1
|
Ziemann C, Schulz F, Koch C, Solvang M, Bitsch A. Methodological steps forward in toxicological in vitro screening of mineral wools in primary rat alveolar macrophages and normal rat mesothelial NRM2 cells. Arch Toxicol 2024; 98:3949-3971. [PMID: 39261308 PMCID: PMC11496320 DOI: 10.1007/s00204-024-03855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/29/2024] [Indexed: 09/13/2024]
Abstract
Man-made vitreous fibers (MMVF) comprise diverse materials for thermal and acoustic insulation, including stone wool. Depending on dimension, durability, and dose, MMVF might induce adverse health effects. Therefore, early predictive in vitro (geno)toxicity screening of new MMVF is highly desired to ensure safety for exposed workers and consumers. Here, we investigated, as a starting point, critical in vitro screening determinants and pitfalls using primary rat alveolar macrophages (AM) and normal rat mesothelial cells (NRM2). A stone wool fiber (RIF56008) served as an exemplary MMVF (fibrous vs. ground to estimate impact of fiber shape) and long amosite (asbestos) as insoluble fiber reference. Materials were comprehensively characterized, and in vivo-relevant in vitro concentrations defined, based on different approaches (low to supposed overload: 0.5, 5 and 50 µg/cm2). After 4-48 h of incubation, certain readouts were analyzed and material uptake was investigated by light and fluorescence-coupled darkfield microscopy. DNA-strand break induction was not morphology-dependent and nearly absent in both cell types. However, NRM2 demonstrated material-, morphology- and concentration-dependent membrane damage, CINC-1 release, reduction in cell count, and induction of binucleated cells (asbestos > RIF56008 > RIF56008 ground). In contrast to NRM2, asbestos was nearly inactive in AM, with CINC-1 release solely induced by RIF56008. In conclusion, to define an MMVF-adapted, predictive in vitro (geno)toxicity screening tool, references, endpoints, and concentrations should be carefully chosen, based on in vivo relevance, and sensitivity and specificity of the chosen cell model. Next, further endpoints should be evaluated, ideally with validation by in vivo data regarding their predictivity.
Collapse
Affiliation(s)
- Christina Ziemann
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625, Hannover, Germany.
| | - Florian Schulz
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625, Hannover, Germany
| | - Christoph Koch
- Technical and Environmental Chemistry, Ernst-Abbe-University of Applied Sciences, Carl-Zeiss-Promenade 2, 07745, Jena, Germany
| | - Mette Solvang
- ROCKWOOL A/S, Group Research and Development, Hovedgaden 584, 2640, Hedehusene, Denmark
| | - Annette Bitsch
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs Str. 1, 30625, Hannover, Germany
| |
Collapse
|
2
|
Madl AK, Donnell MT, Covell LT. Synthetic vitreous fibers (SVFs): adverse outcome pathways (AOPs) and considerations for next generation new approach methods (NAMs). Crit Rev Toxicol 2024; 54:754-804. [PMID: 39287182 DOI: 10.1080/10408444.2024.2390020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/19/2024]
Abstract
Fiber dimension, durability/dissolution, and biopersistence are critical factors for the risk of fibrogenesis and carcinogenesis. In the modern era, to reduce, refine, and replace animals in toxicology research, the application of in vitro test methods is paramount for hazard evaluation and designing synthetic vitreous fibers (SVFs) for safe use. The objectives of this review are to: (1) summarize the international frameworks and acceptability criteria for implementation of new approach methods (NAMs), (2) evaluate the adverse outcome pathways (AOPs), key events (KEs), and key event relationships (KERs) for fiber-induced fibrogenesis and carcinogenesis in accordance with Organization for Economic Co-operation and Development (OECD) guidelines, (3) consider existing and emerging technologies for in silico and in vitro toxicity testing for the respiratory system and the ability to predict effects in vivo, (4) outline a recommended testing strategy for evaluating the hazard and safety of novel SVFs, and (5) reflect on methods needs for in vitro in vivo correlation (IVIVC) and predictive approaches for safety assessment of new SVFs. AOP frameworks following the conceptual model of the OECD were developed through an evaluation of available molecular and cellular initiating events, which lead to KEs and KERs in the development of fiber-induced fibrogenesis and carcinogenesis. AOP framework development included consideration of fiber physicochemical properties, respiratory deposition and clearance patterns, biosolubility, and biopersistence, as well as cellular, organ, and organism responses. Available data support that fiber AOPs begin with fiber physicochemical characteristics which influence fiber exposure and biosolubility and subsequent key initiating events are dependent on fiber biopersistence and reactivity. Key cellular events of pathogenic fibers include oxidative stress, chronic inflammation, and epithelial/fibroblast proliferation and differentiation, which ultimately lead to hyperplasia, metaplasia, and fibrosis/tumor formation. Available in vitro models (e.g. single-, multi-cellular, organ system) provide promising NAMs tools to evaluate these intermediate KEs. However, data on SVFs demonstrate that in vitro biosolubility is a reasonable predictor for downstream events of in vivo biopersistence and biological effects. In vitro SVF fiber dissolution rates >100 ng/cm2/hr (glass fibers in pH 7 and stone fibers in pH 4.5) and in vivo SVF fiber clearance half-life less than 40 or 50 days were not associated with fibrosis or tumors in animals. Long (fiber lengths >20 µm) biodurable and biopersistent fibers exceeding these fiber dissolution and clearance thresholds may pose a risk of fibrosis and cancer. In vitro fiber dissolution assays provide a promising avenue and potentially powerful tool to predict in vivo SVF fiber biopersistence, hazard, and health risk. NAMs for fibers (including SVFs) may involve a multi-factor in vitro approach leveraging in vitro dissolution data in complement with cellular- and tissue- based in vitro assays to predict health risk.
