1
|
Fekete-Kertész I, Márton R, Molnár M, Berkl Z, Hedwig S, Feigl V. Industrial ecotoxicology in focus: The unexplored environmental impacts of pilot-scale advanced filtration in Sc recovery. Heliyon 2024; 10:e33799. [PMID: 39027489 PMCID: PMC11255500 DOI: 10.1016/j.heliyon.2024.e33799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/30/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
The demand within the European Union (EU) for the crucial raw material Scandium (Sc), coupled with the lack of sufficient recovery strategies, has gravitated research into exploiting alternative secondary sources. Utilizing residues from ore-production processes has proven to be a successful attempt for advanced Sc recovery. Despite the emergence of new technologies for Sc recovery from such residues, the potential environmental impacts of byproducts and technology wastes are often disregarded. Our study aimed to assess the environmental efficiency of a pilot-scale Sc recovery technology that relies solely on filtration. We employed a problem-specific ecotoxicity toolkit based on the approach of Direct Toxicity Assessment (DTA). The results of DTA provide an indication of the scale of the adverse effect of (contaminated) samples without the necessity of translating the results into chemical concentration. Standardized test methods (Aliivibrio fischeri bioluminescence inhibition, Daphnia magna lethality and Sinapis al b a root and shoot elongation inhibition) were applied, supplemented by a bioconcentration assessment with the D. magna bioaccumulation test method to gain insight on the bioaccumulation potential of different metals in the case of all samples from the filtration technology. Comprehensive genotoxicity evaluations were also implemented using three distinct test methods (Ames test, Ames MPF test, SOS Chromotest). We conducted a comparative direct toxicity assessment to anticipate the potential environmental impacts of residues generated at each filtration step on the aquatic ecosystem. Our findings indicate that the environmental impact of the generated intermediate and final residues was alleviated by the consecutive filtration steps employed. The pilot-scale application of the Sc recovery technology achieved a high and statistically significant reduction in toxicity according to each test organism during the filtration processes. Specifically, toxicity decreased by 73 %, 86 % and 87 % according to the Aliivibrio fischeri bioluminescence inhibition assay, the Sinapis alba shoot elongation inhibition test, and the Daphnia magna lethality test, respectively. The toolbox of industrial ecotoxicology is recommended to predict the environmental performance of metal recovery technologies related to potential ecosystem effects.
Collapse
Affiliation(s)
- Ildikó Fekete-Kertész
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, H-1111, Budapest, Műegyetem rkp. 3., Hungary
| | - Rita Márton
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, H-1111, Budapest, Műegyetem rkp. 3., Hungary
| | - Mónika Molnár
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, H-1111, Budapest, Műegyetem rkp. 3., Hungary
| | - Zsófia Berkl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, H-1111, Budapest, Műegyetem rkp. 3., Hungary
| | - Sebastian Hedwig
- Institute for Ecopreneurship, University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, 4132, Muttenz, Switzerland
| | - Viktória Feigl
- Budapest University of Technology and Economics, Faculty of Chemical Technology and Biotechnology, Department of Applied Biotechnology and Food Science, H-1111, Budapest, Műegyetem rkp. 3., Hungary
| |
Collapse
|
2
|
Hayrapetyan R, Cariou R, Platel A, Santos J, Huot L, Monneraye V, Chagnon MC, Séverin I. Identification of non-volatile non-intentionally added substances from polyester food contact coatings and genotoxicity assessment of polyester coating's migrates. Food Chem Toxicol 2024; 185:114484. [PMID: 38280474 DOI: 10.1016/j.fct.2024.114484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Can's polyester coatings are intended to replace epoxy-phenolic ones due to rising safety concern regarding the potential release of bisphenol A under increased regulations and consumer pressure. In this study, hazard linked to the migration of non-intentionally added substances from a single polyester-coated tin plate (5 batches) to canned food has been studied. Migration tests were performed using acetonitrile (ACN) and ethanol (EtOH) 95 %. Non-targeted analyses by liquid chromatography-high-resolution mass spectrometry revealed the presence of four cyclic oligoesters classified as Cramer class III substances with an estimated exposure (calculated for French population only) below the threshold of toxicological concern value of 1.5 μg/kg b.w./day, suggesting a no safety concern. Moreover, migrates were tested using in vitro genotoxicity DNA damage response (DDR) test and mini mutagenicity test (MMT) with different strains of S. Typhimurium using direct incorporation (TA100, TA98, TA102, TA1537) and pre-incubation (TA100, TA98) methods. Samples were negative in both bioassays suggesting the absence of genotoxicity/mutagenicity of the mixtures. To verify any false negative response due to matrix effect, migrates were spiked with corresponding positive controls in parallel with the MMT and the DDR test. No matrix effect was observed in these experimental conditions.
