathway is the molecular initiating event (MIE)-the initial chemical trigger that starts an AOP. Over the past 3 years the AOP conceptual framework has gained a large amount of momentum in toxicology as an alternative to animal methods, and so the MIE has come into the spotlight. What is an MIE? How can MIEs be measured or predicted? What research is currently contributing to our understanding of MIEs? In this Perspective we outline answers to these key questions.
Collapse
Affiliation(s)
- Timothy E H Allen
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jonathan M Goodman
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Steve Gutsell
- Unilever Safety and Environmental Assurance Centre , Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| | - Paul J Russell
- Unilever Safety and Environmental Assurance Centre , Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ, United Kingdom
| |
Collapse
|
23
|
Masumura K, Toyoda-Hokaiwado N, Ukai A, Gondo Y, Honma M, Nohmi T. Dose-dependent de novo germline mutations detected by whole-exome sequencing in progeny of ENU-treated male gpt delta mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 810:30-39. [DOI: 10.1016/j.mrgentox.2016.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 01/06/2023]
|
24
|
Webster AF, Lambert IB, Yauk CL. Toxicogenomics Case Study: Furan. TOXICOGENOMICS IN PREDICTIVE CARCINOGENICITY 2016. [DOI: 10.1039/9781782624059-00390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Development of pragmatic methodologies for human health risk assessment is required to address current regulatory challenges. We applied three toxicogenomic approaches—quantitative, predictive, and mechanistic—to a case study in mice exposed for 3 weeks to the hepatocarcinogen furan. We modeled the dose response of a variety of transcriptional endpoints and found that they produced benchmark doses similar to the furan-dependent cancer benchmark doses. Meta-analyses showed strong similarity between furan-dependent gene expression changes and those associated with several hepatic pathologies. Molecular pathways facilitated the development of a molecular mode of action for furan-induced hepatocellular carcinogenicity. Finally, we compared transcriptomic profiles derived from formalin-fixed and paraffin-embedded (FFPE) samples with those from high-quality frozen samples to evaluate whether archival samples are a viable option for toxicogenomic studies. The advantage of using FFPE tissues is that they are very well characterized (phenotypically); the disadvantage is that formalin degrades biomacromolecules, including RNA. We found that FFPE samples can be used for toxicogenomics using a ribo-depletion RNA-seq protocol. Our case study demonstrates the utility of toxicogenomics data to human health risk assessment, the potential of archival FFPE tissue samples, and identifies viable strategies toward the reduction of animal usage in chemical testing.
Collapse
Affiliation(s)
- A. Francina Webster
- Department of Biology, Carleton University 1125 Colonel By Drive Ottawa ON Canada
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture 50 Colombine Driveway Ottawa ON Canada
| | - Iain B. Lambert
- Department of Biology, Carleton University 1125 Colonel By Drive Ottawa ON Canada
| | - Carole L. Yauk
- Environmental Health Science and Research Bureau, Health Canada, Tunney's Pasture 50 Colombine Driveway Ottawa ON Canada
| |
Collapse
|
25
|
Bal-Price A, Lein PJ, Keil KP, Sethi S, Shafer T, Barenys M, Fritsche E, Sachana M, Meek MEB. Developing and applying the adverse outcome pathway concept for understanding and predicting neurotoxicity. Neurotoxicology 2016; 59:240-255. [PMID: 27212452 DOI: 10.1016/j.neuro.2016.05.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 05/13/2016] [Accepted: 05/13/2016] [Indexed: 12/12/2022]
Abstract
The Adverse Outcome Pathway (AOP) concept has recently been proposed to support a paradigm shift in regulatory toxicology testing and risk assessment. This concept is similar to the Mode of Action (MOA), in that it describes a sequence of measurable key events triggered by a molecular initiating event in which a stressor interacts with a biological target. The resulting cascade of key events includes molecular, cellular, structural and functional changes in biological systems, resulting in a measurable adverse outcome. Thereby, an AOP ideally provides information relevant to chemical structure-activity relationships as a basis for predicting effects of structurally similar compounds. AOPs could potentially also form the basis for qualitative and quantitative predictive modeling of the human adverse outcome resulting from molecular initiating or other key events for which higher-throughput testing methods are available or can be developed. A variety of cellular and molecular processes are known to be critical for normal function of the central (CNS) and peripheral nervous systems (PNS). Because of the biological and functional complexity of the CNS and PNS, it has been challenging to establish causative links and quantitative relationships between key events that comprise the pathways leading from chemical exposure to an adverse outcome in the nervous system. Following introduction of the principles of MOA and AOPs, examples of potential or putative adverse outcome pathways specific for developmental or adult neurotoxicity are summarized and aspects of their assessment considered. Their possible application in developing mechanistically informed Integrated Approaches to Testing and Assessment (IATA) is also discussed.
