1
|
de Melo Viana TC, Nakamura ET, Park A, Filardi KFXC, de Almeida Leite RM, Baltazar LFSR, Usón Junior PLS, Tustumi F. Molecular Abnormalities and Carcinogenesis in Barrett's Esophagus: Implications for Cancer Treatment and Prevention. Genes (Basel) 2025; 16:270. [PMID: 40149421 PMCID: PMC11942460 DOI: 10.3390/genes16030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/16/2025] [Accepted: 02/23/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Barrett's esophagus (BE) is described by the transformation of the normal squamous epithelium into metaplastic columnar epithelium, driven by chronic gastroesophageal reflux disease (GERD). BE is a recognized premalignant condition and the main precursor to esophageal adenocarcinoma (EAC). Understanding the molecular mechanisms underlying BE carcinogenesis is crucial for improving prevention, surveillance, and treatment strategies. METHODS This narrative review examines the molecular abnormalities associated with the progression of BE to EAC. RESULTS This study highlights inflammatory, genetic, epigenetic, and chromosomal alterations, emphasizing key pathways and biomarkers. BE progression follows a multistep process involving dysplasia and genetic alterations such as TP53 and CDKN2A (p16) mutations, chromosomal instability, and dysregulation of pathways like PI3K/AKT/mTOR. Epigenetic alterations, including aberrant microRNA expression or DNA methylation, further contribute to this progression. These molecular changes are stage-specific, with some alterations occurring early in BE during the transition to high-grade dysplasia or EAC. Innovations in chemoprevention, such as combining proton pump inhibitors and aspirin, and the potential of antireflux surgery to halt disease progression are promising. Incorporating molecular biomarkers into surveillance strategies and advancing precision medicine may enable earlier detection and personalized treatments. CONCLUSIONS BE is the primary preneoplastic condition for EAC. A deeper understanding of its molecular transformation can enhance surveillance protocols, optimize the management of gastroesophageal reflux inflammation, and refine prevention and therapeutic strategies, ultimately contributing to a reduction in the global burden of EAC.
Collapse
Affiliation(s)
| | | | - Amanda Park
- Department of Evidenced-Based Medicine, Centro Universitário Lusíada, Santos 11050-071, Brazil
| | | | | | | | | | - Francisco Tustumi
- Department of Gastroenterology, Universidade de Sao Paulo, Sao Paulo 05508-220, Brazil
- Department of Health Sciences, Hospital Israelita Albert Einstein, Sao Paulo 05652-900, Brazil
| |
Collapse
|
2
|
Zhang X, Wang G, Li X, Liu Y, Wu X, Zhou Y, Liu J, Wang H, Jiao R, Chen Y, Wang Q. LncRNA H19 Promotes Gastric Cancer Metastasis via miR-148-3p/SOX-12 Axis. Anal Cell Pathol (Amst) 2024; 2024:6217134. [PMID: 39184399 PMCID: PMC11344645 DOI: 10.1155/2024/6217134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/20/2024] [Accepted: 07/01/2024] [Indexed: 08/27/2024] Open
Abstract
Background Gastric cancer (GC) is the most common malignant tumor and ranks third in the world. LncRNA H19 (H19), one of the members of lncRNA, is overexpressed in various tumors. However, many undetermined molecular mechanisms by which H19 promotes GC progression still need to be further investigated. Methodology. A series of experiments was used to confirm the undetermined molecular mechanism including wound healing and transwell assays. Key Results. In this study, a significant upregulation of H19 expression was detected in GC cells and tissues. The poor overall survival was observed in GC patient with high H19 expression. Overexpression of H19 promoted the migration of GC cells, while knockdown of H19 significantly inhibited cell migration. Moreover, miR-148a-3p had a certain negative correlation with H19. Luciferase reporter assay confirmed that H19 could directly bind to miR-148a-3p. As expected, miR-148a mimics inhibited cell migration and invasion induced by H19 overexpression. The above findings proved that H19 functions as a miRNA sponge and verified that miR-148a-3p is the H19-associated miRNA in GC. We also confirmed that SOX-12 expression was upregulated in GC patient's samples. SOX-12 expression was positively correlated with expression of H19 and was able to directly bind to miR-148a-3p. Importantly, in vitro wound healing assay showed that knockout of SOX-12 could reverse the promoting effect of H19 overexpression on cell migration. Conclusion In conclusion, H19 has certain application value in the diagnosis and prognosis of GC. Specifically, H19 accelerates GCs to migration and metastasis by miR-138a-3p/SOX-12 axis.
Collapse
Affiliation(s)
- Xin Zhang
- Department of OrthopedicsShenmu HospitalFaculty of Life Sciences and MedicineNorthwest University, Guangming Road, Shenmu 719300, China
- Department of CardiologyAffiliated HospitalYan'an University, 43 North Street, Yan'an 716000, China
| | - Ge Wang
- Department of Cardiovascular SurgeryGuangdong Provincial Hospital of Chinese MedicineThe Second Affiliated Hospital of GuangzhouUniversity of Chinese Medicine, Guangzhou 510405, China
| | - Xiaoru Li
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationFaculty of Life Sciences and MedicineNorthwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yanqing Liu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationFaculty of Life Sciences and MedicineNorthwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xue Wu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationFaculty of Life Sciences and MedicineNorthwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Yazhe Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationFaculty of Life Sciences and MedicineNorthwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Jie Liu
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationFaculty of Life Sciences and MedicineNorthwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Haiying Wang
- Department of OrthopedicsShenmu HospitalFaculty of Life Sciences and MedicineNorthwest University, Guangming Road, Shenmu 719300, China
- Department of Oncological SurgeryShenmu HospitalFaculty of Life Sciences and MedicineNorthwest University, Guangming Road, Shenmu 719300, China
| | - Rui Jiao
- Department of OrthopedicsShenmu HospitalFaculty of Life Sciences and MedicineNorthwest University, Guangming Road, Shenmu 719300, China
- Department of Oncological SurgeryShenmu HospitalFaculty of Life Sciences and MedicineNorthwest University, Guangming Road, Shenmu 719300, China
| | - Ying Chen
- Department of HematologyThe First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Qiang Wang
- Department of OrthopedicsShenmu HospitalFaculty of Life Sciences and MedicineNorthwest University, Guangming Road, Shenmu 719300, China
- Key Laboratory of Resource Biology and Biotechnology in Western ChinaMinistry of EducationFaculty of Life Sciences and MedicineNorthwest University, 229 Taibai North Road, Xi'an 710069, China
- Department of Oncological SurgeryShenmu HospitalFaculty of Life Sciences and MedicineNorthwest University, Guangming Road, Shenmu 719300, China
| |
Collapse
|
3
|
Isomura Y, Ohno M, Sudo S, Ono M, Kaminishi Y, Sumi Y, Yoshimura A, Fujii K, Akiyama K, Nishi E, Ozeki Y. Associations among plasma markers for N-methyl-d-aspartate receptor hypofunction, redox dysregulation, and insufficient myelination in patients with schizophrenia. Heliyon 2024; 10:e30193. [PMID: 38694089 PMCID: PMC11061757 DOI: 10.1016/j.heliyon.2024.e30193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 04/21/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024] Open
Abstract
Background Several hypotheses regarding the pathomechanisms of schizophrenia have been proposed. If schizophrenia is a unitary disease, then these pathological processes must be linked; however, if such links do not exist, schizophrenia may best be considered a group of disorders. Only a few studies have examined the relationships among these pathomechanisms. Herein, we examined the relationships among deficient myelination, NMDA receptor hypofunction, and metabolic dysregulation by measuring various plasma markers and examining their correlations. Methods Plasma samples were collected from 90 patients with schizophrenia and 68 healthy controls. Concentrations of nardilysin (N-arginine dibasic convertase, NRDC), a positive regulator of myelination, the NMDA receptor co-agonist d-serine and glycine, various additional amino acids related to NMDA receptor transmission (glutamate, glutamine, and l-serine), and homocysteine (Hcy), were measured. Concentrations were compared using independent samples t-test or logistic regression, and associations were evaluated using Pearson's correlation coefficients. Results Plasma glycine (t = 2.05, p = 0.042), l-serine (t = 2.25, p = 0.027), and homocysteine (t = 3.71, p < 0.001) concentrations were significantly higher in patients with schizophrenia compared to those in healthy controls. Logistic regression models using age, sex, smoking status, glutamine, glutamate, glycine, l-serine, d-serine, homocysteine, and NRDC as independent variables revealed significantly lower plasma d-serine (p = 0.024) and NRDC (p = 0.028), but significantly higher l-serine (p = 0.024) and homocysteine (p = 0.001) in patients with schizophrenia. Several unique correlations were found between NMDA receptor-related amino acids and NRDC in patients with schizophrenia compared to those in healthy controls, while no correlations were found between plasma homocysteine and other markers. No associations were found between plasma marker concentrations and disease status or cognitive function in patients with schizophrenia, except for a significant correlation between plasma glycine and full intelligence quotient. Conclusion Reduced myelination and NMDA receptor hypofunction may be related to pathological mechanisms in schizophrenia, while homocysteine dysregulation appears to be an independent pathological process. These results suggest that schizophrenia may be a group of disorders with unique or partially overlapping etiologies.