Collapse
Affiliation(s)
- Ruzanna Hayrapetyan
- Université de Bourgogne Franche-Comté, LNC UMR1231, Nutrition Physiology and Toxicology Team (NUTox), F-21000, Dijon, France
| | | | - Anne Platel
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé Humaine, F-59000, Lille, France
| | - Julie Santos
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé Humaine, F-59000, Lille, France
| | - Ludovic Huot
- Univ. Lille, CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé Humaine, F-59000, Lille, France
| | | | - Marie-Christine Chagnon
- Université de Bourgogne Franche-Comté, LNC UMR1231, Nutrition Physiology and Toxicology Team (NUTox), F-21000, Dijon, France
| | - Isabelle Séverin
- Université de Bourgogne Franche-Comté, LNC UMR1231, Nutrition Physiology and Toxicology Team (NUTox), F-21000, Dijon, France.
| |
Collapse
|
3
|
Fischer BC, Musengi Y, König J, Sachse B, Hessel-Pras S, Schäfer B, Kneuer C, Herrmann K. Matrine and Oxymatrine: evaluating the gene mutation potential using in silico tools and the bacterial reverse mutation assay (Ames test). Mutagenesis 2024; 39:32-42. [PMID: 37877816 PMCID: PMC10851102 DOI: 10.1093/mutage/gead032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
The quinolizidine alkaloids matrine and its N-oxide oxymatrine occur in plants of the genus Sophora. Recently, matrine was sporadically detected in liquorice products. Morphological similarity of the liquorice plant Glycyrrhiza glabra with Sophora species and resulting confusion during harvesting may explain this contamination, but use of matrine as pesticide has also been reported. The detection of matrine in liquorice products raised concern as some studies suggested a genotoxic activity of matrine and oxymatrine. However, these studies are fraught with uncertainties, putting the reliability and robustness into question. Another issue was that Sophora root extracts were usually tested instead of pure matrine and oxymatrine. The aim of this work was therefore to determine whether matrine and oxymatrine have potential for causing gene mutations. In a first step and to support a weight-of-evidence analysis, in silico predictions were performed to improve the database using expert and statistical systems by VEGA, Leadscope (Instem®), and Nexus (Lhasa Limited). Unfortunately, the confidence levels of the predictions were insufficient to either identify or exclude a mutagenic potential. Thus, in order to obtain reliable results, the bacterial reverse mutation assay (Ames test) was carried out in accordance with OECD Test Guideline 471. The test set included the plate incorporation and the preincubation assay. It was performed with five different bacterial strains in the presence or absence of metabolic activation. Neither matrine nor oxymatrine induced a significant increase in the number of revertants under any of the selected experimental conditions. Overall, it can be concluded that matrine and oxymatrine are unlikely to have a gene mutation potential. Any positive findings with Sophora extracts in the Ames test may be related to other components. Notably, the results also indicated a need to extend the application domain of respective (Q)SAR tools to secondary plant metabolites.
