1
|
Lane M, Oyster E, Luo Y, Wang H. The Effects of Air Pollution on Neurological Diseases: A Narrative Review on Causes and Mechanisms. TOXICS 2025; 13:207. [PMID: 40137534 PMCID: PMC11946816 DOI: 10.3390/toxics13030207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/05/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Air pollution has well-documented adverse effects on human health; however, its impact on neurological diseases remains underrecognized. The mechanisms by which various components of air pollutants contribute to neurological disorders are not yet fully understood. This review focuses on key air pollutants, including particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), ozone (O3), carbon monoxide (CO), and diesel exhaust particles (DEPs). This paper summarizes key findings on the effects of air pollution on neurological disorders, including autism spectrum disorder (ASD), attention deficit hyperactivity disorder (ADHD), Alzheimer's disease (AD), and Parkinson's disease (PD). Although the precise biological mechanisms remain to be fully elucidated, evidence suggests that multiple pathways are involved, including blood-brain barrier disruption, oxidative stress, inflammation, and the activation of microglia and astrocytes. This review underscores the role of environmental pollutants as significant risk factors for various neurological diseases and explores their mechanisms of action. By advancing our understanding of these interactions, this work aims to inform new insights for mitigating the adverse effects of air pollution on neurological diseases, ultimately contributing to the establishment of a cleaner and healthier environment for future generations.
Collapse
Affiliation(s)
| | | | - Yali Luo
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.L.); (E.O.)
| | - Hao Wang
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA; (M.L.); (E.O.)
| |
Collapse
|
2
|
Nabil-Adam A, Youssef FS, Ashour ML, Shreadah MA. Neuroprotective and nephroprotective effects of Ircinia sponge in polycyclic aromatic hydrocarbons (PAHs) induced toxicity in animal model: a pharmacological and computational approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82162-82177. [PMID: 37316629 PMCID: PMC10349714 DOI: 10.1007/s11356-023-27916-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/20/2023] [Indexed: 06/16/2023]
Abstract
The present study investigated the neuroprotective and nephroprotective effects of the sponge Ircinia sp. ethyl acetate extract (ISPE) against persistent aromatic pollutants in vitro and in vivo. Different exponential experimental assays were applied to this study. An in vitro study to investigate the potential therapeutic effect of ISPE using antioxidants (for example, ABTS and DPPH) and anti-Alzheimer assays (inhibition of acetylcholinesterase); the in-vivo study was designed to evaluate the protective effect of ISPE as neuroprotective and nephroprotective against the destructive effect of PAH. Several assays included oxidative assays (LPO), antioxidant biomarkers (GSH, GST), and inflammatory and neurodegenerative biomarkers (PTK,SAA). Additionally, the results were confirmed using histopathological examination. The in silico screening study improved the in vitro and in vivo findings through interaction between the aryl hydrocarbon receptor (AHR) and the polyphenolic content of ISPE extract, which was determined using LCMSM. The results and discussion showed that ISPE exhibited a promising antioxidant and anti-acetylcholinesterase activity as evidenced by IC50 values of 49.74, 28.25, and 0.18 µg/mL in DPPH, ABTS, and acetylcholinesterase inhibition assays, respectively. In vivo, the study showed that animals receiving ISPE before poly aromatic hydrocarbons administration PAHs (Prot, ISPE) showed significant amelioration in kidney functions manifested by the reduction of serum urea, uric acid, and creatinine by 40.6%, 66.4%, and 134.8%, respectively, concerning PAH-injected mice (HAA). Prot, ISPE revealed a decline in malondialdehyde (MDA) and total proteins (TP) in kidney and brain tissues by 73.63% and 50.21%, respectively, for MDA and 59.82% and 80.41%, respectively, for TP with respect to HAA. Prot, ISPE showed significant elevation in reduced glutathione (GSH) and glutathione transferase (GST) in kidney and brain tissues and reduction in the inflammatory and pre-cancerous biomarkers, namely, serum protein tyrosine kinases (PTKs) and serum amyloid A (SAA). These findings were further supported by histopathological examination of kidney and brain tissues, which revealed normal structure approaching normal control. Metabolic profiling of ISPE using LC-MS-MS showed the presence of fourteen polyphenolic compounds belonging mainly to phenolic acids and flavonoids. In silico study revealed that all the tested compounds exerted certain binding with the aryl hydrocarbon receptor, where rutin showed the best fitting (ΔG = - 7.6 kcal/mol-1) with considerable pharmacokinetic and pharmacodynamic properties revealed from in silico ADME (Absorption, Distribution, Metabolism, and Excretion) study. Hence, it can be concluded that the Ircinia sponge showed a promising protective effect versus kidney and brain toxicity triggered by PAHs.