Collapse
Affiliation(s)
- Anna Bal-Price
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Kimberly P Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Sunjay Sethi
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Timothy Shafer
- Integrated Systems Toxicology Division, Office of Research and Development, U.S. Environmental Protection Agency, RTP, USA
| | - Marta Barenys
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Magdalini Sachana
- European Commission Joint Research Centre, Institute for Health and Consumer Protection, Ispra, Italy
| | - M E Bette Meek
- McLaughlin Centre for Risk Science, University of Ottawa, Ottawa, Canada
| |
Collapse
|
26
|
O'Brien JM, Beal MA, Yauk CL, Marchetti F. Benzo(a)pyrene Is Mutagenic in Mouse Spermatogonial Stem Cells and Dividing Spermatogonia. Toxicol Sci 2016; 152:363-71. [PMID: 27208087 PMCID: PMC4960908 DOI: 10.1093/toxsci/kfw088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although many environmental agents are established male germ cell mutagens, few are known to induce mutations in spermatogonial stem cells. Stem cell mutations are of great concern because they result in a permanent increase in the number of mutations carried in sperm. We investigated mutation induction during mouse spermatogenesis following exposure to benzo(a)pyrene (BaP). MutaMouse males were given 0, 12.5, 25, 50, or 100 mg/kg bw/day BaP for 28 days by oral gavage. Germ cells were collected from the cauda epididymis and seminiferous tubules 3 days after exposure and from cauda epididymis 42 and 70 days after exposure. This design enabled targeted investigation of effects on post-spermatogonia, dividing spermatogonia, and spermatogonial stem cells, respectively. BaP increased lacZ mutant frequency (MF) in cauda sperm after exposure of dividing spermatogonia (4.2-fold at highest dose, P < .01) and spermatogonial stem cells (2.1-fold at highest dose, P < .01). No significant increases in MF were detected in cauda sperm or seminiferous tubule cells collected 3 days post-exposure. Dose-response modelling suggested that the mutational response in male germ cells to BaP is sub-linear at low doses. Our results demonstrate that oral exposure to BaP causes spermatogonial stem cell mutations, that different phases of spermatogenesis exhibit varying sensitivities to BaP, with dividing spermatogonia representing a window of peak sensitivity, and that sampling spermatogenic cells from the seminiferous tubules at earlier time-points may underestimate germ cell mutagenicity. This information is critical to optimize the use of the international test guideline for transgenic rodent mutation assays for detecting germ cell mutagens.