Collapse
Affiliation(s)
- Yoshiaki Isomura
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Japan
| | - Satoshi Sudo
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | - Mayuko Ono
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | - Yuki Kaminishi
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | - Yukiyoshi Sumi
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | - Atsushi Yoshimura
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | - Kumiko Fujii
- Department of Psychiatry, Shiga University of Medical Science, Japan
| | - Kazufumi Akiyama
- Department of Biological Psychiatry and Neuroscience, Dokkyo Medical University School of Medicine, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Japan
| | - Yuji Ozeki
- Department of Psychiatry, Shiga University of Medical Science, Japan
| |
Collapse
|
4
|
Ohno M, Shiomi H, Baba O, Yano M, Aizawa T, Nakano-Matsumura Y, Yamagami S, Kato M, Ohya M, Chen PM, Nagao K, Ando K, Yokomatsu T, Kadota K, Kouchi I, Inada T, Valentine C, Kitagawa T, Kurokawa M, Ohtsuru S, Morimoto T, Kimura T, Nishi E. Auxiliary roles of nardilysin in the early diagnosis of acute coronary syndrome: a prospective cohort study, the Nardi-ACS study. Intern Emerg Med 2024; 19:649-659. [PMID: 38233578 PMCID: PMC11039555 DOI: 10.1007/s11739-023-03508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024]
Abstract
Acute coronary syndrome (ACS) includes myocardial infarction (MI) and unstable angina (UA). MI is defined by elevated necrosis markers, preferably high-sensitivity cardiac troponins (hs-cTn). However, it takes hours for cTn to become elevated after coronary occlusion; therefore, difficulties are associated with diagnosing early post-onset MI or UA. The aim of this prospective cohort study was to examine the diagnostic ability of serum nardilysin (NRDC) for the early detection of ACS. This study consisted of two sequential cohorts, the Phase I cohort, 435 patients presenting to the emergency room (ER) with chest pain, and the Phase II cohort, 486 patients with chest pain who underwent coronary angiography. The final diagnosis was ACS in 155 out of 435 patients (35.6%) in the phase I and 418 out of 486 (86.0%) in the phase II cohort. Among 680 patients who presented within 24 h of onset, 466 patients (68.5%) were diagnosed with ACS. Serum NRDC levels were significantly higher in patients with ACS than in those without ACS. The sensitivity of NRDC in patients who presented within 6 h after the onset was higher than that of hsTnI, and the AUC of NRDC within 1 h of the onset was higher than that of hsTnI (0.718 versus 0.633). Among hsTnI-negative patients (300 of 680 patients: 44.1%), 136 of whom (45.3%) were diagnosed with ACS, the sensitivity and the NPV of NRDC were 73.5 and 65.7%, respectively. When measured in combination with hsTnI, NRDC plays auxiliary roles in the early diagnosis of ACS.
Collapse
Affiliation(s)
- Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Hiroki Shiomi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Osamu Baba
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Preemptive Medicine and Lifestyle Disease Research Center, Kyoto University Hospital, 54 Shogoinkawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Mariko Yano
- Kokura Memorial Hospital, 3-2-1 Asano, Kita-Ku, Kokura, Kitakyushu, Fukuoka, 802-8555, Japan
| | - Takanori Aizawa
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yukiko Nakano-Matsumura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Shintaro Yamagami
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Masashi Kato
- Mitsubishi Kyoto Hospital, 1, Katsuragoshomachi, Nishikyo-Ku, Kyoto, 615-8087, Japan
| | - Masanobu Ohya
- Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama, 710-8602, Japan
| | - Po-Min Chen
- Saiseikai Noe Hospital, 1-3-25, Furuichi, Joto-Ku, Osaka, 536-0001, Japan
| | - Kazuya Nagao
- Osaka Red-Cross Hospital, 5-30 Fudegasakicho, Tennoji-Ku, Osaka, 543-8555, Japan
| | - Kenji Ando
- Kokura Memorial Hospital, 3-2-1 Asano, Kita-Ku, Kokura, Kitakyushu, Fukuoka, 802-8555, Japan
| | - Takafumi Yokomatsu
- Mitsubishi Kyoto Hospital, 1, Katsuragoshomachi, Nishikyo-Ku, Kyoto, 615-8087, Japan
| | - Kazushige Kadota
- Kurashiki Central Hospital, 1-1-1 Miwa, Kurashiki, Okayama, 710-8602, Japan
| | - Ichiro Kouchi
- Saiseikai Noe Hospital, 1-3-25, Furuichi, Joto-Ku, Osaka, 536-0001, Japan
| | - Tsukasa Inada
- Osaka Red-Cross Hospital, 5-30 Fudegasakicho, Tennoji-Ku, Osaka, 543-8555, Japan
| | - Cindy Valentine
- Sanyo Chemical Industries, 11-1 Hitotsubashi Nomoto, Higashiyama, Kyoto, 605-0995, Japan
| | - Takahiro Kitagawa
- Sanyo Chemical Industries, 11-1 Hitotsubashi Nomoto, Higashiyama, Kyoto, 605-0995, Japan
| | - Masato Kurokawa
- Sanyo Chemical Industries, 11-1 Hitotsubashi Nomoto, Higashiyama, Kyoto, 605-0995, Japan
| | - Shigeru Ohtsuru
- Department of Primary Care and Emergency Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoinkawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takeshi Morimoto
- Hyogo College of Medicine, 1-1, Mukogawa-Cho, Nishinomiya, Hyogo, 663-8501, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Hirakata Kosai Hospital, 1-2-1, Fujibanto-Cho, Hirakata, Osaka, 573-0153, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-Cho, Otsu, Shiga, 520-2192, Japan.
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
5
|
Yamaguchi A, Takahashi T, Kato T, Tanaka T, Nishi E, Fujimoto N. Immunohistochemical and clinicopathological study regarding nardilysin on extramammary Paget's disease. Arch Dermatol Res 2023; 315:1979-1987. [PMID: 36867223 DOI: 10.1007/s00403-023-02579-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 03/04/2023]
Abstract
It has been reported that nardilysin (NRDC), a metalloendopeptidase which regulates various growth factors and cytokines, is associated with malignancies in a conflicting manner, in which it promoted gastric, hepatocellular, and colorectal cancers and suppressed pancreatic ductal adenocarcinoma. However, it has not been investigated how NRDC is associated with cutaneous malignancies for now. Immunohistochemical staining has revealed that NRDC expression is observed in all extramammary Paget's disease (EMPD) cases. Notably, other cutaneous malignancies including basal cell carcinoma, squamous cell carcinoma, and eccrine porocarcinoma, did not show increased NRDC expression in immunohistochemistry. EMPD typically presents several types of lesions including nodules, and positive staining of NRDC on EMPD was observed regardless of the type of lesions. Examination using samples taken from nodular lesions showed that some cases showed heterogenous NRDC expression within each lesion. We also found that NRDC staining was weaker in the marginal parts of EMPD lesion than in the central parts in several cases, and tumor cells tend to be distributed beyond the macroscopic skin lesions in these cases. It was speculated that decreased NRDC expression in the marginal zones of the skin lesions may be associated with the ability of tumor cells to produce the cutaneous manifestation of EMPD. This study suggests that NRDC may be associated with EMPD like other malignancies reported previously.
Collapse
Affiliation(s)
- Akihiko Yamaguchi
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Toshifumi Takahashi
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan.
| | - Takeshi Kato
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Toshihiro Tanaka
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| | - Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Setatsukinowa, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
6
|
Xu Y, Xiong Q, Yang Y, Weng N, Li J, Liu J, Yang X, Zeng Z, Zhang Z, Zhu Q. Serum Nardilysin as a Prognostic Biomarker in Pancreatic Ductal Adenocarcinoma. J Clin Med 2022; 11:jcm11113101. [PMID: 35683488 PMCID: PMC9181681 DOI: 10.3390/jcm11113101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Nardilysin, (N-arginine dibasic convertase, NRDC) has been reported to play an important role in cancer progression, and is associated with tumor proliferation signals and inflammatory signals, such as tumor necrosis factor-a (TNF-a) and heparin-binding epidermal growth factor-like growth factor (HB-EGF), through the activation of disintegrin and metalloproteinase (ADAM) proteases. NRDC has recently been revealed to be involved in the tumorigenesis of various types of cancer, including intrahepatic cholangiocarcinoma, malignant cerebral infarction, esophageal squamous cell carcinoma, and gastric cancer. However, the expression profiles and biological relevance of NRDC in pancreatic ductal adenocarcinoma have rarely been reported. Methods: We analyzed the NRDC expression profile in pancreatic ductal adenocarcinoma by enzyme-linked immunosorbent assay (ELISA) and identified NRDC as a circulating biomarker in the serum of 112 pancreatic ductal adenocarcinoma patients. The diagnostic value of NRDC was analyzed by the area under the curve (AUC) and the receiver operating characteristic (ROC) test. Results: Our results demonstrated that the clinical prognosis significance of NRDC with the clinical characteristics in pancreatic ductal adenocarcinoma (PDAC). NRDC was notably decreased in PDAC patient serum compared with the control group (p < 0.001). Furthermore, the present study found that the NRDC expression level was correlated with T grade (p < 0.001), metastasis(p < 0.001), differentiation(p < 0.001), and TNM stage (p = 0.011). Further bioinformatics analysis revealed that NRDC correlated with proliferation and migration pathways; in particular, it mediated cell-matrix adhesion-dependent activation in pancreatic ductal adenocarcinoma. Conclusions: Serum NRDC may play a useful diagnostic biomarker to evaluate the aggressive clinical features in PAAD patients.