Collapse
Affiliation(s)
- Asmaa Nabil-Adam
- Marine Biotechnology and Natural Products Lab (MBNP), National Institute of Oceanography & Fisheries (NIOF), Alexandria, Egypt
| | - Fadia S. Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, 11566 Cairo Egypt
| | - Mohamed L. Ashour
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbasia, 11566 Cairo Egypt
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, PO Box 6231, Jeddah, 21442 Saudi Arabia
| | - Mohamed A. Shreadah
- Marine Biotechnology and Natural Products Lab (MBNP), National Institute of Oceanography & Fisheries (NIOF), Alexandria, Egypt
| |
Collapse
|
3
|
Jena AB, Rath S, Subudhi U, Dandapat J. Molecular interaction of benzo-a-pyrene inhibits the catalytic activity of catalase: Insights from biophysical and computational studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Olasehinde TA, Olaniran AO. Neurotoxicity of Polycyclic Aromatic Hydrocarbons: A Systematic Mapping and Review of Neuropathological Mechanisms. TOXICS 2022; 10:417. [PMID: 35893850 PMCID: PMC9331822 DOI: 10.3390/toxics10080417] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 02/04/2023]
Abstract
Several studies present the neurotoxic effects of polycyclic aromatic hydrocarbons (PAHs), a class of environmental pollutants capable of causing neurological deficits. However, a collective review approach to this research topic is scarce. This study presents the effect of PAHs on the central nervous system using a bibliometric approach. The neuropathological mechanisms of PAHs are also highlighted. Published articles were searched for in the Scopus and Web of Science databases from January 1979 to December 2020 using the keywords 'polycyclic aromatic hydrocarbons' and 'neurotoxicity'. The total number of documents retrieved from both databases was 338. Duplicated documents (80) were excluded and 258 articles were used for the final analysis. Our findings revealed that there has been a significant increase in research outputs on this topic in the last ten years. The countries with the highest scientific productivity in this area are USA, China, France and Italy. The result also showed that, in the past few years, global scientific output in research relating to PAH neurotoxicity focused on neurodegeneration, cholinergic function, neurodevelopmental toxicity, behavioural studies, oxidative stress, neuroprotection and therapeutic intervention using different experimental models, including zebrafish, neuronal cell lines, Caenorhabditis elegans and rats. Recent studies also revealed the neuroprotective roles of some natural products against PAH-induced neurotoxicity. However, more investigation involving clinical trials is required to emphasize the observed neurotoxic effects.