Collapse
Affiliation(s)
- Benjamin Christian Fischer
- German Federal Institute for Risk Assessment, Department Pesticides Safety, 10589 Berlin, Berlin, Germany
| | - Yemurai Musengi
- German Federal Institute for Risk Assessment, Department Pesticides Safety, 10589 Berlin, Berlin, Germany
| | - Jeannette König
- German Federal Institute for Risk Assessment, Department Pesticides Safety, 10589 Berlin, Berlin, Germany
| | - Benjamin Sachse
- German Federal Institute for Risk Assessment, Department Food Safety, 10589 Berlin, Berlin, Germany
| | - Stefanie Hessel-Pras
- German Federal Institute for Risk Assessment, Department Food Safety, 10589 Berlin, Berlin, Germany
| | - Bernd Schäfer
- German Federal Institute for Risk Assessment, Department Food Safety, 10589 Berlin, Berlin, Germany
| | - Carsten Kneuer
- German Federal Institute for Risk Assessment, Department Pesticides Safety, 10589 Berlin, Berlin, Germany
| | - Kristin Herrmann
- German Federal Institute for Risk Assessment, Department Pesticides Safety, 10589 Berlin, Berlin, Germany
| |
Collapse
|
4
|
Forsten E, Finger M, Scholand T, Deitert A, Kauffmann K, Büchs J. Inoculum cell count influences separation efficiency and variance in Ames plate incorporation and Ames RAMOS test. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167035. [PMID: 37709100 DOI: 10.1016/j.scitotenv.2023.167035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
The Ames test is one of the most applied tools in mutagenicity testing of chemicals ever since its introduction by Ames et al. in the 1970s. Its principle is based on histidine auxotrophic bacteria that regain prototrophy through reverse mutations. In the presence of a mutagen, more reverse mutations occur that become visible as increased bacterial growth on medium without histidine. Many miniaturized formats of the Ames test have emerged to enable the testing of environmental water samples, increase experimental throughput, and lower the required amounts of test substances. However, most of these formats still rely on endpoint determinations. In contrast, the recently introduced Ames RAMOS test determines mutagenicity through online monitoring of the oxygen transfer rate. In this study, the oxygen transfer rate of Salmonella typhimurium TA100 during the Ames plate incorporation test was monitored and compared to the Ames RAMOS test to prove its validity further. Furthermore, the Ames RAMOS test in 96-well scale is newly introduced. For both the Ames plate incorporation and the Ames RAMOS test, the influence of the inoculum cell count on the negative control was highlighted: A lower inoculum cell count led to a higher coefficient of variation. However, a lower inoculum cell count also led to a higher separation efficiency in the Ames RAMOS test and, thus, to better detection of a mutagenic substance at lower concentrations.
Collapse
Affiliation(s)
- Eva Forsten
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Maurice Finger
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Theresa Scholand
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Alexander Deitert
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Kira Kauffmann
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany
| | - Jochen Büchs
- AVT - Biochemical Engineering, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
5
|
Wlodkowic D, Jansen M. High-throughput screening paradigms in ecotoxicity testing: Emerging prospects and ongoing challenges. CHEMOSPHERE 2022; 307:135929. [PMID: 35944679 DOI: 10.1016/j.chemosphere.2022.135929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/09/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The rapidly increasing number of new production chemicals coupled with stringent implementation of global chemical management programs necessities a paradigm shift towards boarder uses of low-cost and high-throughput ecotoxicity testing strategies as well as deeper understanding of cellular and sub-cellular mechanisms of ecotoxicity that can be used in effective risk assessment. The latter will require automated acquisition of biological data, new capabilities for big data analysis as well as computational simulations capable of translating new data into in vivo relevance. However, very few efforts have been so far devoted into the development of automated bioanalytical systems in ecotoxicology. This is in stark contrast to standardized and high-throughput chemical screening and prioritization routines found in modern drug discovery pipelines. As a result, the high-throughput and high-content data acquisition in ecotoxicology is still in its infancy with limited examples focused on cell-free and cell-based assays. In this work we outline recent developments and emerging prospects of high-throughput bioanalytical approaches in ecotoxicology that reach beyond in vitro biotests. We discuss future importance of automated quantitative data acquisition for cell-free, cell-based as well as developments in phytotoxicity and in vivo biotests utilizing small aquatic model organisms. We also discuss recent innovations such as organs-on-a-chip technologies and existing challenges for emerging high-throughput ecotoxicity testing strategies. Lastly, we provide seminal examples of the small number of successful high-throughput implementations that have been employed in prioritization of chemicals and accelerated environmental risk assessment.