Collapse
|
7
|
Kodama M, Shimura H, Tien JC, Newberg JY, Kodama T, Wei Z, Rangel R, Yoshihara K, Kuruma A, Nakae A, Hashimoto K, Sawada K, Kimura T, Jenkins NA, Copeland NG. Sleeping Beauty Transposon Mutagenesis Identifies Genes Driving the Initiation and Metastasis of Uterine Leiomyosarcoma. Cancer Res 2021; 81:5413-5424. [PMID: 34475109 DOI: 10.1158/0008-5472.can-21-0356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/29/2021] [Accepted: 09/01/2021] [Indexed: 11/16/2022]
Abstract
Uterine leiomyosarcoma (ULMS) is a malignancy, which arises from the uterine smooth muscle. Because of its rarity, aggressive nature, and extremely poor prognosis, the molecular mechanisms driving ULMS remain elusive. To identify candidate cancer genes (CCG) driving ULMS, we conducted an in vivo Sleeping Beauty (SB) transposon mutagenesis screen in uterine myometrium-specific, PTEN knockout, KRAS mutant (PTEN KO/KRAS) mice. ULMS quickly developed in SB PTEN KO/KRAS mice, but not in PTEN KO/KRAS mice, demonstrating the critical importance of SB mutagenesis for driving ULMS in this model. Subsequent sequencing of SB insertion sites in these tumors identified 19 ULMS CCGs that were significantly enriched in known cancer genes. Among them, Zfp217 and Sfmbt2 functioned at early stages of tumor initiation and appeared to be oncogenes. Expression of ZNF217, the human homolog of ZFP217, was shown to be elevated in human ULMS compared with paired normal uterine smooth muscle, where it negatively correlated with patient prognosis. Inhibition of ZNF217 suppressed, whereas overexpression induced, proliferation, survival, migration, and stemness of human ULMS. In a second ex vivo ULMS SB metastasis screen, three CCGs were identified that may drive ULMS metastasis to the lung. One of these CCGs, Nrd1 (NRDC in humans), showed stronger expression in human metastatic tumors compared with primary ULMS and negatively associated with patient survival. NRDC knockdown impaired migration and adhesion without affecting cell proliferation, whereas overexpression had the opposite effect. Together, these results reveal novel mechanism driving ULMS tumorigenesis and metastasis and identify ZNF217 and NRDC as potential targets for ULMS therapy. SIGNIFICANCE: An in vivo Sleeping Beauty transposon mutagenesis screen identifies candidate cancer genes that drive initiation and progression of uterine leiomyosarcoma and may serve as therapeutic targets.
Collapse
Affiliation(s)
- Michiko Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas. .,Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroko Shimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jean C Tien
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Pathology, Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, Michigan
| | - Justin Y Newberg
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas
| | - Takahiro Kodama
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Zhubo Wei
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Texas A&M University, Houston, Texas
| | - Roberto Rangel
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Department of Head and Neck Surgery, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Airi Kuruma
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Aya Nakae
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kae Hashimoto
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenjiro Sawada
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nancy A Jenkins
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas.,Genetics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neal G Copeland
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas. .,Genetics Department, University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
8
|
Yang G, Cui M, Jiang W, Sheng J, Yang Y, Zhang X. Molecular switch in human diseases-disintegrin and metalloproteinases, ADAM17. Aging (Albany NY) 2021; 13:16859-16872. [PMID: 34182543 PMCID: PMC8266367 DOI: 10.18632/aging.203200] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023]
Abstract
The ADAMs (a disintegrin and metalloproteinase) are a family of cell surface proteins with crucial roles in the regulation of cell adhesion, cell proliferation to migration, proteolysis and cell signaling transduction pathways. Among these enzymes, the ADAM17 shows significant effects in the “ectodomain shedding” of its substrates such as cytokines (e.g., tumor necrosis factor α, TNFα), growth factors (e.g., epidermal growth factor, EGF), adhesion proteins (e.g., L-selectin), and their receptors (e.g., IL-6R and TNFα). Several studies focus on the underlying molecular mechanisms of ADAM17 in diseased conditions. Here, we took several different approaches to elucidate the function of ADAM17, the participation of ADAM17 in several human diseases, and the potential as targeted therapy reagents. As more and more studies verify the miRNA-mediated expression variation of ADAM17, the specific regulation network of miRNAs and ADAM17 was exploited in this review as well.
Collapse
Affiliation(s)
- Guang Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Mengying Cui
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Weibo Jiang
- Department of Orthopaedic, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Yongsheng Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| | - Xuewen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, P.R. China
| |
Collapse
|
9
|
Transmembrane TNF and Its Receptors TNFR1 and TNFR2 in Mycobacterial Infections. Int J Mol Sci 2021; 22:ijms22115461. [PMID: 34067256 PMCID: PMC8196896 DOI: 10.3390/ijms22115461] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022] Open
Abstract
Tumor necrosis factor (TNF) is one of the main cytokines regulating a pro-inflammatory environment. It has been related to several cell functions, for instance, phagocytosis, apoptosis, proliferation, mitochondrial dynamic. Moreover, during mycobacterial infections, TNF plays an essential role to maintain granuloma formation. Several effector mechanisms have been implicated according to the interactions of the two active forms, soluble TNF (solTNF) and transmembrane TNF (tmTNF), with their receptors TNFR1 and TNFR2. We review the impact of these interactions in the context of mycobacterial infections. TNF is tightly regulated by binding to receptors, however, during mycobacterial infections, upstream activation signalling pathways may be influenced by key regulatory factors either at the membrane or cytosol level. Detailing the structure and activation pathways used by TNF and its receptors, such as its interaction with solTNF/TNFRs versus tmTNF/TNFRs, may bring a better understanding of the molecular mechanisms involved in activation pathways which can be helpful for the development of new therapies aimed at being more efficient against mycobacterial infections.
Collapse
|
10
|
Yasuda D, Hiraoka Y, Ohno M, Nishi K, Iwasaki H, Kita T, Nishi E, Kume N. Deficiency of Nardilysin in the Liver Reduces Serum Cholesterol Levels. Biol Pharm Bull 2021; 44:363-371. [PMID: 33642545 DOI: 10.1248/bpb.b20-00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nardilysin (NRDC) has been shown to be involved in post-translational histone modifications, in addition to enhancement in ectodomain shedding of membrane-anchored protein, which play significant roles in various pathophysiology, including glucose homeostasis, inflammatory diseases and cancer. The present study sought to determine roles of NRDC in the liver on lipid and lipoprotein metabolism. We established liver-specific NRDC deficient mice by use of NRD1 floxed mice and albumin promoter-Cre recombinase (Cre) transgenic mice, and found that their serum low-density lipoprotein (LDL) cholesterol levels were significantly lower than those in control littermate mice. In the liver, LDL receptor (LDLR) mRNA expression was significantly upregulated, while inducible degrader of LDLR (IDOL) and microsomal triglyceride transfer protein (MTP) mRNA expression was significantly downregulated, in liver-specific NRDC deficient mice. Hepatic cell-surface LDLR expression levels were significantly elevated and serum pro-protein convertase subtilisin-kexin type 9 (PCSK9) levels were significantly reduced in mice with hepatic NRDC deficiency. In cultured hepatocytes, NRDC deficiency significantly reduced secreted PCSK9 and increased cell-surface LDLR expression. On the other hand, NRDC overexpression in cultured hepatocytes significantly increased secreted PCSK9 and lowered cell-surface LDLR expression. Thus, NRDC in murine hepatocytes appears to play key roles in cholesterol homeostasis, although the precise molecular mechanisms remain to be determined.
Collapse
Affiliation(s)
- Daisuke Yasuda
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| | - Yoshinori Hiraoka
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Sciences
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University
| | - Hirotaka Iwasaki
- Department of Pharmacology, Shiga University of Medical Sciences
| | | | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Sciences
| | - Noriaki Kume
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
11
|
Mercogliano MF, Bruni S, Mauro F, Elizalde PV, Schillaci R. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers (Basel) 2021; 13:cancers13030564. [PMID: 33540543 PMCID: PMC7985780 DOI: 10.3390/cancers13030564] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/17/2021] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a pleiotropic cytokine known to have contradictory roles in oncoimmunology. Indeed, TNFα has a central role in the onset of the immune response, inducing both activation and the effector function of macrophages, dendritic cells, natural killer (NK) cells, and B and T lymphocytes. Within the tumor microenvironment, however, TNFα is one of the main mediators of cancer-related inflammation. It is involved in the recruitment and differentiation of immune suppressor cells, leading to evasion of tumor immune surveillance. These characteristics turn TNFα into an attractive target to overcome therapy resistance and tackle cancer. This review focuses on the diverse molecular mechanisms that place TNFα as a source of resistance to immunotherapy such as monoclonal antibodies against cancer cells or immune checkpoints and adoptive cell therapy. We also expose the benefits of TNFα blocking strategies in combination with immunotherapy to improve the antitumor effect and prevent or treat adverse immune-related effects.
Collapse
Affiliation(s)
- María Florencia Mercogliano
- Laboratorio de Biofisicoquímica de Proteínas, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires 1428, Argentina;
| | - Sofía Bruni
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Florencia Mauro
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Patricia Virginia Elizalde
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
| | - Roxana Schillaci
- Laboratory of Molecular Mechanisms of Carcinogenesis, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires 1428, Argentina; (S.B.); (F.M.); (P.V.E.)
- Correspondence: ; Tel.: +54-11-4783-2869; Fax: +54-11-4786-2564
| |
Collapse
|
12
|
Ohno M, Nishi K, Hiraoka Y, Niizuma S, Matsuda S, Iwasaki H, Kimura T, Nishi E. Nardilysin controls cardiac sympathetic innervation patterning through regulation of p75 neurotrophin receptor. FASEB J 2020; 34:11624-11640. [PMID: 32683751 DOI: 10.1096/fj.202000604r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/01/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022]
Abstract
Cardiac sympathetic innervation is critically involved in the regulation of circulatory dynamics. However, the molecular mechanism for the innervation patterning has remained elusive. Here, we demonstrate that nardilysin (NRDC, Nrdc), an enhancer of ectodomain shedding, regulates cardiac sympathetic innervation. Nardilysin-deficient (Nrdc-/- ) mice show hypoplastic hearts, hypotension, bradycardia, and abnormal sympathetic innervation patterning. While the innervation of left ventricle (LV) of wild-type mice is denser in the subepicardium than in the subendocardium, Nrdc-/- LV lacks such a polarity and is uniformly and more abundantly innervated. At the molecular level, the full-length form of p75 neurotrophin receptor (p75NTR , Ngfr) is increased in Nrdc-/- LV due to the reduced ectodomain shedding of p75NTR . Importantly, the reduction of p75NTR rescued the abnormal innervation phenotype of Nrdc-/- mice. Moreover, sympathetic neuron-specific, but not cardiomyocyte-specific deletion of Nrdc recapitulated the abnormal innervation patterning of Nrdc-/- mice. In conclusion, neuronal nardilysin critically regulates cardiac sympathetic innervation and circulatory dynamics via modulation of p75NTR .