Collapse
Affiliation(s)
- Tosin A. Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos 102215, Nigeria
- Discipline of Microbiology, School of Life Sciences, Westville Campus, University of Kwazulu-Natal, Durban 4000, South Africa;
| | - Ademola O. Olaniran
- Discipline of Microbiology, School of Life Sciences, Westville Campus, University of Kwazulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
5
|
Sun K, Song Y, He F, Jing M, Tang J, Liu R. A review of human and animals exposure to polycyclic aromatic hydrocarbons: Health risk and adverse effects, photo-induced toxicity and regulating effect of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145403. [PMID: 33582342 DOI: 10.1016/j.scitotenv.2021.145403] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are one of the most widely distributed persistent organic pollutants (POPs) in the environmental media. PAHs have been widely concerned due to their significant health risk and adverse effects to human and animals. Currently, the main sources of PAHs in the environment are the incomplete combustion of fossil fuels, as well as municipal waste incineration and agricultural non-surface source emissions. In this work, the scope of our attention includes 16 typical PAHs themselves without involving their metabolites and industrial by-products. Exposure of human and animals to PAHs can lead to a variety of adverse effects, including carcinogenicity and teratogenicity, genotoxicity, reproductive- and endocrine-disrupting effects, immunotoxicity and neurotoxicity, the type and severity of which depend on a variety of factors. On the other hand, the regulatory effect of microplastics (MPs) on the bio-toxicity and bioaccumulation capacity of PAHs has now gradually attracted attention. We critically reviewed the adsorption capacity and mechanisms of MPs on PAHs as well as the effects of MPs on PAHs toxicity, thus highlighting the importance of paying attention to the joint bio-toxicity caused by PAHs-MPs interactions. In addition, due to the extensive nature of the common exposure pathway of PAHs and ultraviolet ray, an accurate understanding of biological processes exposed to both PAHs and UV light is necessary to develop effective protective strategies. Finally, based on the above critical review, we highlighted the research gaps and pointed out the priority of further studies.
Collapse
Affiliation(s)
- Kailun Sun
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Yan Song
- School of Water Conservancy and Environment, University of Jinan, Jinan, Shandong Province 250022, China
| | - Falin He
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Mingyang Jing
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rutao Liu
- School of Environmental Science and Engineering, Shandong University, China-America CRC for Environment & Health, 72# Jimo Binhai Road, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
6
|
Lyu Y, Ren XK, Zhang HF, Tian FJ, Mu JB, Zheng JP. Sub-chronic administration of benzo[a]pyrene disrupts hippocampal long-term potentiation via inhibiting CaMK II/PKC/PKA-ERK-CREB signaling in rats. ENVIRONMENTAL TOXICOLOGY 2020; 35:961-970. [PMID: 32255272 DOI: 10.1002/tox.22932] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Benzo[a]pyrene (B[a]P) is recognized as a neurotoxic pollutant to mammals, which could impair learning and memory function. Although there is some evidence to suggest that N-methyl-d-aspartate receptor (NMDAR), a glutamate receptor and ion channel protein in nerve cells, is involved into the B[a]P induced neurotoxicity, the exact molecular mechanisms remain to be elucidated, particularly the effects of B[a]P on the NMDAR downstream signaling transduction pathways. In the present study, we examined the neurotoxicity of sub-chronic administrated B[a]P on male Sprague-Dawley rats. Our data suggested that B[a]P exposure caused significant deficits in learning and memory function and the impairment of hippocampal LTP in rats. Further mechanistic studies indicate that B[a]P-induced learning and memory deficits are associated with the inhibition of NMDAR NR1 subunit transcription and protein phosphorylation. More importantly, the inactivation of CaMK II/PKC/PKA-ERK-CREB signaling pathways in hippocampus was detected at both the 2.5 and 6.25 mg/kg B[a]P-treated groups, indicating that multiple targets in NMDAR and downstream signaling pathways are involved in the B[a]P-induced neurotoxicity.