Collapse
Affiliation(s)
- Donald Wlodkowic
- The Neurotox Lab, School of Science, RMIT University, Melbourne, VIC, 3083, Australia.
| | - Marcus Jansen
- LemnaTec GmbH, Nerscheider Weg 170, 52076, Aachen, Germany
| |
Collapse
|
6
|
Coppi A, Davies R, Wegesser T, Ishida K, Karmel J, Han J, Aiello F, Xie Y, Corbett MT, Parsons AT, Monticello TM, Minocherhomji S. Characterization of false positive, contaminant-driven mutagenicity in impurities associated with the sotorasib drug substance. Regul Toxicol Pharmacol 2022; 131:105162. [DOI: 10.1016/j.yrtph.2022.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/14/2022] [Accepted: 03/17/2022] [Indexed: 10/18/2022]
|
7
|
Mutagenicity evaluation of pesticide analogs using standard and 6-well miniaturized bacterial reverse mutation tests. Toxicol In Vitro 2020; 69:105006. [PMID: 32976929 DOI: 10.1016/j.tiv.2020.105006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 11/21/2022]
Abstract
The Ames test is widely used in the mutagenicity evaluation of new and existing chemicals as a part of a compound selection strategy, regulatory control, the equivalence assessment, carcinogenic potential measurement etc. Intensification of the chemical industry and synthesis of plenty of new molecules has led to the necessity of tests with a higher throughput capacity. The 6-well miniaturized bacterial reverse mutation test and the standard Ames test were compared using 14 technical grade active ingredients (TGAIs) of pesticides. With some exceptions, the responses obtained in the miniscreen Ames are similar to those seen in the standard method: 4 overall test outcomes were negative and 9 were positive in both test versions, but 1 discordant result between the miniscreen and standard version. Comparison of the standard and the miniscreen Ames test resulted in 98% of concordance across five strains and conditions (±S9). The overall judgment is that the miniscreen Ames test can be used to assess the mutagenicity of pesticide analogs. It has the advantage of decreasing the number of materials and animals (for S9) and keeping a high-test performance.
Collapse
|
8
|
Grúz P, Shimizu M, Sugiyama KI, Yamada M, Honma M. Effect of episomally encoded DNA polymerases on chemically induced mutagenesis at the hisG46 target in Ames test. Genes Environ 2020; 42:14. [PMID: 32211083 PMCID: PMC7092418 DOI: 10.1186/s41021-020-00154-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The standard Ames test strains owe their high sensitivity to chemical and physical mutagens to the episomal Y-family DNA polymerase RI encoded by the mucAB operon. The S. typhimurium test strains carry also another related samAB operon on a 60-kDa cryptic plasmid. In contrast to the chromosomally encoded Y-family DNA polymerases V and IV, these plasmid born polymerase genes have no direct counterpart in mammalian cells. By replicating damaged templates, DNA polymerases play a central role in mutagenesis and genome stability. It is therefore imperative to investigate their specificity to understand differences in mutagenesis between the prokaryotic versus eukaryotic (mammalian) systems. To this end we have isolated and separately expressed the DNA polymerase subunits encoded by the mucAB and samAB operons. After demonstrating how these enzymes control chemical and UV mutagenesis at the standard hisD3052 and hisG428 Ames test targets, we are now adding the third Ames test target hisG46 to the trilogy. RESULTS Four new Ames tester strains based on the hisG46 target have been constructed expressing the activated DNA polymerase MucA' and SamA' accessory subunits combined with the MucB and SamB catalytical subunits under the control of lac promoter. These polymerase assemblies were substituted for the endogenous PolRI, PolV and SamAB polymerases present in the standard TA100 strain and tested for their abilities to promote chemically induced mutagenesis. SamA' + SamB has been able to promote mutagenesis induced by AF-2 and 1,8-DNP to higher extent than SamA' + MucB. The MucA' + MucB (PolRI*) more efficiently promoted MMS as well as spontaneous mutagenesis than its wild type counterpart but was less efficient for other mutagens including AFB1. Strikingly azide mutagenesis was inhibited by PolRI and also SamA'B. CONCLUSION A new system for SOS-independent overexpression of the activated DNA polymerases RI and SamA'B and their chimeras in the hisG46 Ames test background has been established and validated with several representative mutagens. Overall, the TA100 strain showed the highest sensitivity towards most tested mutagens. The observed inhibition of azide mutagenesis by PolRI* suggests that this type of Y-family DNA polymerases can perform also "corrective" error free replication on a damaged DNA.