Collapse
Affiliation(s)
- Amy K Madl
- Valeo Sciences LLC, Ladera Ranch, CA, USA
| | | | | |
Collapse
|
3
|
Knasmueller S. Response to letter to the editor. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:766-768. [PMID: 32835643 DOI: 10.1080/15287394.2020.1798046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
4
|
Zhang T, Lv L, Huang Y, Ren X, Shi Q. Chromosome nondisjunction during bipolar mitoses of binucleated intermediates promote aneuploidy formation along with multipolar mitoses rather than chromosome loss in micronuclei induced by asbestos. Oncotarget 2017; 8:11030-11041. [PMID: 28038458 PMCID: PMC5355243 DOI: 10.18632/oncotarget.14212] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022] Open
Abstract
Asbestos is a well-known occupational carcinogen that can cause aneuploidy during the early stages of neoplastic development. To explore the origins of asbestos-induced aneuploidy, we performed long-term live-cell imaging followed by fluorescence in situ hybridization of chromosomes 8 and 12 in human bronchial epithelial (HBEC) and mesothelial (MeT5A) cells. We demonstrate that asbestos induces aneuploidy via binucleated intermediates resulting from cytokinesis failure. On the one hand, asbestos increases chromosome nondisjunction during bipolar divisions of binucleated intermediates and produces near-tetraploidy. On the other hand, asbestos increases multipolar divisions of binucleated intermediates to produce aneuploidy. Surprisingly, chromosomes in asbestos-induced micronucleated cells are not truly lost by the cells, and do not contribute to aneuploid cell formation in either cell type. These results clarify the cellular source of asbestos-induced aneuploidy. In particular, they show the asbestos-induced disruption of bipolar chromosomal segregation in tetraploid cells, thereby demonstrating the causality between binucleated intermediates and aneuploidy evolution, rather than chromosome loss in micronuclei.
Collapse
Affiliation(s)
- Tianwei Zhang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Lei Lv
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Yun Huang
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Xiaohui Ren
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, Anhui, China
| | - Qinghua Shi
- Molecular and Cell Genetics Laboratory, The CAS Key Laboratory of Innate Immunity and Chronic Diseases, Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei 230027, Anhui, China.,Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
| |
Collapse
|
5
|
Barlow CA, Lievense L, Gross S, Ronk CJ, Paustenbach DJ. The role of genotoxicity in asbestos-induced mesothelioma: an explanation for the differences in carcinogenic potential among fiber types. Inhal Toxicol 2014; 25:553-67. [PMID: 23905972 DOI: 10.3109/08958378.2013.807321] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mechanism(s) underlying asbestos toxicity associated with the pathogenesis of mesothelioma has been a challenge to unravel for more than 60 years. A significant amount of research has focused on the characteristics of different fiber types and their potential to induce mesothelioma. These mechanistic studies of fiber toxicity have proceeded along two lines: those demonstrating biochemical mechanisms by which fibers induce disease and those investigating human susceptibility. Most recent studies focused on in vitro genotoxic effects induced by asbestos as the mechanism responsible for asbestos-induced disease. Although asbestos exerts a genotoxic effect at certain concentrations in vitro, a positive response in these tests does not indicate that the chemical is likely to produce an increased risk of carcinogenesis in exposed human populations. Thus far, findings from studies on the effects of fiber type in mesothelial cells are seriously flawed by a lack of a dose response relationship. The common limitation of these in vitro experiments is the lack of attention paid to the complexities of the human anatomy, biochemistry and physiology, which make the observed effects in these experimental systems difficult to extrapolate to persons in the workplace. Mechanistic differences between carcinogenic and genotoxic processes indicate why tests for genotoxicity do not provide much insight regarding the ability to predict carcinogenic potential in workers exposed to asbestos doses in the post-Occupational Safety and Health Administration era. This review discusses the existing literature on asbestos-induced genotoxicity and explains why these studies may or may not likely help characterize the dose-response curve at low dose.