Collapse
Affiliation(s)
- Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan.,Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshinori Hiraoka
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Kobe, Hyogo, Japan
| | - Shinichiro Niizuma
- Division of Cardiology, Department of Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shintaro Matsuda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirotaka Iwasaki
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
13
|
Xu S, Wu X, Zhang X, Chen C, Chen H, She F. CagA orchestrates eEF1A1 and PKCδ to induce interleukin-6 expression in Helicobacter pylori-infected gastric epithelial cells. Gut Pathog 2020; 12:31. [PMID: 32636937 PMCID: PMC7333391 DOI: 10.1186/s13099-020-00368-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/15/2020] [Indexed: 02/07/2023] Open
Abstract
Background Helicobacter pylori colonises the stomach of approximately 50% of the global population. Cytotoxin-associated gene A protein (CagA) is one of the important virulent factors responsible for the increased inflammation and increases the risk of developing peptic ulcers and gastric carcinoma. The cytokine interleukin-6 (IL-6) has particularly important roles in the malignant transformation of gastric and intestinal epithelial cells as it is upregulated in H. pylori-infected gastric mucosa. In this study, we investigated the underlying mechanisms of CagA-induced IL-6 up-regulation during H. pylori infection. AGS cells, a human gastric adenocarcinoma cell line, lacking eEF1A1 were infected with CagA+ H. pylori (NCTC11637), CagA- H. pylori (NCTC11637ΔcagA), or transduced by Ad-cagA/Ad-GFP. The expression and production of IL-6 were measured by quantitative real-time reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The interactions among CagA, eukaryotic translation elongation factor 1-alpha 1 (eEF1A1), protein kinase Cδ (PKCδ), and signal transducer and activator of transcription 3 (STAT3) were determined by western blot or co-immunoprecipitation. Results During H. pylori infection, CagA-M (residues 256‒871aa) was found to interact with eEF1A1-I (residues 1‒240aa). NCTC11637 increased the expression of IL-6 in AGS cells compared with NCTC11637ΔcagA whereas knockdown of eEF1A1 in AGS cells completely abrogated these effects. Moreover, the CagA-eEF1A1 complex promoted the expression of IL-6 in AGS cells. CagA and eEF1A1 cooperated to mediate the expression of IL-6 by affecting the activity of p-STATS727 in the nucleus. Further, CagA-eEF1A1 affected the activity of STAT3 by recruiting PKCδ. However, blocking PKCδ inhibited the phosphorylation of STAT3S727 and induction of IL-6 by CagA. Conclusions CagA promotes the expression of IL-6 in AGS cells by recruiting PKCδ through eEF1A1 in the cytoplasm to increase the phosphorylation of STAT3S727 in the nucleus. These findings provide new insights into the function of CagA-eEF1A1 interaction in gastric adenocarcinoma.
Collapse
Affiliation(s)
- Shaohan Xu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China.,First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350001 People's Republic of China
| | - Xiaoqian Wu
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| | - Xiaoyan Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| | - Chu Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| | - Hao Chen
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| | - Feifei She
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, Fujian Medical University, 1 Xue Fu North Road, Fuzhou, Fujian 350122 People's Republic of China.,Key Laboratory of Tumor Microbiology, Department of Medical Microbiology, Fujian Medical University, Fuzhou, Fujian 350122 People's Republic of China
| |
Collapse
|
14
|
Ikuta K, Fukuda A, Ogawa S, Masuo K, Goto N, Hiramatsu Y, Tsuda M, Kimura Y, Matsumoto Y, Kimura Y, Maruno T, Kanda K, Nishi K, Takaori K, Uemoto S, Takaishi S, Chiba T, Nishi E, Seno H. Nardilysin inhibits pancreatitis and suppresses pancreatic ductal adenocarcinoma initiation in mice. Gut 2019; 68:882-892. [PMID: 29798841 DOI: 10.1136/gutjnl-2017-315425] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Nardilysin (NRDC), a zinc peptidase, exhibits multiple localisation-dependent functions including as an enhancer of ectodomain shedding in the extracellular space and a transcriptional coregulator in the nucleus. In this study, we investigated its functional role in exocrine pancreatic development, homeostasis and the formation of pancreatic ductal adenocarcinoma (PDA). DESIGN We analysed Ptf1a-Cre; Nrdcflox/flox mice to investigate the impact of Nrdc deletion. Pancreatic acinar cells were isolated from Nrdcflox/flox mice and infected with adenovirus expressing Cre recombinase to examine the impact of Nrdc inactivation. Global gene expression in Nrdc-cKO pancreas was analysed compared with wild-type pancreas by microarray analysis. We also analysed Ptf1a-Cre; KrasG12D; Nrdcflox/flox mice to investigate the impact of Nrdc deletion in the context of oncogenic Kras. A total of 51 human samples of pancreatic intraepithelial lesions (PanIN) and PDA were examined by immunohistochemistry for NRDC. RESULTS We found that pancreatic deletion of Nrdc leads to spontaneous chronic pancreatitis concomitant with acinar-to-ductal conversion, increased apoptosis and atrophic pancreas in mice. Acinar-to-ductal conversion was observed mainly through a non-cell autonomous mechanism, and the expression of several chemokines was significantly increased in Nrdc-null pancreatic acinar cells. Furthermore, pancreatic deletion of Nrdc dramatically accelerated KrasG12D -driven PanIN and subsequent PDA formation in mice. These data demonstrate a previously unappreciated anti-inflammatory and tumour suppressive functions of Nrdc in the pancreas in mice. Finally, absence of NRDC expression was observed in a subset of human PanIN and PDA. CONCLUSION Nrdc inhibits pancreatitis and suppresses PDA initiation in mice.
Collapse
Affiliation(s)
- Kozo Ikuta
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Ogawa
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kenji Masuo
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihiro Goto
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukiko Hiramatsu
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshito Kimura
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshihide Matsumoto
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuto Kimura
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahisa Maruno
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keitaro Kanda
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiyoto Nishi
- Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kyoichi Takaori
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shigeo Takaishi
- Laboratory for Malignancy Control Research (DSK project), Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | - Hiroshi Seno
- Department of Gastoenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
15
|
Chen FH, Wang Y, Jiang YX, Zhang GH, Wang ZM, Yang H. Clinical determination of serum nardilysin levels in predicting 30-day mortality among adults with malignant cerebral infarction. Clin Chim Acta 2019; 494:8-13. [PMID: 30871973 DOI: 10.1016/j.cca.2019.03.1608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nardilysin, a kind of metalloendopeptidase, plays an important role in numerous inflammatory diseases. Malignant cerebral infarction (Glasgow coma scale score of <9) is associated with a high mortality risk. Here, we intended to investigate the relationship between serum nardilysin levels and prognosis of patients with malignant cerebral infarction. METHODS Serum nardilysin concentrations were quantified at malignant cerebral infarction diagnosis moment in 105 patients and at study entrance in 105 healthy controls. Association of nardilysin concentrations with 30-day mortality and overall survival was estimated using multivariate analyses. RESULTS The patients exhibited substantially increased serum nardilysin concentrations, as compared to the controls. Nardilysin concentrations were in pronounced correlation with Glasgow coma scale scores and serum C-reactive protein concentrations. Serum nardilysin was independently predictive of 30-day mortality and overall survival. Under receiver operating characteristic curve, its high discriminatory ability was found. CONCLUSIONS Rising serum nardilysin concentrations following malignant cerebral infarction are strongly related to stroke severity, inflammatory extent and a higher risk of mortality, substantializing serum nardilysin as a potential prognostic biomarker for malignant cerebral infarction.
Collapse
Affiliation(s)
- Fang-Hui Chen
- Department of Emergency Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou 310006, China.
| | - Yi Wang
- Department of Emergency Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou 310006, China
| | - Yi-Xiang Jiang
- Department of Neurology, The Huangyan Hospital of Wenzhou Medical University, 218 Hengjie Road, Taizhou 318020, China
| | - Gui-Hong Zhang
- Department of Neurology, The Huangyan Hospital of Wenzhou Medical University, 218 Hengjie Road, Taizhou 318020, China
| | - Zhi-Min Wang
- Department of Neurology, The Huangyan Hospital of Wenzhou Medical University, 218 Hengjie Road, Taizhou 318020, China
| | - Hui Yang
- Department of Neurologic Intensive Care Unit, The Huangyan Hospital of Wenzhou Medical University, 218 Hengjie Road, Taizhou 318020, China
| |
Collapse
|
16
|
Yoh T, Hatano E, Kasai Y, Fuji H, Nishi K, Toriguchi K, Sueoka H, Ohno M, Seo S, Iwaisako K, Taura K, Yamaguchi R, Kurokawa M, Fujimoto J, Kimura T, Uemoto S, Nishi E. Serum Nardilysin, a Surrogate Marker for Epithelial-Mesenchymal Transition, Predicts Prognosis of Intrahepatic Cholangiocarcinoma after Surgical Resection. Clin Cancer Res 2019; 25:619-628. [PMID: 30352908 DOI: 10.1158/1078-0432.ccr-18-0124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 07/21/2018] [Accepted: 10/19/2018] [Indexed: 11/16/2022]
Abstract
PURPOSE Few studies have investigated prognostic biomarkers in patients with intrahepatic cholangiocarcinoma (ICC). Nardilysin (NRDC), a metalloendopeptidase of the M16 family, has been suggested to play important roles in inflammation and several cancer types. We herein examined the clinical significance and biological function of NRDC in ICC.Experimental Design: We measured serum NRDC levels in 98 patients with ICC who underwent surgical resection in two independent cohorts to assess its prognostic impact. We also analyzed NRDC mRNA levels in cancerous tissue specimens from 43 patients with ICC. We investigated the roles of NRDC in cell proliferation, migration, gemcitabine sensitivity, and gene expression in ICC cell lines using gene silencing. RESULTS High serum NRDC levels were associated with shorter overall survival and disease-free survival in the primary (n = 79) and validation (n = 19) cohorts. A correlation was observed between serum protein levels and cancerous tissue mRNA levels of NRDC (Spearman ρ = 0.413; P = 0.006). The gene knockdown of NRDC in ICC cell lines attenuated cell proliferation, migration, and tumor growth in xenografts, and increased sensitivity to gemcitabine. The gene knockdown of NRDC was also accompanied by significant changes in the expression of several epithelial-mesenchymal transition (EMT)-related genes. Strong correlations were observed between the mRNA levels of NRDC and EMT-inducing transcription factors, ZEB1 and SNAI1, in surgical specimens from patients with ICC. CONCLUSIONS Serum NRDC, a possible surrogate marker reflecting the EMT state in primary tumors, predicts the outcome of ICC after surgical resection.