Collapse
Affiliation(s)
- Yi Lyu
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
- Department of Biochemistry and Molecular Biology, School of Preclinical Medicine, Shanxi Medical University, Taiyuan, China
| | - Xue-Ke Ren
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Hui-Fang Zhang
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Feng-Jie Tian
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
| | - Jian-Bing Mu
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institute of Health, Rockville, Maryland, USA
| | - Jin-Ping Zheng
- Department of Health Toxicology, School of Public Health, Shanxi Medical University, Taiyuan, China
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi, China
| |
Collapse
|
7
|
Meier MJ, Beal MA, Schoenrock A, Yauk CL, Marchetti F. Whole Genome Sequencing of the Mutamouse Model Reveals Strain- and Colony-Level Variation, and Genomic Features of the Transgene Integration Site. Sci Rep 2019; 9:13775. [PMID: 31551502 PMCID: PMC6760142 DOI: 10.1038/s41598-019-50302-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 09/05/2019] [Indexed: 12/30/2022] Open
Abstract
The MutaMouse transgenic rodent model is widely used for assessing in vivo mutagenicity. Here, we report the characterization of MutaMouse's whole genome sequence and its genetic variants compared to the C57BL/6 reference genome. High coverage (>50X) next-generation sequencing (NGS) of whole genomes from multiple MutaMouse animals from the Health Canada (HC) colony showed ~5 million SNVs per genome, ~20% of which are putatively novel. Sequencing of two animals from a geographically separated colony at Covance indicated that, over the course of 23 years, each colony accumulated 47,847 (HC) and 17,677 (Covance) non-parental homozygous single nucleotide variants. We found no novel nonsense or missense mutations that impair the MutaMouse response to genotoxic agents. Pairing sequencing data with array comparative genomic hybridization (aCGH) improved the accuracy and resolution of copy number variants (CNVs) calls and identified 300 genomic regions with CNVs. We also used long-read sequence technology (PacBio) to show that the transgene integration site involved a large deletion event with multiple inversions and rearrangements near a retrotransposon. The MutaMouse genome gives important genetic context to studies using this model, offers insight on the mechanisms of structural variant formation, and contributes a framework to analyze aCGH results alongside NGS data.
Collapse
Affiliation(s)
- Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Ottawa, ON, Canada
| | - Marc A Beal
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.,Existing Substances Risk Assessment Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Schoenrock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
8
|
Stiborová M, Dračínská H, Bořek-Dohalská L, Klusoňová Z, Holecová J, Martínková M, Schmeiser HH, Arlt VM. Exposure to endocrine disruptors 17alpha-ethinylestradiol and estradiol influences cytochrome P450 1A1-mediated genotoxicity of benzo[a]pyrene and expression of this enzyme in rats. Toxicology 2018; 400-401:48-56. [PMID: 29649501 PMCID: PMC6593260 DOI: 10.1016/j.tox.2018.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 01/04/2023]
Abstract
17α-ethinylestradiol (EE2) and estradiol affect genotoxicity of benzo[a]pyrene (BaP) in rats. Cytochrome P450 (CYP) 1A1 and 1B1 are induced in rats by BaP but not EE2 and estradiol. Exposure of rats to EE2, estradiol and BaP decreased BaP-DNA adduct formation in vivo. The decrease results from inhibition of CYP1A1-mediated BaP activation by EE2 and estradiol.
Endocrine disruptors (EDs) are compounds that interfere with the balance of the endocrine system by mimicking or antagonising the effects of endogenous hormones, by altering the synthesis and metabolism of natural hormones, or by modifying hormone receptor levels. The synthetic estrogen 17α-ethinylestradiol (EE2) and the environmental carcinogen benzo[a]pyrene (BaP) are exogenous EDs whereas the estrogenic hormone 17β-estradiol is a natural endogenous ED. Although the biological effects of these individual EDs have partially been studied previously, their toxicity when acting in combination has not yet been investigated. Here we treated Wistar rats with BaP, EE2 and estradiol alone or in combination and studied the influence of EE2 and estradiol on: (i) the expression of cytochrome P450 (CYP) 1A1 and 1B1 in rat liver on the transcriptional and translational levels; (ii) the inducibility of these CYP enzymes by BaP in this rat organ; (iii) the formation of BaP-DNA adducts in rat liver in vivo; and (iv) the generation of BaP-induced DNA adducts after activation of BaP with hepatic microsomes of rats exposed to BaP, EE2 and estradiol and with recombinant rat CYP1A1 in vitro. BaP acted as a strong and moderate inducer of CYP1A1 and 1B1 in rat liver, respectively, whereas EE2 or estradiol alone had no effect on the expression of these enzymes. However, when EE2 was administered to rats together with BaP, it significantly decreased the potency of BaP to induce CYP1A1 and 1B1 gene expression. For EE2, but not estradiol, this also correlated with a reduction of BaP-induced CYP1A1 enzyme activity in rat hepatic microsomes. Further, while EE2 and estradiol did not form covalent adducts with DNA, they affected BaP-derived DNA adduct formations in vivo and in vitro. The observed decrease in BaP-DNA adduct levels in rat liver in vivo resulted from the inhibition of CYP1A1-mediated BaP bioactivation by EE2 and estradiol. Our results indicate that BaP genotoxicity mediated through its activation by CYP1A1 in rats in vivo is modulated by estradiol and its synthetic derivative EE2.