Collapse
|
6
|
Bunderson-Schelvan M, Pfau JC, Crouch R, Holian A. Nonpulmonary outcomes of asbestos exposure. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:122-52. [PMID: 21534087 PMCID: PMC3118539 DOI: 10.1080/10937404.2011.556048] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The adverse pulmonary effects of asbestos are well accepted in scientific circles. However, the extrapulmonary consequences of asbestos exposure are not as clearly defined. In this review the potential for asbestos to produce diseases of the peritoneum, immune, gastrointestinal (GIT), and reproductive systems are explored as evidenced in published, peer-reviewed literature. Several hundred epidemiological, in vivo, and in vitro publications analyzing the extrapulmonary effects of asbestos were used as sources to arrive at the conclusions and to establish areas needing further study. In order to be considered, each study had to monitor extrapulmonary outcomes following exposure to asbestos. The literature supports a strong association between asbestos exposure and peritoneal neoplasms. Correlations between asbestos exposure and immune-related disease are less conclusive; nevertheless, it was concluded from the combined autoimmune studies that there is a possibility for a higher-than-expected risk of systemic autoimmune disease among asbestos-exposed populations. In general, the GIT effects of asbestos exposure appear to be minimal, with the most likely outcome being development of stomach cancer. However, IARC recently concluded the evidence to support asbestos-induced stomach cancer to be "limited." The strongest evidence for reproductive disease due to asbestos is in regard to ovarian cancer. Unfortunately, effects on fertility and the developing fetus are under-studied. The possibility of other asbestos-induced health effects does exist. These include brain-related tumors, blood disorders due to the mutagenic and hemolytic properties of asbestos, and peritoneal fibrosis. It is clear from the literature that the adverse properties of asbestos are not confined to the pulmonary system.
Collapse
Affiliation(s)
- Melisa Bunderson-Schelvan
- Center for Environmental Health Sciences, Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana 59801, USA.
| | | | | | | |
Collapse
|
7
|
Huang SXL, Jaurand MC, Kamp DW, Whysner J, Hei TK. Role of mutagenicity in asbestos fiber-induced carcinogenicity and other diseases. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2011; 14:179-245. [PMID: 21534089 PMCID: PMC3118525 DOI: 10.1080/10937404.2011.556051] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The cellular and molecular mechanisms of how asbestos fibers induce cancers and other diseases are not well understood. Both serpentine and amphibole asbestos fibers have been shown to induce oxidative stress, inflammatory responses, cellular toxicity and tissue injuries, genetic changes, and epigenetic alterations in target cells in vitro and tissues in vivo. Most of these mechanisms are believe to be shared by both fiber-induced cancers and noncancerous diseases. This article summarizes the findings from existing literature with a focus on genetic changes, specifically, mutagenicity of asbestos fibers. Thus far, experimental evidence suggesting the involvement of mutagenesis in asbestos carcinogenicity is more convincing than asbestos-induced fibrotic diseases. The potential contributions of mutagenicity to asbestos-induced diseases, with an emphasis on carcinogenicity, are reviewed from five aspects: (1) whether there is a mutagenic mode of action (MOA) in fiber-induced carcinogenesis; (2) mutagenicity/carcinogenicity at low dose; (3) biological activities that contribute to mutagenicity and impact of target tissue/cell type; (4) health endpoints with or without mutagenicity as a key event; and finally, (5) determinant factors of toxicity in mutagenicity. At the end of this review, a consensus statement of what is known, what is believed to be factual but requires confirmation, and existing data gaps, as well as future research needs and directions, is provided.
Collapse
Affiliation(s)
- Sarah X. L. Huang
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Marie-Claude Jaurand
- INSERM (Institut National de la Santé et de la Recherche Médicale), Paris, France
| | - David W. Kamp
- Pulmonary & Critical Care Medicine, Northwestern University Feinberg School of Medicine, Jesse Brown VA Medical Center, Chicago, Illinois, USA
| | - John Whysner
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, USA
| | - Tom K. Hei
- Address correspondence to Tom K. Hei, Center for Radiological Research, College of Physicians and Surgeons, Columbia University. 630 West 168th Street, New York, NY 10032, USA. E-mail:
| |
Collapse
|
8
|
Falck GCM, Lindberg HK, Suhonen S, Vippola M, Vanhala E, Catalán J, Savolainen K, Norppa H. Genotoxic effects of nanosized and fine TiO2. Hum Exp Toxicol 2009; 28:339-52. [PMID: 19755445 DOI: 10.1177/0960327109105163] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The in-vitro genotoxicity of nanosized TiO(2) rutile and anatase was assessed in comparison with fine TiO(2) rutile in human bronchial epithelial BEAS 2B cells using the single-cell gel electrophoresis (comet) assay and the cytokinesis-block micronucleus test. BEAS 2B cells were exposed to eight doses (1-100 microg/cm(2)) of titanium(IV) oxide nanosized rutile (>95%, <5% amorphous SiO(2) coating; 10 x 40 nm), nanosized anatase (99.7%; <25 nm), or fine rutile (99.9%; <5 microm) for 24, 48, and 72 h. Fine rutile reduced cell viability at lower doses than nanosized anatase, which was more cytotoxic than nanosized rutile. In the comet assay, nanosized anatase and fine rutile induced DNA damage at several doses with all treatment times. Dose-dependent effects were seen after the 48- and 72-h treatments with nanosized anatase and after the 24-, 48- (in one out of two experiments), and 72-h treatments (one experiment) with fine rutile. The lowest doses inducing DNA damage were 1 microg/cm(2) for fine rutile and 10 microg/cm( 2) for nanosized anatase. Nanosized rutile showed a significant induction in DNA damage only at 80 microg/cm(2) in the 24-h treatment and at 80 and 100 microg/ cm(2) in the 72-h treatment (with a dose-dependent effect). Only nanosized anatase could elevate the frequency of micronucleated BEAS 2B cells, producing a significant increase at 10 and 60 microg/cm( 2) after the 72-h treatment (no dose-dependency). At increasing doses of all the particles, MN analysis became difficult due to the presence of TiO(2) on the microscopic slides. In conclusion, our studies in human bronchial epithelial BEAS 2B cells showed that uncoated nanosized anatase TiO(2) and fine rutile TiO(2) are more efficient than SiO( 2)-coated nanosized rutile TiO(2) in inducing DNA damage, whereas only nanosized anatase is able to slightly induce micronuclei.