Collapse
Affiliation(s)
- Tomoaki Yoh
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Etsuro Hatano
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan.
| | - Yosuke Kasai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroaki Fuji
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kan Toriguchi
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Hideaki Sueoka
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Satoru Seo
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Iwaisako
- Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, Kyotanabe, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Jiro Fujimoto
- Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
17
|
Wang W, Ren D, Wang CS, Yao HC. Nardilysin: A potential biomarker for the early diagnosis of acute coronary syndrome. Int J Cardiol 2018; 265:39. [PMID: 29885698 DOI: 10.1016/j.ijcard.2018.03.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 02/24/2018] [Accepted: 03/09/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Wang
- Department of Cardiology, Liaocheng People's Hospital affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng 252000, PR China
| | - Dong Ren
- Department of Cardiology, Liaocheng People's Hospital affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng 252000, PR China
| | - Chun-Song Wang
- Department of Cardiology, Liaocheng People's Hospital affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng 252000, PR China
| | - Heng-Chen Yao
- Department of Cardiology, Liaocheng People's Hospital affiliated to Shandong University and Clinical School of Taishan Medical University, Liaocheng 252000, PR China.
| |
Collapse
|
18
|
Ito Y, Nakamura S, Sugimoto N, Shigemori T, Kato Y, Ohno M, Sakuma S, Ito K, Kumon H, Hirose H, Okamoto H, Nogawa M, Iwasaki M, Kihara S, Fujio K, Matsumoto T, Higashi N, Hashimoto K, Sawaguchi A, Harimoto KI, Nakagawa M, Yamamoto T, Handa M, Watanabe N, Nishi E, Arai F, Nishimura S, Eto K. Turbulence Activates Platelet Biogenesis to Enable Clinical Scale Ex Vivo Production. Cell 2018; 174:636-648.e18. [PMID: 30017246 DOI: 10.1016/j.cell.2018.06.011] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/30/2018] [Accepted: 05/23/2018] [Indexed: 12/14/2022]
Abstract
The ex vivo generation of platelets from human-induced pluripotent cells (hiPSCs) is expected to compensate donor-dependent transfusion systems. However, manufacturing the clinically required number of platelets remains unachieved due to the low platelet release from hiPSC-derived megakaryocytes (hiPSC-MKs). Here, we report turbulence as a physical regulator in thrombopoiesis in vivo and its application to turbulence-controllable bioreactors. The identification of turbulent energy as a determinant parameter allowed scale-up to 8 L for the generation of 100 billion-order platelets from hiPSC-MKs, which satisfies clinical requirements. Turbulent flow promoted the release from megakaryocytes of IGFBP2, MIF, and Nardilysin to facilitate platelet shedding. hiPSC-platelets showed properties of bona fide human platelets, including circulation and hemostasis capacities upon transfusion in two animal models. This study provides a concept in which a coordinated physico-chemical mechanism promotes platelet biogenesis and an innovative strategy for ex vivo platelet manufacturing.
Collapse
Affiliation(s)
- Yukitaka Ito
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Kyoto Development Center, Megakaryon Corporation, Kyoto, Japan
| | - Sou Nakamura
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Naoshi Sugimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | | | - Yoshikazu Kato
- Mixing Technology Laboratory, SATAKE Chemical Equipment Manufacturing Ltd., Saitama, Japan
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Shinya Sakuma
- Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya, Japan
| | - Keitaro Ito
- Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya, Japan
| | - Hiroki Kumon
- Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya, Japan
| | - Hidenori Hirose
- Kyoto Development Center, Megakaryon Corporation, Kyoto, Japan
| | - Haruki Okamoto
- Kyoto Development Center, Megakaryon Corporation, Kyoto, Japan
| | - Masayuki Nogawa
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Mio Iwasaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Shunsuke Kihara
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kosuke Fujio
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takuya Matsumoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Natsumi Higashi
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Kazuya Hashimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Akira Sawaguchi
- Department of Anatomy, Faculty of Medicine, University of Miyazaki, Miyazaki, Japan
| | - Ken-Ichi Harimoto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Masato Nakagawa
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; AMED-CREST, AMED, Tokyo, Japan
| | - Makoto Handa
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Naohide Watanabe
- Center for Transfusion Medicine and Cell Therapy, Keio University School of Medicine, Tokyo, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| | - Fumihito Arai
- Department of Micro-Nano Systems Engineering, Nagoya University, Nagoya, Japan
| | - Satoshi Nishimura
- Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan; Department of Regenerative Medicine, Chiba University Graduate School of Medicine, Chiba, Japan.
| |
Collapse
|
19
|
Zhang H, Sun L. When human cells meet bacteria: precision medicine for cancers using the microbiota. Am J Cancer Res 2018; 8:1157-1175. [PMID: 30094091 PMCID: PMC6079160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 06/14/2018] [Indexed: 06/08/2023] Open
Abstract
The human microbiota interacts with the host immune system in multiple ways to influence the development of diseases, including cancers; however, a detailed understanding of their relationship is unavailable. Accumulating evidence has only revealed an association rather than a causal link between microbial alterations and carcinogenesis. The regulatory loops among the microbiome, human cells and the immune system are far more complicated and require further studies to be revealed. In this review, we discuss the impact of the microbiota on cancer initiation, development and progression in different types of human cells, mainly focusing on the clinical translation from microbiome research to an accurate diagnosis, subtype classification and precision medicine.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeKunming 650031, Yunnan, China
| | - Litao Sun
- The Scripps Laboratories for tRNA Synthetase Research, The Scripps Research InstituteLa Jolla, CA 92037, USA
- Department of Molecular Medicine, The Skaggs Institute for Chemical Biology, The Scripps Research InstituteLa Jolla, CA 92037, USA
| |
Collapse
|
20
|
Kanda K, Sakamoto J, Matsumoto Y, Ikuta K, Goto N, Morita Y, Ohno M, Nishi K, Eto K, Kimura Y, Nakanishi Y, Ikegami K, Yoshikawa T, Fukuda A, Kawada K, Sakai Y, Ito A, Yoshida M, Kimura T, Chiba T, Nishi E, Seno H. Nardilysin controls intestinal tumorigenesis through HDAC1/p53-dependent transcriptional regulation. JCI Insight 2018; 3:91316. [PMID: 29669932 DOI: 10.1172/jci.insight.91316] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/20/2018] [Indexed: 02/06/2023] Open
Abstract
Colon cancer is a complex disease affected by a combination of genetic and epigenetic factors. Here we demonstrate that nardilysin (N-arginine dibasic convertase; NRDC), a metalloendopeptidase of the M16 family, regulates intestinal tumorigenesis via its nuclear functions. NRDC is highly expressed in human colorectal cancers. Deletion of the Nrdc gene in ApcMin mice crucially suppressed intestinal tumor development. In ApcMin mice, epithelial cell-specific deletion of Nrdc recapitulated the tumor suppression observed in Nrdc-null mice. Moreover, epithelial cell-specific overexpression of Nrdc significantly enhanced tumor formation in ApcMin mice. Notably, epithelial NRDC controlled cell apoptosis in a gene dosage-dependent manner. In human colon cancer cells, nuclear NRDC directly associated with HDAC1, and controlled both acetylation and stabilization of p53, with alterations of p53 target apoptotic factors. These findings demonstrate that NRDC is critically involved in intestinal tumorigenesis through its epigenetic regulatory function, and targeting NRDC may lead to a novel prevention or therapeutic strategy against colon cancer.
Collapse
Affiliation(s)
| | - Jiro Sakamoto
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Kozo Ikuta
- Department of Gastroenterology and Hepatology, and
| | | | - Yusuke Morita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Mikiko Ohno
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koji Eto
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto, Japan
| | - Yuto Kimura
- Department of Gastroenterology and Hepatology, and
| | | | | | | | | | - Kenji Kawada
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiharu Sakai
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihiro Ito
- Chemical Genetics Laboratory, RIKEN, Wako, Saitama, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genetics Laboratory, RIKEN, Wako, Saitama, Japan.,Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Saitama, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, and
| |
Collapse
|
21
|
Chen PM, Ohno M, Hiwasa T, Nishi K, Saijo S, Sakamoto J, Morita Y, Matsuda S, Watanabe S, Kuwabara Y, Ono K, Imai M, Inoue K, Murai T, Inada T, Tanaka M, Kita T, Kimura T, Nishi E. Nardilysin is a promising biomarker for the early diagnosis of acute coronary syndrome. Int J Cardiol 2018; 243:1-8. [PMID: 28747015 DOI: 10.1016/j.ijcard.2017.04.047] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 03/10/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Biomarkers for detection of transient myocardial ischemia in patients with unstable angina (UA) or for very early diagnosis of acute myocardial infarction (AMI) are not currently available. METHODS AND RESULTS We performed two sequential screenings of autoantibodies elevated shortly after the onset of acute coronary syndrome (ACS), and focused on metalloendopeptidase nardilysin (NRDC) among 19 identified candidate antigens. In a retrospective analysis among 93 ACS and 117 non-ACS patients, the serum level of NRDC was significantly increased in patients with ACS compared with that in patients with non-ACS (2073.5±189.8pg/ml versus 775.7±63.4pg/ml, P<0.0001). The area under the curve of NRDC for the diagnosis of ACS was 0.822 by the receiver operating characteristic curves analysis. In the time course analysis in 43 consecutive ACS patients (AMI: N=35 and UA: N=8), serum concentration of NRDC was significantly increased even in UA patients with a peak serum NRDC levels reached at admission both in AMI and UA patients. In a mouse model of AMI, we found an acute increase in serum NRDC and reduced NRDC expression in ischemic regions shortly after coronary artery ligation. NRDC expression was also reduced in infarcted regions in human autopsy samples from AMI patients. Moreover, the short treatment of primary culture of rat cardiomyocytes with H2O2 or A23187 induced NRDC secretion without cell toxicity. CONCLUSION NRDC is a promising biomarker for the early detection of ACS, even in UA patients without elevation of necrosis markers.