Collapse
Affiliation(s)
- Jason M O'Brien
- *Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Marc A Beal
- *Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carole L Yauk
- *Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Francesco Marchetti
- *Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON K1A 0K9, Canada
| |
Collapse
|
27
|
White PA, Johnson GE. Genetic toxicology at the crossroads-from qualitative hazard evaluation to quantitative risk assessment. Mutagenesis 2016; 31:233-7. [PMID: 27000791 DOI: 10.1093/mutage/gew011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Applied genetic toxicology is undergoing a transition from qualitative hazard identification to quantitative dose-response analysis and risk assessment. To facilitate this change, the Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC) sponsored a workshop held in Lancaster, UK on July 10-11, 2014. The event included invited speakers from several institutions and the contents was divided into three themes-1: Point-of-departure Metrics for Quantitative Dose-Response Analysis in Genetic Toxicology; 2: Measurement and Estimation of Exposures for Better Extrapolation to Humans and 3: The Use of Quantitative Approaches in Genetic Toxicology for human health risk assessment (HHRA). A host of pertinent issues were discussed relating to the use of in vitro and in vivo dose-response data, the development of methods for in vitro to in vivo extrapolation and approaches to use in vivo dose-response data to determine human exposure limits for regulatory evaluations and decision-making. This Special Issue, which was inspired by the workshop, contains a series of papers that collectively address topics related to the aforementioned themes. The Issue includes contributions that collectively evaluate, describe and discuss in silico, in vitro, in vivo and statistical approaches that are facilitating the shift from qualitative hazard evaluation to quantitative risk assessment. The use and application of the benchmark dose approach was a central theme in many of the workshop presentations and discussions, and the Special Issue includes several contributions that outline novel applications for the analysis and interpretation of genetic toxicity data. Although the contents of the Special Issue constitutes an important step towards the adoption of quantitative methods for regulatory assessment of genetic toxicity, formal acceptance of quantitative methods for HHRA and regulatory decision-making will require consensus regarding the relationships between genetic damage and disease, and the concomitant ability to use genetic toxicity results per se.
Collapse
Affiliation(s)
| | - George E Johnson
- Institute of Life Science, Swansea University Medical School, Singleton Park, Swansea SA3 5DE, UK
| |
Collapse
|
28
|
Marchetti F, Massarotti A, Yauk CL, Pacchierotti F, Russo A. The adverse outcome pathway (AOP) for chemical binding to tubulin in oocytes leading to aneuploid offspring. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:87-113. [PMID: 26581746 DOI: 10.1002/em.21986] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 10/13/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
The Organisation for Economic Co-operation and Development (OECD) has launched the Adverse Outcome Pathway (AOP) Programme to advance knowledge of pathways of toxicity and improve the use of mechanistic information in risk assessment. An AOP links a molecular initiating event (MIE) to an adverse outcome (AO) through intermediate key events (KE). Here, we present the scientific evidence in support of an AOP whereby chemicals that bind to tubulin cause microtubule depolymerization resulting in spindle disorganization followed by altered chromosome alignment and segregation and the generation of aneuploidy in female germ cells, ultimately leading to aneuploidy in the offspring. Aneuploidy, an abnormal number of chromosomes that is not an exact multiple of the haploid number, is a well-known cause of human disease and represents a major cause of infertility, pregnancy failure, and serious genetic disorders in the offspring. Among chemicals that induce aneuploidy in female germ cells, a large majority impairs microtubule dynamics and spindle function. Colchicine, a prototypical chemical that binds to tubulin and causes microtubule depolymerization, is used here to illustrate the AOP. This AOP is specific to female germ cells exposed during the periovulation period. Although the majority of the data come from rodent studies, the available evidence suggests that the MIE and KEs are conserved across species and would occur in human oocytes. The development of AOPs related to mutagenicity in germ cells is expected to aid the identification of potential hazards to germ cell genomic integrity and support regulatory efforts to protect population health.
Collapse
Affiliation(s)
- Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Alberto Massarotti
- Dipartimento Di Scienze Del Farmaco, Università Degli Studi Del Piemonte Orientale "A. Avogadro", Novara, Italy
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Francesca Pacchierotti
- Division of Health Protection Technologies, Laboratory of Biosafety and Risk Assessment, ENEA CR Casaccia, Rome, Italy
| | | |
Collapse
|
29
|
Edwards SW, Tan YM, Villeneuve DL, Meek ME, McQueen CA. Adverse Outcome Pathways-Organizing Toxicological Information to Improve Decision Making. J Pharmacol Exp Ther 2016; 356:170-81. [PMID: 26537250 DOI: 10.1124/jpet.115.228239] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/03/2015] [Indexed: 03/08/2025] Open
Abstract
The number of chemicals for which environmental regulatory decisions are required far exceeds the current capacity for toxicity testing. High-throughput screening commonly used for drug discovery has the potential to increase this capacity. The adverse outcome pathway (AOP) concept has emerged as a framework for connecting high-throughput toxicity testing (HTT) and other results to potential impacts on human and wildlife populations. As a result of international efforts, the AOP development process is now well-defined and efforts are underway to broaden the participation through outreach and training. One key principle is that AOPs represent the chemical-agnostic portions of pathways to increase the generalizability of their application from early key events to overt toxicity. The closely related mode of action framework extends the AOP as needed when evaluating the potential risk of a specific chemical. This in turn enables integrated approaches to testing and assessment (IATA), which incorporate results of assays at various levels of biologic organization such as in silico; HTT; chemical-specific aspects including absorption, distribution, metabolism, and excretion (ADME); and an AOP describing the biologic basis of toxicity. Thus, it is envisaged that provision of limited information regarding both the AOP for critical effects and the ADME for any chemical associated with any adverse outcome would allow for the development of IATA and permit more detailed AOP and ADME research, where higher precision is needed based on the decision context.