Collapse
Affiliation(s)
- G C M Falck
- New Technologies and Risks, Work Environment Development Centre, Finnish Institute of Occupational Health, Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Henderson DW, Rödelsperger K, Woitowitz HJ, Leigh J. After Helsinki: a multidisciplinary review of the relationship between asbestos exposure and lung cancer, with emphasis on studies published during 1997-2004. Pathology 2005; 36:517-50. [PMID: 15841689 DOI: 10.1080/00313020400010955] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite an extensive literature, the relationship between asbestos exposure and lung cancer remains the subject of controversy, related to the fact that most asbestos-associated lung cancers occur in those who are also cigarette smokers: because smoking represents the strongest identifiable lung cancer risk factor among many others, and lung cancer is not uncommon across industrialised societies, analysis of the combined (synergistic) effects of smoking and asbestos on lung cancer risk is a more complex exercise than the relationship between asbestos inhalation and mesothelioma. As a follow-on from previous reviews of prevailing evidence, this review critically evaluates more recent studies on this relationship--concentrating on those published between 1997 and 2004--including lung cancer to mesothelioma ratios, the interactive effects of cigarette smoke and asbestos in combination, and the cumulative exposure model for lung cancer induction as set forth in The Helsinki Criteria and The AWARD Criteria (as opposed to the asbestosis-->cancer model), together with discussion of differential genetic susceptibility/resistance factors for lung carcinogenesis by both cigarette smoke and asbestos. The authors conclude that: (i) the prevailing evidence strongly supports the cumulative exposure model; (ii) the criteria for probabilistic attribution of lung cancer to mixed asbestos exposures as a consequence of the production and end-use of asbestos-containing products such as insulation and asbestos-cement building materials--as embodied in The Helsinki and AWARD Criteria--conform to, and are further consolidated by, the new evidence discussed in this review; (iii) different attribution criteria (e.g., greater cumulative exposures) are appropriate for chrysotile mining/milling and perhaps for other chrysotile-only exposures, such as friction products manufacture, than for amphibole-only exposures or mixed asbestos exposures; and (iv) emerging evidence on genetic susceptibility/resistance factors for lung cancer risk as a consequence of cigarette smoking, and potentially also asbestos exposure, suggests that genotypic variation may represent an additional confounding factor potentially affecting the strength of association and hence the probability of causal contribution in the individual subject, but at present there is insufficient evidence to draw any meaningful conclusions concerning variation in asbestos-mediated lung cancer risk relative to such resistance/susceptibility factors.
Collapse
Affiliation(s)
- Douglas W Henderson
- Department of Anatomical Pathology, Flinders University and Flinders Medical Centre, Bedford Park, Adelaide, South Australia.
| | | | | | | |
Collapse
|
10
|
Cavallo D, Campopiano A, Cardinali G, Casciardi S, De Simone P, Kovacs D, Perniconi B, Spagnoli G, Ursini CL, Fanizza C. Cytotoxic and oxidative effects induced by man-made vitreous fibers (MMVFs) in a human mesothelial cell line. Toxicology 2004; 201:219-29. [PMID: 15297035 DOI: 10.1016/j.tox.2004.04.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 04/23/2004] [Accepted: 04/24/2004] [Indexed: 11/24/2022]
Abstract
The introduction of man-made vitreous fibers (MMVFs) as a substitute for asbestos in industrial and residential applications raises concerns about their potential health hazards. The aim of our study was to assess cytotoxic and oxidative effects induced on a human mesothelial cell line (MeT-5A) by exposure to glass wool (GW), rock wool (RW) and refractory ceramic fibers (RCF) in comparison with crocidolite asbestos (CR). MeT-5A cells were exposed for 24 h to 2, 5 and 10 microg/cm2 of MMVF and crocidolite fibers and analysed by scanning electron microscope (SEM) for cell surface alterations. Cells were exposed for 2 h to 1, 2, 5 and 10 microg/cm2 of the same fibers and analysed by enzyme Fpg-modified comet test for direct and oxidative DNA damage. SEM revealed loss of microvilli in cells exposed to RCF and numerous blebs in cells exposed to higher doses of RW. Comet test showed significant direct DNA damage in cells exposed to RCF even at the lowest dose. Comet test with Fpg, that permits the detection of oxided DNA bases, showed significant oxidative DNA damage in cells exposed to higher doses of RW. The presence of DNA damage and alterations of cell surface induced by low doses of RCF and the presence of oxidative DNA damage and blebs on cell surface in cells exposed to higher dose of RW suggest possible cytotoxic, oxidative and genotoxic effects for these MMVFs.