Collapse
Affiliation(s)
- Po-Min Chen
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takaki Hiwasa
- Department of Biochemistry and Genetics, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Sayaka Saijo
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Jiro Sakamoto
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shintaro Matsuda
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shin Watanabe
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhide Kuwabara
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koh Ono
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masao Imai
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | - Toru Kita
- Kobe City Hospital Organization, Kobe, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
22
|
Morita Y, Ohno M, Nishi K, Hiraoka Y, Saijo S, Matsuda S, Kita T, Kimura T, Nishi E. Genome-wide profiling of nardilysin target genes reveals its role in epigenetic regulation and cell cycle progression. Sci Rep 2017; 7:14801. [PMID: 29093577 PMCID: PMC5665917 DOI: 10.1038/s41598-017-14942-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/18/2017] [Indexed: 11/28/2022] Open
Abstract
Post-translational histone modifications, such as acetylation and methylation, are prerequisites for transcriptional regulation. The metalloendopeptidase nardilysin (Nrdc) is a H3K4me2-binding protein that controls thermoregulation and β-cell functions through its transcriptional coregulator function. We herein combined high-throughput ChIP-seq and RNA-seq to achieve the first genome-wide identification of Nrdc target genes. A ChIP-seq analysis of immortalized mouse embryo fibroblasts (iMEF) identified 4053 Nrdc-binding sites, most of which were located in proximal promoter sites (2587 Nrdc-binding genes). Global H3K4me2 levels at Nrdc-binding promoters slightly increased, while H3K9ac levels decreased in the absence of Nrdc. Among Nrdc-binding genes, a comparative RNA-seq analysis identified 448 candidates for Nrdc target genes, among which cell cycle-related genes were significantly enriched. We confirmed decreased mRNA and H3K9ac levels at the promoters of individual genes in Nrdc-deficient iMEF, which were restored by the ectopic introduction of Nrdc. Reduced mRNA levels, but not H3K9ac levels were fully restored by the reintroduction of the peptidase-dead mutant of Nrdc. Furthermore, Nrdc promoted cell cycle progression at multiple stages, which enhanced cell proliferation in vivo. Collectively, our integrative studies emphasize the importance of Nrdc for maintaining a proper epigenetic status and cell growth.
Collapse
Affiliation(s)
- Yusuke Morita
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yoshinori Hiraoka
- Division of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Kobe Gakuin University, Chuo-ku, Kobe, 650-8586, Japan
| | - Sayaka Saijo
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Shintaro Matsuda
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Toru Kita
- Kobe Home Medical and Nursing Care Promotion Foundation, 14-1 Naka Ichiriyama, Kami Aza, Shimotani, Yamada-cho, Kita-ku, Kobe, 651-1102, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Eiichiro Nishi
- Department of Pharmacology, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, 520-2192, Japan.
| |
Collapse
|
23
|
Insulin-like growth factor-1 activates different catalytic subunits p110 of PI3K in a cell-type-dependent manner to induce lipogenesis-dependent epithelial–mesenchymal transition through the regulation of ADAM10 and ADAM17. Mol Cell Biochem 2017; 439:199-211. [DOI: 10.1007/s11010-017-3148-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 08/05/2017] [Indexed: 12/23/2022]
|
24
|
Fujii T, Nishi E, Ito H, Yoshitomi H, Furu M, Okabe N, Ohno M, Nishi K, Morita Y, Morita Y, Azukizawa M, Okahata A, Tomizawa T, Kimura T, Matsuda S. Nardilysin is involved in autoimmune arthritis via the regulation of tumour necrosis factor alpha secretion. RMD Open 2017; 3:e000436. [PMID: 28955486 PMCID: PMC5604610 DOI: 10.1136/rmdopen-2017-000436] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/23/2017] [Accepted: 04/19/2017] [Indexed: 01/01/2023] Open
Abstract
Objective Tumour necrosis factor alpha (TNF-α) plays an important role in rheumatoid arthritis (RA). TNF-α is synthesised as a membrane-anchored precursor and is fully activated by a disintegrin and metalloproteinase 17 (ADAM17)-mediated ectodomain shedding. Nardilysin (NRDC) facilitates ectodomain shedding via activation of ADAM17. This study was undertaken to elucidate the role of NRDC in RA. Methods NRDC-deficient (Nrdc–/–) mice and macrophage-specific NRDC-deficient (NrdcdelM) mice were examined in murine RA models, collagen antibody-induced arthritis (CAIA) and K/BxN serum transfer arthritis (K/BxN STA). We evaluated the effect of gene deletion or silencing of Nrdc on ectodomain shedding of TNF-α in macrophages or monocytes. NRDC concentration in synovial fluid from patients with RA and osteoarthritis (OA) were measured. We also examined whether local gene silencing of Nrdc ameliorated CAIA. Results CAIA and K/BxN STA were significantly attenuated in Nrdc–/– mice and NrdcdelM mice. Gene deletion or silencing of Nrdc in macrophages or THP-1 cells resulted in the reduction of TNF-α shedding. The level of NRDC is higher in synovial fluid from RA patients compared with that from OA patients. Intra-articular injection of anti-Nrdcsmall interfering RNA ameliorated CAIA. Conclusion These data indicate that NRDC plays crucial roles in the pathogenesis of autoimmune arthritis and could be a new therapeutic target for RA treatment.
Collapse
Affiliation(s)
- Takayuki Fujii
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pharmacology, Shiga University of Medical Science, Shiga, Japan
| | - Hiromu Ito
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Yoshitomi
- Department of Tissue Regeneration, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Moritoshi Furu
- Department of Control for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Namiko Okabe
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Morita
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yugo Morita
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Azukizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akinori Okahata
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takuya Tomizawa
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuichi Matsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
25
|
Kasai Y, Toriguchi K, Hatano E, Nishi K, Ohno M, Yoh T, Fukuyama K, Nishio T, Okuno M, Iwaisako K, Seo S, Taura K, Kurokawa M, Kunichika M, Uemoto S, Nishi E. Nardilysin promotes hepatocellular carcinoma through activation of signal transducer and activator of transcription 3. Cancer Sci 2017; 108:910-917. [PMID: 28207963 PMCID: PMC5448622 DOI: 10.1111/cas.13204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/06/2017] [Accepted: 02/12/2017] [Indexed: 12/13/2022] Open
Abstract
Nardilysin (NRDC) is a metalloendopeptidase of the M16 family. We previously showed that NRDC activates inflammatory cytokine signaling, including interleukin‐6‐signal transducer and activator of transcription 3 (STAT3) signaling. NRDC has been implicated in the promotion of breast, gastric and esophageal cancer, as well as the development of liver fibrosis. In this study, we investigated the role of NRDC in the promotion of hepatocellular carcinoma (HCC), both clinically and experimentally. We found that NRDC expression was upregulated threefold in HCC tissue compared to the adjacent non‐tumor liver tissue, which was confirmed by immunohistochemistry and western blotting. We also found that high serum NRDC was associated with large tumor size (>3 cm, P = 0.016) and poor prognosis after hepatectomy (median survival time 32.0 vs 73.9 months, P = 0.003) in patients with hepatitis C (n = 120). Diethylnitrosamine‐induced hepatocarcinogenesis was suppressed in heterozygous NRDC‐deficient mice compared to their wild‐type littermates. Gene silencing of NRDC with miRNA diminished the growth of Huh‐7 and Hep3B spheroids in vitro. Notably, phosphorylation of STAT3 was decreased in NRDC‐depleted Huh‐7 spheroids compared to control spheroids. The effect of a STAT3 inhibitor (S3I‐201) on the growth of Huh‐7 spheroids was reduced in NRDC‐depleted cells relative to controls. Our results show that NRDC is a promising prognostic marker for HCC in patients with hepatitis C, and that NRDC promotes tumor growth through activation of STAT3.
Collapse
Affiliation(s)
- Yosuke Kasai
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kan Toriguchi
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California, USA
| | - Etsuro Hatano
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Surgery, Hyogo College of Medicine, Nishinomiya, Japan
| | - Kiyoto Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mikiko Ohno
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoaki Yoh
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keita Fukuyama
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takahiro Nishio
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masayuki Okuno
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Keiko Iwaisako
- Department of Target Therapy and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Satoru Seo
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kojiro Taura
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | - Shinji Uemoto
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Department of Pharmacology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
26
|
Bagheri V, Memar B, Momtazi AA, Sahebkar A, Gholamin M, Abbaszadegan MR. Cytokine networks and their association with Helicobacter pylori infection in gastric carcinoma. J Cell Physiol 2017; 233:2791-2803. [PMID: 28121015 DOI: 10.1002/jcp.25822] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/16/2016] [Indexed: 12/20/2022]
Abstract
Cytokine networks as dynamic networks are pivotal aspects of tumor immunology, especially in gastric cancer (GC), in which infection, inflammation, and antitumor immunity are key elements of disease progression. In this review, we describe functional roles of well-known GC-modulatory cytokines, highlight the functions of cytokines with more recently described roles in GC, and emphasize the therapeutic potential of targeting the complex cytokine milieu. We also focus on the role of Helicobacter pylori (HP)-induced inflammation in GC and discuss how HP-induced chronic inflammation can lead to the induction of stem cell hyperplasia, morphological changes in gastric mucosa and GC development.