Collapse
Affiliation(s)
- Petr Grúz
- 1Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
| | - Masatomi Shimizu
- 1Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
- Division of Medical Nutrition, Faculty of Healthcare, Tokyo Healthcare University, Tokyo, 154-8568 Japan
| | - Kei-Ichi Sugiyama
- 1Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
| | - Masami Yamada
- 1Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
- 3Department of Applied Chemistry, National Defense Academy, 1-10-20 Hashirimizu, Yokosuka, Kanagawa 239-8686 Japan
| | - Masamitsu Honma
- 1Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa 210-9501 Japan
| |
Collapse
|
9
|
A comparison of 24 chemicals in the six-well bacterial reverse mutation assay to the standard 100-mm Petri plate bacterial reverse mutation assay in two laboratories. Regul Toxicol Pharmacol 2018; 100:134-160. [DOI: 10.1016/j.yrtph.2018.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 10/04/2018] [Accepted: 10/20/2018] [Indexed: 11/20/2022]
|
10
|
Zwarg JRRM, Morales DA, Maselli BS, Brack W, Umbuzeiro GA. Miniaturization of the microsuspension Salmonella/microsome assay in agar microplates. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2018; 59:488-501. [PMID: 29668047 DOI: 10.1002/em.22195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/06/2018] [Accepted: 03/16/2018] [Indexed: 06/08/2023]
Abstract
The Salmonella/microsome assay (Ames test) is the most widely used mutagenicity test for the evaluation of pure chemicals and environmental samples. There are several versions of protocols available in the literature, including those that reduce the amount of sample needed for testing with liquid and agar media. The microsuspension version of the Salmonella/microsome assay is more sensitive than the standard protocol. It is performed using 5-times concentrated bacteria and less sample and S9 mixture, but still uses conventional Petri dishes (90 × 15 mm). It has been extensively used for environmental sample testing, including in effect-directed analysis (EDA). The objective of this study was to miniaturize the microsuspension assay using 12-well microplates instead of the conventional plates. For validation of this miniaturization, thirteen mutagenic compounds were tested using three Salmonella strains that were selected based on their different spontaneous reversion frequencies (low, medium, and high). The conditions of the miniaturized procedure were made as similar as possible to the microsuspension protocol, using the same testing design, metabolic activation, and data interpretation, and the tests were conducted in parallel. The miniaturized plate assay (MPA) and microsuspension procedures provided similar sensitivities although MPA is less laborious and require less sample and reagents, thereby reducing overall costs. We conclude that the MPA is a promising tool and can be particularly suitable for environmental studies such as EDA or monitoring programs. Environ. Mol. Mutagen. 59:488-501, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Daniel A Morales
- School of Technology, State University of Campinas (UNICAMP), Limeira, SP, Brazil
| | - Bianca S Maselli
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Werner Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
- RWTH University of Aachen, Aachen, Germany
| | - Gisela A Umbuzeiro
- School of Technology, State University of Campinas (UNICAMP), Limeira, SP, Brazil
- Pharmaceutical Sciences Faculty, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
11
|
Grúz P, Shimizu M, Yamada M, Sugiyama KI, Honma M. Opposing roles of Y-family DNA polymerases in lipid peroxide mutagenesis at the hisG46 target in the Ames test. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 829-830:43-49. [PMID: 29704992 DOI: 10.1016/j.mrgentox.2018.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 02/05/2023]
Abstract