Collapse
Affiliation(s)
- Delia Cavallo
- Department of Occupational Medicine, ISPESL, National Institute for Occupational Safety and Prevention, Via Fontana Candida 1, 00040 Monteporzio Catone, Rome, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Burmeister B, Schwerdtle T, Poser I, Hoffmann E, Hartwig A, Müller WU, Rettenmeier AW, Seemayer NH, Dopp E. Effects of asbestos on initiation of DNA damage, induction of DNA-strand breaks, P53-expression and apoptosis in primary, SV40-transformed and malignant human mesothelial cells. Mutat Res 2004; 558:81-92. [PMID: 15036122 DOI: 10.1016/j.mrgentox.2003.11.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2003] [Revised: 11/06/2003] [Accepted: 11/17/2003] [Indexed: 11/27/2022]
Abstract
Human mesothelial cells (HMC), the progenitor cells of asbestos-induced mesothelioma, are particularly sensitive to the genotoxic effects of asbestos, although the molecular mechanisms by which asbestos induces injury in HMC are not well known. The high susceptibility of HMC to simian virus 40 (SV40)-mediated transformation is assumed to play a causative role in the pathogenesis of mesothelioma. The aim of this study was to investigate the asbestos-induced DNA damage in cultured HMC and SV40-transformed HMC (MeT-5A) compared with their malignant counterparts, i.e. human mesothelioma cells (MSTO). The time-dependent initiation of DNA-strand breaks as well as the induction of oxidative DNA base modifications were key factors for investigation. HMC, MeT-5A and MSTO cells were exposed to chrysotile and crocidolite asbestos (3 microg/cm2) during different time periods (1-72 h). DNA damage was investigated by use of the Comet assay and alkaline unwinding, the latter in combination with the Fpg protein. The P53 level was analyzed by immunofluorescence, and measurement of apoptosis was conducted by flow cytometry. We found a significant induction of DNA damage in asbestos-treated HMC already after an exposure time of 1.5 h. This effect could not be observed in treated MeT-5A and MSTO cells. Also, a time-dependent significant increase in DNA-strand breaks was observed by alkaline unwinding in asbestos-treated HMC, but not in treated MeT-5A and MSTO cells. In none of the three cell lines we could detect oxidative DNA damage recognized by the Fpg protein (e.g. 8-oxo-guanine), up to 24 h after exposure to asbestos. In contrast to what was found in HMC, P53 was over-expressed in untreated MeT-5A and MSTO. The induction of apoptosis by asbestos fibers was suppressed in MeT-5A and MSTO cells. Crocidolite fibers induced the higher genotoxic effects and chrysotile the more pronounced apoptotic effects. We conclude that asbestos induces DNA damage in HMC already after a very short exposure time in the absence of 8-oxo-guanine formation. The presence of SV40-Tag in MeT-5A and MSTO cells results in an increased expression of P53, but not in additive genotoxic effects after exposure to asbestos. The deregulation of the apoptotic pathway may lead to proliferation of genomically damaged cells and finally to the development of mesothelioma.
Collapse
Affiliation(s)
- B Burmeister
- Department of Biology, Institute of Cell Biology, University of Rostock, Rostock, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Mesothelial cells line the pleural and peritoneal surfaces, where under normal conditions they proliferate and undergo cell death at a slow rate, thereby maintaining a constant number of cells. These tightly regulated processes are disrupted in malignancy. By developing a better understanding of the mechanisms that regulate cell proliferation and apoptosis in mesothelial and mesothelioma cells, we may be able to develop more effective therapeutic agents that target specific steps in these pathways to induce apoptosis more efficiently. This paper reviews our current knowledge of the signaling pathways involved in the regulation of mesothelial cell proliferation and apoptosis. The latest advancements in identifying proteins that play key roles in the resistance to apoptosis are highlighted.