Collapse
Affiliation(s)
- Marie Stiborová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic.
| | - Helena Dračínská
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Lucie Bořek-Dohalská
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Zuzana Klusoňová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Jana Holecová
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Markéta Martínková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 2030, 128 40 Prague 2, Czech Republic
| | - Heinz H Schmeiser
- Division of Radiopharmaceutical Chemistry, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| |
Collapse
|
9
|
Postnatal Subacute Benzo(a)Pyrene Exposure Caused Neurobehavioral Impairment and Metabolomic Changes of Cerebellum in the Early Adulthood Period of Sprague-Dawley Rats. Neurotox Res 2017; 33:812-823. [DOI: 10.1007/s12640-017-9832-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 11/26/2022]
|
10
|
Integration of the TGx-28.65 genomic biomarker with the flow cytometry micronucleus test to assess the genotoxicity of disperse orange and 1,2,4-benzenetriol in human TK6 cells. Mutat Res 2017; 806:51-62. [PMID: 29017062 DOI: 10.1016/j.mrfmmm.2017.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/21/2017] [Accepted: 09/10/2017] [Indexed: 12/13/2022]
Abstract
In vitro gene expression signatures to predict toxicological responses can provide mechanistic context for regulatory testing. We previously developed the TGx-28.65 genomic biomarker from a database of gene expression profiles derived from human TK6 cells exposed to 28 well-known compounds. The biomarker comprises 65 genes that can classify chemicals as DNA damaging or non-DNA damaging. In this study, we applied the TGx-28.65 genomic biomarker in parallel with the in vitro micronucleus (MN) assay to determine if two chemicals of regulatory interest at Health Canada, disperse orange (DO: the orange azo dye 3-[[4-[(4-Nitrophenyl)azo]phenyl] benzylamino]propanenitrile) and 1,2,4-benzenetriol (BT: a metabolite of benzene) are genotoxic or non-genotoxic. Both chemicals caused dose-dependent declines in relative survival and increases in apoptosis. A strong significant increase in MN induction was observed for all concentrations of BT; the top two concentrations of DO also caused a statistically significant increase in MN, but these increases were <2-fold above controls. TGx-28.65 analysis classified BT as genotoxic at all three concentrations and DO as genotoxic at the mid and high concentrations. Thus, although DO only caused a small increase in MN, this response was sufficient to induce a cellular DNA damage response. Benchmark dose modeling confirmed that BT is much more potent than DO. The results strongly suggest that follow-up work is required to assess whether DO and BT are also genotoxic in vivo. This is particularly important for DO, which may require metabolic activation by bacterial gut flora to fully induce its genotoxic potential. Our previously published data and this proof of concept study suggest that the TGx-28.65 genomic biomarker has the potential to add significant value to existing approaches used to assess genotoxicity.
Collapse
|
11
|
Sarma SN, Blais JM, Chan HM. Neurotoxicity of alkylated polycyclic aromatic compounds in human neuroblastoma cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2017; 80:285-300. [PMID: 28598261 DOI: 10.1080/15287394.2017.1314840] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic compounds (PAC) are ubiquitous environmental pollutants originating from incomplete combustion processes. While the toxicity of parent PAC such as benzo[a]pyrene (BaP) is well characterized, effects of other alkyl-PAC dibenzothiophene (DBT) and retene (Ret) are not well established. The aim of this study was to examine the underlying relative neurotoxic mechanisms attributed to BaP (parent PAH), DBT and Ret (alkyl-PACs) using human neuroblastoma SK-N-SH cells. The lethal concentrations (LC10 and LC20) were found at approximately 10 µM and 40 µM, respectively after 24-h exposure of SK-N-SH cells. It was hypothesized that PAC trigger reactive oxygen species (ROS) production, leading to activation of apoptotic signaling pathways. Differentiated neuronal cells were treated with three compounds at (0.5-40 µM) for 24 h. There was a significant concentration-dependent increase in levels of ROS, even at sub-lethal levels of 1 µM Ret. The mitochondrial membrane potential (MMP) was significantly decreased. Real-time RT-PCR results showed up-regulation of pro-apoptotic genes and down-regulation of antioxidative genes expression in BaP-, DBT-, and Ret-treated SK-N-SH cells. Cytochrome c protein levels and lipid peroxidation (LPO) were also significantly elevated in a concentration-related manner. Data demonstrated that BaP-, DBT-, or Ret-induced neuronal cell damage involved oxidative stress generation through mitochondria-mediated apoptosis pathway. Alkyl-PAC also exhibited higher potency in ROS induction and reduction of MMP than parent PAC. These findings may be important for environmental risk assessment attributed to exposure to PAC.