Collapse
Affiliation(s)
- Vahid Bagheri
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Human Genetic Division, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahram Memar
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pathology, Faculty of Medicine, Emam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi
- Department of Medical Biotechnology, Student Research Committee, Nanotechnology Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehran Gholamin
- Human Genetic Division, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Human Genetic Division, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
27
|
Nardilysin regulates inflammation, metaplasia, and tumors in murine stomach. Sci Rep 2017; 7:43052. [PMID: 28230087 PMCID: PMC5322384 DOI: 10.1038/srep43052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/17/2017] [Indexed: 01/26/2023] Open
Abstract
Chronic inflammation contributes to a wide variety of human disorders. In the stomach, longstanding gastritis often results in structural alterations in the gastric mucosa, including metaplastic changes and gastric cancers. Therefore, it is important to elucidate factors that are involved in gastric inflammation. Nardilysin (N-arginine dibasic convertase; Nrdc) is a metalloendopeptidase of the M16 family that promotes ectodomain shedding of the precursor forms of various growth factors and cytokines by enhancing the protease activities of a disintegrin and metalloproteinase (ADAM) proteins. Here, we have demonstrated that Nrdc crucially regulates gastric inflammation caused by Helicobacter felis infection or forced expression of prostaglandin E2 in K19-C2mE mice. Metaplastic changes following gastric inflammation were suppressed by the deletion of Nrdc. Furthremore, the deletion of Nrdc significantly suppressed N-methyl-N-nitrosourea (MNU)-induced gastric tumorigenesis in the murine stomach. These data may lead to a global therapeutic approach against various gastric disorders by targeting Nrdc.
Collapse
|
28
|
Sun J, Jiang J, Lu K, Chen Q, Tao D, Chen Z. Therapeutic potential of ADAM17 modulation in gastric cancer through regulation of the EGFR and TNF-α signalling pathways. Mol Cell Biochem 2016; 426:17-26. [DOI: 10.1007/s11010-016-2877-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/07/2016] [Indexed: 01/04/2023]
|
29
|
Segretain D, Gilleron J, Bacro JN, Di Marco M, Carette D, Pointis G. Ultrastructural localization and distribution of Nardilysin in mammalian male germ cells. Basic Clin Androl 2016; 26:5. [PMID: 27051521 PMCID: PMC4820967 DOI: 10.1186/s12610-016-0032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 03/10/2016] [Indexed: 11/16/2022] Open
Abstract
Background NRD convertase, also termed Nardilysin, is a Zn++ metalloendopeptidase that specifically cleaves the N-terminus of arginine and lysine residues into dibasic moieties. Although this enzyme was found located within the testis, its function in male reproduction is largely unknown. In addition, the precise distribution of this enzyme within germ cells remains to be determined. Methods To answer these questions, we developed an immuno-gold electron microscopy analysis to detect Nardilysin at ultrastructural level in mice. In addition, we performed a quantitative analysis of these gold particles to statistically estimate the distribution of Nardilysin in the different subcellular compartments of differentiating late spermatids/spermatozoa. Results Expression of Nardilysin in wild-type mice was restricted to germ cells and markedly increased during the last steps of spermiogenesis. In elongated spermatids, we found the enzyme mainly localized in the cytoplasm, more precisely associated with two microtubular structures, the manchette and the axoneme. No labelling was detected over the membranous organelles of the spermatids. To test whether this localization is dependent of the functional microtubules organization of the flagella, we analysed the localization into a specific mouse mutant ebo/ebo (ébouriffé) known to be sterile due to an impairment of the final organization of the flagellum. In the ebo/ebo, the enzyme was still localized over the microtubules of the axoneme and over the isolated cytoplasmic microtubules doublets. Quantification of gold particles in wild-type and mutant flagella revealed the specific association of the enzyme within the microtubular area of the axoneme. Conclusions The strong and specific accumulation of Nardilysin in the manchette and axoneme suggests that the enzyme probably contributes either to the establishment of these specific microtubular structures and/or to their functional properties.
Collapse
Affiliation(s)
- D Segretain
- UMR S 1147 Université Paris Descartes, 45 rue des Saint-Pères, 75006 Paris, France ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, 78000 France
| | - J Gilleron
- INSERM U 1065, Université Nice Sophia-Antipolis, 151 route Saint-Antoine de Ginestière BP 2 3194, 06204, Nice, cedex 3 France
| | - J N Bacro
- Institut de Mathématiques et de Modélisation de Montpellier (I3M), UMR CNRS 5149 Université Montpellier, CC 51; 4 place Eugène Bataillon 34095, Montpellier, cedex 5 France
| | - M Di Marco
- UMR S 1147 Université Paris Descartes, 45 rue des Saint-Pères, 75006 Paris, France ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, 78000 France
| | - D Carette
- UMR S 1147 Université Paris Descartes, 45 rue des Saint-Pères, 75006 Paris, France ; Université de Versailles Saint-Quentin-en-Yvelines (UVSQ), Versailles, 78000 France
| | - G Pointis
- INSERM U 1065, Université Nice Sophia-Antipolis, 151 route Saint-Antoine de Ginestière BP 2 3194, 06204, Nice, cedex 3 France
| |
Collapse
|
30
|
Critical roles of nardilysin in the maintenance of body temperature homoeostasis. Nat Commun 2015; 5:3224. [PMID: 24492630 PMCID: PMC3926010 DOI: 10.1038/ncomms4224] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 01/09/2014] [Indexed: 01/15/2023] Open
Abstract
Body temperature homoeostasis in mammals is governed centrally through the regulation of shivering and non-shivering thermogenesis and cutaneous vasomotion. Non-shivering thermogenesis in brown adipose tissue (BAT) is mediated by sympathetic activation, followed by PGC-1α induction, which drives UCP1. Here we identify nardilysin (Nrd1 and NRDc) as a critical regulator of body temperature homoeostasis. Nrd1−/− mice show increased energy expenditure owing to enhanced BAT thermogenesis and hyperactivity. Despite these findings, Nrd1−/− mice show hypothermia and cold intolerance that are attributed to the lowered set point of body temperature, poor insulation and impaired cold-induced thermogenesis. Induction of β3-adrenergic receptor, PGC-1α and UCP1 in response to cold is severely impaired in the absence of NRDc. At the molecular level, NRDc and PGC-1α interact and co-localize at the UCP1 enhancer, where NRDc represses PGC-1α activity. These findings reveal a novel nuclear function of NRDc and provide important insights into the mechanism of thermoregulation. The precise regulation of mammalian body temperature is important for survival. Here the authors show that the peptidase nardilysin represses the transcription factor PGC-1α, and identify nardilysin as a regulator of basal body temperature, cold-induced thermogenesis and body insulation.
Collapse
|
31
|
Proteomic Study to Survey the CIGB-552 Antitumor Effect. BIOMED RESEARCH INTERNATIONAL 2015; 2015:124082. [PMID: 26576414 PMCID: PMC4630370 DOI: 10.1155/2015/124082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022]
Abstract
CIGB-552 is a cell-penetrating peptide that exerts in vitro and in vivo antitumor effect on cancer cells. In the present work, the mechanism involved in such anticancer activity was studied using chemical proteomics and expression-based proteomics in culture cancer cell lines. CIGB-552 interacts with at least 55 proteins, as determined by chemical proteomics. A temporal differential proteomics based on iTRAQ quantification method was performed to identify CIGB-552 modulated proteins. The proteomic profile includes 72 differentially expressed proteins in response to CIGB-552 treatment. Proteins related to cell proliferation and apoptosis were identified by both approaches. In line with previous findings, proteomic data revealed that CIGB-552 triggers the inhibition of NF-κB signaling pathway. Furthermore, proteins related to cell invasion were differentially modulated by CIGB-552 treatment suggesting new potentialities of CIGB-552 as anticancer agent. Overall, the current study contributes to a better understanding of the antitumor action mechanism of CIGB-552.