Collapse
Affiliation(s)
- Lorriana E Leard
- Lung Biology Center, San Francisco General Hospital, University of California San Francisco, California, USA
| | | |
Collapse
|
13
|
Poser I, Rahman Q, Lohani M, Yadav S, Becker HH, Weiss DG, Schiffmann D, Dopp E. Modulation of genotoxic effects in asbestos-exposed primary human mesothelial cells by radical scavengers, metal chelators and a glutathione precursor. Mutat Res 2004; 559:19-27. [PMID: 15066570 DOI: 10.1016/j.mrgentox.2003.12.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2003] [Revised: 12/02/2003] [Accepted: 12/12/2003] [Indexed: 11/26/2022]
Abstract
The genotoxicity of asbestos fibers is generally mediated by reactive oxygen species (ROS) and by insufficient antioxidant protection. To further elucidate which radicals are involved in asbestos-mediated genotoxicity and to which extent, we have carried out experiments with the metal chelators deferoxamine (DEF) and phytic acid (PA), and with the radical scavengers superoxide dismutase (SOD), dimethylthiourea (DMTU) and the glutathione precursor Nacystelyn trade mark (NAL). We investigated the influence of these compounds on the potency of crocidolite, an amphibole asbestos fiber with a high iron content (27%), and chrysotile, a serpentine asbestos fiber with a low iron content (2%), to induce micronuclei (MN) in human mesothelial cells (HMC) after an exposure time of 24-72 h. Our results show that the number of crocidolite-induced MN is significantly reduced after pretreatment of fibers with PA and DEF. This effect was not observed with chrysotile. In contrast, simultaneous treatment of cells with asbestos and the OH*scavenging DMTU or the O2- -scavenging SOD significantly decreased the number of MN induced by chrysotile and crocidolite. In particular, DMTU almost completely suppressed micronucleus induction by both fiber types. A similar effect was observed in the presence of the H(2)O(2)-scavenging NAL after chrysotile treatment of HMC. By means of kinetochore analysis, it could be shown that the number of clastogenic events is decreased after PA and DEF pretreatment of fibers as well as after application of the above-mentioned scavengers. Our results show that chrysotile asbestos induces an increased release of H(2)O(2) in contrast to crocidolite. Also, the iron content of the fiber plays an important role in radical formation, but nevertheless, chrysotile produces oxy radicals to a similar extent as crocidolite, probably by phagocytosis-mediated oxidative bursting.
Collapse
Affiliation(s)
- Ina Poser
- Institute of Pathology, University Hospital Regensburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Maxim LD, McConnell EE. Interspecies comparisons of the toxicity of asbestos and synthetic vitreous fibers: a weight-of-the-evidence approach. Regul Toxicol Pharmacol 2001; 33:319-42. [PMID: 11407935 DOI: 10.1006/rtph.2001.1467] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This analysis reviews the available literature on interspecies comparisons of the toxicity of asbestos and synthetic vitreous fibers (SVFs). This topic is of substantial practical importance because most quantitative risk analyses on the effects of inhalation of SVFs are based upon extrapolation of data from rodent inhalation studies. Available information on interspecies comparisons for both dosimetry (the relation between exposure concentration and fiber lung burden) and potency (the relation between lung burden and disease) is summarized. Dosimetry models indicate that, on a normalized basis, fiber deposition and clearance rates are lower in humans than rats. Potency is less well understood than dosimetry, in part because the source of relevant human data is asbestos studies, which are adequate to demonstrate hazard, but are problematic in other regards. There are significant interspecies differences between the mouse, hamster, rat, and human. The available evidence suggests that the rat is preferable as a model for the human. Rats develop fibrosis at comparable lung burdens [10(6) long (> 20 microm length) fibers per gram of dry lung] to those in humans. This analysis concludes that, on a weight-of-evidence basis, there is no reason to conclude that humans are more sensitive to fibers than rats with respect to the development of lung cancer.
Collapse
Affiliation(s)
- L D Maxim
- Everest Consulting Associates, Cranbury, New Jersey, 08512, USA
| | | |
Collapse
|
15
|
Marczynski B, Kraus T, Rozynek P, Raithel HJ, Baur X. Association between 8-hydroxy-2'-deoxyguanosine levels in DNA of workers highly exposed to asbestos and their clinical data, occupational and non-occupational confounding factors, and cancer. Mutat Res 2000; 468:203-12. [PMID: 10882897 DOI: 10.1016/s1383-5718(00)00054-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In the preceding paper [B. Marczynski, P. Rozynek, T. Kraus, St. Schlösser, H.J. Raithel, X. Baur, Levels of 8-hydroxy-2'-deoxyguanosine in DNA of white blood cells from workers highly exposed to asbestos in Germany, Mutat. Res. (2000) submitted] we described significant increases (p<0.001) in the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) adducts in the DNA of white blood cells (WBC) of workers highly exposed to asbestos fibers at the workplace relative to those found in the control group in all three study years (period between 1994 and 1997). The results show that the oxidative DNA damage in exposed individuals is between 1.7 times and twice that found in control samples for all 3 years of the study (p<0.001). The aim of this study was to examine the association between the 8-OHdG levels in WBC DNA of workers highly exposed to asbestos fibers at the workplace and clinical data, occupational and non-occupational confounding factors, and cancer. There is no obvious correlation between the steady-state levels of 8-OHdG in the circulating WBC DNA of asbestos workers and possible confounding factors, such as the presence of benign asbestos-associated diseases, the duration of asbestos exposure, the latency period, the fixed cumulative fibrous dust dose ("fiber years"), age, smoking status, acute febrile infections, medicines, aspirin, calcium (Ca(2+)), magnesium (Mg(2+)), and the hormone and vitamin intake. This indicates that previous inhalation of asbestos fibers is the major factor responsible for the difference observed in oxidative DNA damage between asbestos workers and controls. For patients suffering from respiratory cancer, cancer of the gastrointestinal tract, mouth/pharynx/larynx, and urogenital tract the mean DNA-adduct level was significantly higher (p<0.01) than that found in controls, but not significantly higher (p>0.05) than that for asbestos-exposed patients without tumours. The formation of 8-OHdG adduct levels in WBC DNA of patients with hematopoietic cancer, chondrosarcomas and multiform glioblastomas was not significantly higher than that found in the control group (p>0.05). Our results support the hypothesis that oxidative DNA damage in man caused by asbestos fibers plays a role in the formation of malignant tumours.