Collapse
Affiliation(s)
- Stephen W Edwards
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory (S.W.E., C.A.M.), and Human Exposure & Atmospheric Sciences Division, National Exposure Research Laboratory (Y.-M.T.), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina; Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, Minnesota (D.L.V.); and McLaughlin Centre for Risk Science, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada (M.E.M.)
| | - Yu-Mei Tan
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory (S.W.E., C.A.M.), and Human Exposure & Atmospheric Sciences Division, National Exposure Research Laboratory (Y.-M.T.), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina; Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, Minnesota (D.L.V.); and McLaughlin Centre for Risk Science, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada (M.E.M.)
| | - Daniel L Villeneuve
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory (S.W.E., C.A.M.), and Human Exposure & Atmospheric Sciences Division, National Exposure Research Laboratory (Y.-M.T.), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina; Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, Minnesota (D.L.V.); and McLaughlin Centre for Risk Science, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada (M.E.M.)
| | - M E Meek
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory (S.W.E., C.A.M.), and Human Exposure & Atmospheric Sciences Division, National Exposure Research Laboratory (Y.-M.T.), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina; Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, Minnesota (D.L.V.); and McLaughlin Centre for Risk Science, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada (M.E.M.)
| | - Charlene A McQueen
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory (S.W.E., C.A.M.), and Human Exposure & Atmospheric Sciences Division, National Exposure Research Laboratory (Y.-M.T.), Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina; Mid-Continent Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, Minnesota (D.L.V.); and McLaughlin Centre for Risk Science, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada (M.E.M.)
| |
Collapse
|
30
|
Affiliation(s)
- Jeantine E Lunshof
- Department of Genetics, University Medical Centre Groningen, 9713 AV, Groningen, The Netherlands.
- Department of Genetics-Church Lab, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
31
|
Wills JW, Johnson GE, Doak SH, Soeteman-Hernández LG, Slob W, White PA. Empirical analysis of BMD metrics in genetic toxicology part I: in vitro analyses to provide robust potency rankings and support MOA determinations. Mutagenesis 2015; 31:255-63. [PMID: 26687511 DOI: 10.1093/mutage/gev085] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Genetic toxicity testing has traditionally been used for hazard identification, with dichotomous classification of test results serving to identify genotoxic agents. However, the utility of genotoxicity data can be augmented by employing dose-response analysis and point of departure determination. Via interpolation from a fitted dose-response model, the benchmark dose (BMD) approach estimates the dose that elicits a specified (small) effect size. BMD metrics and their confidence intervals can be used for compound potency ranking within an endpoint, as well as potency comparisons across other factors such as cell line or exposure duration. A recently developed computational method, the BMD covariate approach, permits combined analysis of multiple dose-response data sets that are differentiated by covariates such as compound, cell type or exposure regime. The approach provides increased BMD precision for effective potency rankings across compounds and other covariates that pertain to a hypothesised mode of action (MOA). To illustrate these applications, the covariate approach was applied to the analysis of published in vitro micronucleus frequency dose-response data for ionising radiations, a set of aneugens, two mutagenic azo compounds and a topoisomerase II inhibitor. The ionising radiation results show that the precision of BMD estimates can be improved by employing the covariate method. The aneugen analysis provided potency groupings based on the BMD confidence intervals, and analyses of azo compound data from cells lines with differing metabolic capacity confirmed the influence of endogenous metabolism on genotoxic potency. This work, which is the first of a two-part series, shows that BMD-derived potency rankings can be employed to support MOA evaluations as well as facilitate read across to expedite chemical evaluations and regulatory decision-making. The follow-up (Part II) employs the combined covariate approach to analyse in vivo genetic toxicity dose-response data focussing on how improvements in BMD precision can impact the reduction and refinement of animal use in toxicological research.