Collapse
|
32
|
Wu B, Sha L, Wang Y, Xu W, Yu Y, Feng F, Sun C, Xia L. Diagnostic and prognostic value of a disintegrin and metalloproteinase-17 in patients with gliomas. Oncol Lett 2014; 8:2616-2620. [PMID: 25364437 PMCID: PMC4214486 DOI: 10.3892/ol.2014.2582] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Accepted: 06/24/2014] [Indexed: 11/08/2022] Open
Abstract
A disintegrin and metalloproteinase-17 (ADAM17) has been shown to regulate numerous proteins involved in the cell cycle, as well as tumor oncogenes. The expression pattern of ADAM17 in glioma patients, however, is unclear. In the present study, the expression pattern and prognostic significance of ADAM17 was investigated in patients with glioma. A total of 60 glioma specimens and eight normal control samples were obtained. Immunohistochemical and western blot analyses were used to examine the expression of ADAM17. In addition, the association of ADAM17 expression with the clinicopathological parameters and the survival rates of the glioma patients was analyzed. The results showed that ADAM17 was upregulated in the high-grade glioma tissues compared with that in the low-grade and normal brain tissues of the glioma patients, and that the level increased with ascending World Health Organization tumor grade (P<0.05). Furthermore, the survival rate of the patients with ADAM17-positive tumors was lower compared with the patients with ADAM17-negative tumors. These results indicated that the overexpression of ADAM17 was correlated with a high tumor grade and a poor prognosis in patients with glioma. ADAM17 may have an important oncogenic function in glioma progression, and is a potential diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Bin Wu
- Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Longgui Sha
- Department of Neurosurgery, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Pudong, Shanghai 200120, P.R. China
| | - Yong Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Wei Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Yang Yu
- Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Fang Feng
- Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Caixing Sun
- Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| | - Liang Xia
- Department of Neurosurgery, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
33
|
Ishizu-Higashi S, Seno H, Nishi E, Matsumoto Y, Ikuta K, Tsuda M, Kimura Y, Takada Y, Kimura Y, Nakanishi Y, Kanda K, Komekado H, Chiba T. Deletion of nardilysin prevents the development of steatohepatitis and liver fibrotic changes. PLoS One 2014; 9:e98017. [PMID: 24849253 PMCID: PMC4029810 DOI: 10.1371/journal.pone.0098017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/28/2014] [Indexed: 01/18/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is an inflammatory form of nonalcoholic fatty liver disease that progresses to liver cirrhosis. It is still unknown how only limited patients with fatty liver develop NASH. Tumor necrosis factor (TNF)-α is one of the key molecules in initiating the vicious circle of inflammations. Nardilysin (N-arginine dibasic convertase; Nrd1), a zinc metalloendopeptidase of the M16 family, enhances ectodomain shedding of TNF-α, resulting in the activation of inflammatory responses. In this study, we aimed to examine the role of Nrd1 in the development of NASH. Nrd1+/+ and Nrd1−/− mice were fed a control choline-supplemented amino acid-defined (CSAA) diet or a choline-deficient amino acid-defined (CDAA) diet. Fatty deposits were accumulated in the livers of both Nrd1+/+ and Nrd1−/− mice by the administration of the CSAA or CDAA diets, although the amount of liver triglyceride in Nrd1−/− mice was lower than that in Nrd1+/+ mice. Serum alanine aminotransferase levels were increased in Nrd1+/+ mice but not in Nrd1−/− mice fed the CDAA diet. mRNA expression of inflammatory cytokines were decreased in Nrd1−/− mice than in Nrd1+/+ mice fed the CDAA diet. While TNF-α protein was detected in both Nrd1+/+ and Nrd1−/− mouse livers fed the CDAA diet, secretion of TNF-α in Nrd1−/− mice was significantly less than that in Nrd1+/+ mice, indicating the decreased TNF-α shedding in Nrd1−/− mouse liver. Notably, fibrotic changes of the liver, accompanied by the increase of fibrogenic markers, were observed in Nrd1+/+ mice but not in Nrd1−/− mice fed the CDAA diet. Similar to the CDAA diet, fibrotic changes were not observed in Nrd1−/− mice fed a high-fat diet. Thus, deletion of nardilysin prevents the development of diet-induced steatohepatitis and liver fibrogenesis. Nardilysin could be an attractive target for anti-inflammatory therapy against NASH.
Collapse
Affiliation(s)
- Shoko Ishizu-Higashi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (HS); (EN)
| | - Eiichiro Nishi
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail: (HS); (EN)
| | - Yoshihide Matsumoto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kozo Ikuta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshito Kimura
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yutaka Takada
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuto Kimura
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keitaro Kanda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideyuki Komekado
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
34
|
Ohno M, Hiraoka Y, Lichtenthaler SF, Nishi K, Saijo S, Matsuoka T, Tomimoto H, Araki W, Takahashi R, Kita T, Kimura T, Nishi E. Nardilysin prevents amyloid plaque formation by enhancing α-secretase activity in an Alzheimer's disease mouse model. Neurobiol Aging 2014; 35:213-22. [DOI: 10.1016/j.neurobiolaging.2013.07.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 07/06/2013] [Accepted: 07/15/2013] [Indexed: 10/26/2022]
|
35
|
ADAM17 mediates hypoxia-induced drug resistance in hepatocellular carcinoma cells through activation of EGFR/PI3K/Akt pathway. Mol Cell Biochem 2013; 380:57-66. [PMID: 23625205 DOI: 10.1007/s11010-013-1657-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/13/2013] [Indexed: 01/13/2023]
Abstract
A disintegrin and metalloproteinase-17 (ADAM17) is a member of the metalloproteinase superfamily and involved in the cleavage of ectodomain of many transmembrane proteins. ADAM17 is overexpressed in a variety of human tumors, which is associated with tumor development and progression. In the present study, we sought to investigate the expression and function of ADAM17 in hypoxia-treated hepatocellular carcinoma (HCC) cells. Western blot analysis was used to measure the expression of ADAM17 in HCC cell lines (Hep3B and HepG2 cells). Annexin V/PI double staining was performed to analyze the effects of ADAM17 on hypoxia-mediated cisplatin resistance. ADAM17 expression was upregulated by hypoxia treatment in HCC cells at both mRNA and protein levels. Overexpression of ADAM17 reduced cisplatin-induced apoptosis in HCC cells, accompanies by less cleavage of caspase-3 and poly (ADP-ribose) polymerase (PARP). Forced expression of ADAM17 enhanced the phosphorylation of epidermal growth factor receptor (EGFR) and Akt without affecting the expression of total EGFR and Akt. Pretreatment with EGFR inhibitor AG1478 or phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 rescued ADAM17-mediated cisplatin resistance of HCC cells. ADAM17 silencing attenuated hypoxia-induced cisplatin resistance and enhanced the accumulation of cleaved caspase-3 and PARP. Western blot analysis showed that overexpression of hypoxia-inducible factor-1α (HIF-1α), a transcription factor, upregulated the expression of ADAM17 and HIF-1α silencing downregulated the expression of ADAM17 in hypoxia-treated HCC cells, indicating the regulation of ADAM17 by HIF-1α. Taken together, our results indicated that ADAM17 is upregulated by hypoxia and contributes to hypoxia-induced cisplatin resistance via EGFR/PI3K/Akt pathway.
Collapse
|
36
|
Bernstein HG, Stricker R, Dobrowolny H, Steiner J, Bogerts B, Trübner K, Reiser G. Nardilysin in human brain diseases: both friend and foe. Amino Acids 2013; 45:269-78. [PMID: 23604405 DOI: 10.1007/s00726-013-1499-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
Abstract
Nardilysin is a metalloprotease that cleaves peptides, such as dynorphin-A, α-neoendorphin, and glucagon, at the N-terminus of arginine and lysine residues in dibasic moieties. It has various functionally important molecular interaction partners (heparin-binding epidermal growth factor-like growth factor, tumour necrosis factor-α-converting enzyme, neuregulin 1, beta-secretase 1, malate dehydrogenase, P42(IP4)/centaurin-α1, the histone H3 dimethyl Lys4, and others) and is involved in a plethora of normal brain functions. Less is known about possible implications of nardilysin for brain diseases. This review, which includes some of our own recent findings, attempts to summarize the current knowledge on possible roles of nardilysin in Alzheimer disease, Down syndrome, schizophrenia, mood disorders, alcohol abuse, heroin addiction, and cancer. We herein show that nardilysin is a Janus-faced enzyme with regard to brain pathology, being probably neuropathogenic in some diseases, but neuroprotective in others.
Collapse
Affiliation(s)
- H-G Bernstein
- Department of Psychiatry, Otto-v.-Guericke University Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Helicobacter pylori infection leads to long-lasting chronic inflammation and represents the most common risk factor underlying gastric cancer. Recently, new insights into the mechanisms through which H. pylori and mucosal inflammation lead to cancer development have emerged. H. pylori virulence factors, in particular specific CagA genotypes, represent main factors in gastric cancer, inducing altered intracellular signaling in epithelial cells. The chronic nature of H. pylori infection appears to relate to the VacA virulence factor and Th17/Treg mechanisms. A role of H. pylori infection in epigenetic and microRNA deregulation has been shown. Mutation of the epithelial cell genome, a hallmark of cancer, was demonstrated to accumulate in H. pylori infected stomach partly due to inadequate DNA repair. Gastric stem cells were shown to be targets of oxidative injury in the Helicobacter-inflammatory milieu. Recent advances emphasizing the contribution of bacterial factors, inflammatory mediators, and the host epithelial response in gastric carcinogenesis are reviewed.
Collapse
|
38
|
Chiba T, Marusawa H, Ushijima T. Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation. Gastroenterology 2012; 143:550-563. [PMID: 22796521 DOI: 10.1053/j.gastro.2012.07.009] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 06/05/2012] [Accepted: 07/03/2012] [Indexed: 12/12/2022]
Abstract
Chronic inflammation, regardless of infectious agents, plays important roles in the development of various cancers, particularly in digestive organs, including Helicobacter pylori-associated gastric cancer, hepatitis C virus-positive hepatocellular carcinoma, and colitis-associated colon cancers. Cancer development is characterized by stepwise accumulation of genetic and epigenetic alterations of various proto-oncogenes and tumor-suppressor genes. During chronic inflammation, infectious agents such as H pylori and hepatitis C virus as well as intrinsic mediators of inflammatory responses, including proinflammatory cytokines and reactive oxygen and nitrogen species, can induce genetic and epigenetic changes, including point mutations, deletions, duplications, recombinations, and methylation of various tumor-related genes through various mechanisms. Furthermore, inflammation also modulates the expressions of microRNAs that influence the production of several tumor-related messenger RNAs or proteins. These molecular events induced by chronic inflammation work in concert to alter important pathways involved in normal cellular function, and hence accelerate inflammation-associated cancer development. Among these, recent studies highlighted an important role of activation-induced cytidine deaminase, a nucleotide-editing enzyme essential for somatic hypermutation and class-switch recombination of the immunoglobulin gene, as a genomic modulator in inflammation-associated cancer development.
Collapse
Affiliation(s)
- Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshikazu Ushijima
- Division of Epigenomics, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|