Collapse
Affiliation(s)
- B Marczynski
- Research Institute of Occupational Medicine, Ruhr University of Bochum, Germany
| | | | | | | | | |
Collapse
|
16
|
Mast RW, Maxim LD, Utell MJ, Walker AM. Refractory ceramic fiber: toxicology, epidemiology, and risk analyses--a review. Inhal Toxicol 2000; 12:359-99. [PMID: 10880135 DOI: 10.1080/089583700196103] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Refractory ceramic fiber (RCF) is an energy-efficient, high-temperature insulation, used principally in industrial furnaces, heaters, and reactors. Prior to the 1980s, there were few publications dealing with the potential health effects of this material. However, with the advent of higher energy costs and the need for thermally efficient high-temperature insulating materials, production of RCF grew rapidly, as did interest in its potential health effects. This article provides a comprehensive and integrated review of the toxicology (in vitro and in vivo), epidemiology, and risk analysis literature of RCF. Based on the available literature, we conclude that an occupational exposure of 0.5 fibers per cubic centimeter (cm(3)) [8-h time-weighted average (8-h TWA)] results in an occupational health risk no greater than 9.1 x 10(-5).
Collapse
Affiliation(s)
- R W Mast
- Everest Consulting Associates, Inc., 15 North Main Street, Cranbury, NJ 08512, USA
| | | | | | | |
Collapse
|
17
|
Abstract
Millions of workers in the United States are potentially exposed each year to hazardous chemicals, dusts, or fibers in occupational settings. Some of these agents are genotoxic and may cause genetic alterations in the somatic or germ cells of exposed workers. Such alterations, if they occur in proto-oncogenes or tumor suppressor genes, which are involved in controlling cell growth or differentiation, may lead to the development of cancer. Genetic alterations in germ cells may also lead to reproductive failure or genetic disorders in subsequent generations. It has been estimated that occupational exposure accounts for 4% of all human cancers and up to 30% of cancer among blue-collar workers. Approximately 20,000 cancer deaths each year are attributable to occupational exposure in the United States. Occupational cancer and reproductive abnormalities have been listed on the National Occupational Research Agenda master list of research priorities as major occupational diseases and injuries.
Collapse
Affiliation(s)
- N Keshava
- Toxicology and Molecular Biology Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, m/s 3014, 1095 Willowdale Road, Morgantown, WV 26505-2888, USA
| | | |
Collapse
|
18
|
Ruotsalainen M, Hirvonen MR, Luoto K, Savolainen KM. Production of reactive oxygen species by man-made vitreous fibres in human polymorphonuclear leukocytes. Hum Exp Toxicol 1999; 18:354-62. [PMID: 10413242 DOI: 10.1191/096032799678840228] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human polymorphonuclear leukocytes (PMNL) or erythrocytes, isolated from human blood, were exposed to graded doses of asbestos (chrysotile), quartz, or man-made vitreous fibres (MMVF), i.e. refractory ceramic fibres (RCF), glasswool, or rockwool fibres. None of the MMVF affected either the viability of PMNL, as measured by trypan blue exclusion test, or induced haemolysis, whereas the positive controls, quartz and chrysotile, dose-dependently induced haemolysis in PMNL. MMVF did not increase the release of lactate dehydrogenase (LDH) from the PMNL, whereas the positive controls, chrysotile and quartz, induced a marked and dose-dependent release of LDH. When PMNL were exposed to MMVF, some of the fibre types slightly increased the levels of free intracellular calcium ([Ca2+]i) within the cells in a manner similar to that induced by chrysotile or quartz. All MMVF induced a dose-dependent production of reactive oxygen species (ROS) in PMNL, with RCF-induced production of ROS being the most marked. Production of ROS by MMVF seemed to depend on the availability of extracellular calcium because it could be attenuated with a Ca2+ channel blocker, verapamil, or a Ca2+ chelating agent, EGTA. Production of ROS may be a common pathway through which PMNL respond to MMVF-induced cell activation, but alterations of levels of free intracellular Ca2+ do not seem to be an absolute prerequisite for this effect. Fibre length seemed not to be an important factor in affecting the ability of MMVF to induce ROS production in PMNL. However, the balance between different elements in the fibre seemed importantly to affect the biological activity of a fibre.