DNA polymerases play a key role in mutagenesis by performing translesion DNA synthesis (TLS). The Y-family of DNA polymerases comprises several evolutionarily conserved families, specializing in TLS of different DNA adducts. Exocyclic etheno and propano DNA adducts are among the most common endogenous DNA lesions induced by lipid peroxidation reactions triggered by oxidative stress. We have investigated the participation of two enterobacterial representatives of the PolIV and PolV branches of Y-family DNA polymerases in mutagenesis by two model lipid peroxidation derived genotoxins, glyoxal and crotonaldehyde. Mutagenesis by the ethano adduct (glyoxal-derived) and the propano adduct (crontonaldehyde-derived) at the GC target in the Ames test depended exclusively on PolV type DNA polymerases such as PolRI. In contrast, PolIV suppressed glyoxal and, even more, crotonaldehyde mutagenesis, as detected by enzyme overexpression and gene knockout approaches. We propose that DNA polymerase IV, which is the mammalian DNA polymerase κ ortholog, acts as a housekeeper protecting the genome from lipoxidative stress.
Collapse
Affiliation(s)
- Petr Grúz
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan.
| | - Masatomi Shimizu
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan; Division of Medical Nutrition, Faculty of Healthcare, Tokyo Healthcare University, Tokyo, Japan
| | - Masami Yamada
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan; Department of Applied Chemistry, National Defense Academy, Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki 210-9501, Japan
| |
Collapse
|
12
|
Proudlock R, Evans K. The micro-Ames test: A direct comparison of the performance and sensitivities of the standard and 24-well plate versions of the bacterial mutation test. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:687-705. [PMID: 27862311 DOI: 10.1002/em.22065] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 10/27/2016] [Indexed: 06/06/2023]
Abstract
"Ames" bacterial mutation tests are widely performed for evaluation and registration of new materials including industrial chemicals, agrochemicals, medical devices, pharmaceuticals, pharmaceutical impurities and other materials. Tests are used to predict their potential long-term adverse health effects (including carcinogenicity). Given their importance, pre-screening 'miniaturized' versions have been developed which allow higher throughput and use less test material, including the widely-employed 24-well micro-Ames (µAmes) test which uses 20 times less material. However, little quantitative information has been published on the methodology or sensitivity of this system. We describe methods and results used in direct comparisons of the sensitivity of micro and standard systems using the same cultures, formulations, etc. Initial testing utilized the plate incorporation method and, later, the pre-incubation method. In a subsequent phase of testing, a four-way direct comparison was made between the pre-incubation and plate incorporation methods in both systems using some direct-acting mutagens. Tests used only those strain/S9/chemical combinations where a response was expected. Historical control results accumulated during testing are also presented. Spontaneous and induced revertant colony counts for the µAmes system were consistently proportionate and approximately 1/20th those for the standard Ames test. Sensitivities of the two systems were found to be nearly identical in almost all cases for a wide variety of weak and strong inorganic and organic mutagens. Standardized procedures and increased reliability of the estimate of the background revertant frequency in the µAmes system means that the two systems give equivalent results and are expected to be highly predictive of one another. Environ. Mol. Mutagen. 57:687-705, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Kristie Evans
- Molecular Toxicology, Inc. (Moltox), Boone, North Carolina
| |
Collapse
|