Collapse
Affiliation(s)
| | - Jules M Blais
- a Department of Biology , University of Ottawa , Ottawa , ON , Canada
| | - Hing Man Chan
- a Department of Biology , University of Ottawa , Ottawa , ON , Canada
| |
Collapse
|
12
|
Farmahin R, Williams A, Kuo B, Chepelev NL, Thomas RS, Barton-Maclaren TS, Curran IH, Nong A, Wade MG, Yauk CL. Recommended approaches in the application of toxicogenomics to derive points of departure for chemical risk assessment. Arch Toxicol 2016; 91:2045-2065. [PMID: 27928627 PMCID: PMC5399047 DOI: 10.1007/s00204-016-1886-5] [Citation(s) in RCA: 122] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/02/2016] [Indexed: 12/15/2022]
Abstract
There is increasing interest in the use of quantitative transcriptomic data to determine benchmark dose (BMD) and estimate a point of departure (POD) for human health risk assessment. Although studies have shown that transcriptional PODs correlate with those derived from apical endpoint changes, there is no consensus on the process used to derive a transcriptional POD. Specifically, the subsets of informative genes that produce BMDs that best approximate the doses at which adverse apical effects occur have not been defined. To determine the best way to select predictive groups of genes, we used published microarray data from dose–response studies on six chemicals in rats exposed orally for 5, 14, 28, and 90 days. We evaluated eight approaches for selecting genes for POD derivation and three previously proposed approaches (the lowest pathway BMD, and the mean and median BMD of all genes). The relationship between transcriptional BMDs derived using these 11 approaches and PODs derived from apical data that might be used in chemical risk assessment was examined. Transcriptional BMD values for all 11 approaches were remarkably aligned with corresponding apical PODs, with the vast majority of toxicogenomics PODs being within tenfold of those derived from apical endpoints. We identified at least four approaches that produce BMDs that are effective estimates of apical PODs across multiple sampling time points. Our results support that a variety of approaches can be used to derive reproducible transcriptional PODs that are consistent with PODs produced from traditional methods for chemical risk assessment.
Collapse
Affiliation(s)
- Reza Farmahin
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Nikolai L Chepelev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Russell S Thomas
- National Center for Computational Toxicology, United States Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Tara S Barton-Maclaren
- Existing Substances Risk Assessment Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Ivan H Curran
- Toxicology Research Division, Health Products and Food Branch, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Andy Nong
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Michael G Wade
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
13
|
Fluegge K. Polycyclic aromatic hydrocarbons and child mental health: is the effect modified by exposure to environmental nitrous oxide? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:24416-24417. [PMID: 27730502 DOI: 10.1007/s11356-016-7837-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Affiliation(s)
- Keith Fluegge
- Institute of Health and Environmental Research, Cleveland, OH, 44118, USA.
| |
Collapse
|
14
|
Limoli CL. Understanding and targeting dynamic stress responses of the brain: What we have learned and how to improve neurocognitive outcome following neurotoxic insult. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:319-321. [PMID: 27208487 DOI: 10.1002/em.22022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Charles L Limoli
- Department of Radiation Oncology, University of California, Irvine, California
| |
Collapse
|