Collapse
Affiliation(s)
- M Ruotsalainen
- National Public Health Institute, Division of Environmental Health, Kuopio, Finland
| | | | | | | |
Collapse
|
19
|
Qian H, Whong W, Olsen L, Nath J, Ong T. Induction of micronuclei in V79 cells by fractions of roofing asphalt fume condensate. Mutat Res 1999; 441:163-70. [PMID: 10333530 DOI: 10.1016/s1383-5718(99)00045-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
More than 50,000 workers in the United States are exposed to roofing asphalt fumes that may pose genotoxic and potential carcinogenic hazards. The Type III roofing asphalt is most frequently used in roof-application. Results of our previous studies showed that fume condensates of Type III roofing asphalts induced micronuclei (MN) in vitro in cultured V79 cells and DNA adduct formation in vivo in rat lung cells. In this study, the genotoxicity of whole fume condensates (WFC) of Type III roofing asphalt and its five chemical fractions (A, B, C, D and E) was determined by the micronucleus assay using V79 cells. Linear regressions were determined for the dose response of MN frequencies and percent of binucleated and multinucleated cells (MTC) following the treatment. Results showed that the numbers of micronucleated cells in cultures treated with Type III roofing asphalt WFC and its fractions B, C, D and E were significantly higher than that in the control culture, and that the slopes of the linear regression line for fractions B and C were greater than those for the WFC and fractions D and E. A clear dose response of binucleated cells was also induced by the WFC and fractions B and C. These findings indicate that: (1) WFC and all fractions, except fraction A, induced MN formation in cultured V79 cells; (2) fractions B and C possess the highest genotoxic activity; (3) the roofing asphalt WFC contains chemicals or chemical classes that induce not only chromosomal aberrations but also binucleation in V79 cells.
Collapse
Affiliation(s)
- H Qian
- National Institute for Occupational Safety and Health, ALOSH, Room 3014, 1095 Willowdale Road, Morgantown, WV 26505, USA
| | | | | | | | | |
Collapse
|
20
|
Takeuchi T, Nakajima M, Morimoto K. A human cell system for detecting asbestos cytogenotoxicity in vitro. Mutat Res 1999; 438:63-70. [PMID: 9858688 DOI: 10.1016/s1383-5718(98)00163-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Crocidolite, a carcinogenic asbestos in humans, specifically induces mesothelioma. We investigated the cytogenotoxic effects of crocidolite in a human mesothelioma cell line, MSTO211H, and a human promyelocytic leukemia cell line, HL60. Using confocal laser scanning microscopy, we found that the MSTO211H cells had phagocytotic activity, whereas the HL60 cells did not. In the MSTO211H cells, crocidolite decreased the cell population and increased the numbers of polynucleated cells (PN) and tetraploid cells, and increased the coefficients of variation (CV) of DNA contents in G0/G1 cells and the formation of 8-hydroxydeoxyguanosine. In contrast, crocidolite showed none of these cytogenotoxic effects in HL60 cells. To investigate the importance of phagocytosis in the cytogenotoxicity of crocidolite, we sorted the crocidolite-phagocytosed cells from less-phagocytosed cells by fluorescence-activated cell sorting, and studied the differences in cytogenotoxicity between these two cell groups. We found significant increases in the numbers of PN and tetraploid cells and the CV in the crocidolite-phagocytosed cells compared to the less-phagocytosed cells. These findings indicate that MSTO211H cells are susceptible to the cytogenotoxic effects of asbestos due to their phagocytotic activity, and that the MSTO211H cell line is suitable for the detection of such effects on human cells by asbestos and other materials which need to be phagocytosed to exert their toxicity.
Collapse
Affiliation(s)
- T Takeuchi
- Department of Hygiene and Preventive Medicine, Osaka University School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565, Japan
| | | | | |
Collapse
|
21
|
Broaddus VC, Yang L, Scavo LM, Ernst JD, Boylan AM. Asbestos induces apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species. J Clin Invest 1996; 98:2050-9. [PMID: 8903324 PMCID: PMC507649 DOI: 10.1172/jci119010] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Mesothelial cells, the progenitor cell of the asbestos-induced tumor mesothelioma, are particularly sensitive to the toxic effects of asbestos, although the molecular mechanisms by which asbestos induces injury in mesothelial cells are not known. We asked whether asbestos induced apoptosis in mesothelial cells and whether reactive oxygen species were important. Pleural mesothelial cells (rabbit or human) were exposed to asbestos (crocidolite, amosite, or chrysotile) or control particles at moderate doses (1-10 microg/cm2) over 24 h and evaluated for oligonucleosomal DNA fragmentation, loss of membrane phospholipid asymmetry, and nuclear condensation. Asbestos fibers, not control particles, induced apoptosis in mesothelial cells by all assays and induction of apoptosis was dose dependent for all types of asbestos, with crocidolite (5 microg/cm2) inducing 15.0+/-1.1% (mean+/-SE; n = 12) apoptosis versus control particles < 4%. Apoptosis induced by asbestos, but not by actinomycin D, was inhibited by extracellular catalase, superoxide dismutase in the presence of catalase, hypoxia (8% oxygen), deferoxamine, 3-aminobenzamide [an inhibitor of poly(ADP-ribosyl) polymerase], and cytochalasin B. Only catalase and cytochalasin B decreased fiber uptake. We conclude that asbestos induces apoptosis in mesothelial cells via reactive oxygen species. Escape from this pathway could allow the abnormal survival of mesothelial cells with asbestos-induced mutations.
Collapse
Affiliation(s)
- V C Broaddus
- Department of Medicine and Lung Biology Center, San Francisco General Hospital, California 94143, USA.
| | | | | | | | | |
Collapse
|