Collapse
Affiliation(s)
- John W Wills
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - George E Johnson
- Institute of Life Science, Swansea University Medical School, Swansea, UK and
| | - Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Swansea, UK and
| | | | - Wout Slob
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada,
| |
Collapse
|
32
|
Becker RA, Ankley GT, Edwards SW, Kennedy SW, Linkov I, Meek B, Sachana M, Segner H, Van Der Burg B, Villeneuve DL, Watanabe H, Barton-Maclaren TS. Increasing Scientific Confidence in Adverse Outcome Pathways: Application of Tailored Bradford-Hill Considerations for Evaluating Weight of Evidence. Regul Toxicol Pharmacol 2015; 72:514-37. [PMID: 25863193 DOI: 10.1016/j.yrtph.2015.04.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 04/04/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Systematic consideration of scientific support is a critical element in developing and, ultimately, using adverse outcome pathways (AOPs) for various regulatory applications. Though weight of evidence (WoE) analysis has been proposed as a basis for assessment of the maturity and level of confidence in an AOP, methodologies and tools are still being formalized. The Organization for Economic Co-operation and Development (OECD) Users' Handbook Supplement to the Guidance Document for Developing and Assessing AOPs (OECD 2014a; hereafter referred to as the OECD AOP Handbook) provides tailored Bradford-Hill (BH) considerations for systematic assessment of confidence in a given AOP. These considerations include (1) biological plausibility and (2) empirical support (dose-response, temporality, and incidence) for Key Event Relationships (KERs), and (3) essentiality of key events (KEs). Here, we test the application of these tailored BH considerations and the guidance outlined in the OECD AOP Handbook using a number of case examples to increase experience in more transparently documenting rationales for assigned levels of confidence to KEs and KERs, and to promote consistency in evaluation within and across AOPs. The major lessons learned from experience are documented, and taken together with the case examples, should contribute to better common understanding of the nature and form of documentation required to increase confidence in the application of AOPs for specific uses. Based on the tailored BH considerations and defining questions, a prototype quantitative model for assessing the WoE of an AOP using tools of multi-criteria decision analysis (MCDA) is described. The applicability of the approach is also demonstrated using the case example aromatase inhibition leading to reproductive dysfunction in fish. Following the acquisition of additional experience in the development and assessment of AOPs, further refinement of parameterization of the model through expert elicitation is recommended. Overall, the application of quantitative WoE approaches hold promise to enhance the rigor, transparency and reproducibility for AOP WoE determinations and may play an important role in delineating areas where research would have the greatest impact on improving the overall confidence in the AOP.
Collapse
Affiliation(s)
| | - Gerald T Ankley
- US Environmental Protection Agency, Office of Research and Development, Mid-Continent Ecology Division, Duluth, MN, USA
| | - Stephen W Edwards
- US Environmental Protection Agency, Office of Research and Development, Integrated Systems Toxicology Division, Research Triangle Park, NC, USA
| | - Sean W Kennedy
- Environment Canada, National Wildlife Research Centre, Ottawa, Ontario, Canada
| | - Igor Linkov
- Environmental Laboratory, Engineer Research and Development Center, US Army Corps of Engineers, Concord, MA, USA
| | - Bette Meek
- University of Ottawa, Ottawa, Ontario, Canada
| | - Magdalini Sachana
- European Commission, Joint Research Centre, Via E. Fermi 2749, 21027, Ispra, Italy
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Bern, Switzerland
| | | | - Daniel L Villeneuve
- US Environmental Protection Agency, Office of Research and Development, Mid-Continent Ecology Division, Duluth, MN, USA
| | - Haruna Watanabe
- Center for Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|