1
|
Fujiwara N, Ueno T, Yamazaki T, Hirose T. Unraveling architectural RNAs: Structural and functional blueprints of membraneless organelles and strategies for genome-scale identification. Biochim Biophys Acta Gen Subj 2025; 1869:130815. [PMID: 40348038 DOI: 10.1016/j.bbagen.2025.130815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 04/25/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025]
Abstract
Architectural RNAs (arcRNAs) are long noncoding RNAs that serve as structural scaffolds for membraneless organelles (MLOs), facilitating cellular organization and dynamic responses to stimuli. Acting as blueprints for MLO assembly, arcRNAs recruit specific proteins and nucleic acids to establish and maintain the internal structure of MLOs while coordinating their spatial relationships with other organelles. This organized framework enables precise spatiotemporal regulation, allowing for targeted control of transcription, RNA processing, and cellular responses to stress. Notably, arcRNAs exhibit the "semi-extractable" feature, a property derived from their stable binding to cellular structures, making them partially resistant to conventional RNA extraction methods. This unique feature serves as a useful criterion for identifying novel arcRNAs, providing an opportunity to accelerate research in long noncoding RNAs and deepen our understanding of their functional roles in cellular processes.
Collapse
Affiliation(s)
- Naoko Fujiwara
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tsuyoshi Ueno
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, The University of Osaka, Suita 565-0871, Japan.
| |
Collapse
|
2
|
Liu Y, Xiang J, Gong H, Yu T, Gao M, Huang Y. The Regulation of TDP-43 Structure and Phase Transitions: A Review. Protein J 2025; 44:113-132. [PMID: 39987392 DOI: 10.1007/s10930-025-10261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
The transactive response DNA binding protein 43 (TDP-43) is an RNA/DNA-binding protein that is involved in a number of cellular functions, including RNA processing and alternative splicing, RNA transport and translation, and stress granule assembly. It has attracted significant attention for being the primary component of cytoplasmic inclusions in patients with amyotrophic lateral sclerosis or frontotemporal dementia. Mounting evidence suggests that both cytoplasmic aggregation of TDP-43 and loss of nuclear TDP-43 function contribute to TDP-43 pathology. Furthermore, recent studies have demonstrated that TDP-43 is an important component of many constitutive or stress-induced biomolecular condensates. Dysregulation or liquid-to-gel transition of TDP-43 condensates can lead to alterations in TDP-43 function and the formation of TDP-43 amyloid fibrils. In this review, we summarize recent research progress on the structural characterization of TDP-43 and the TDP-43 phase transition. In particular, the roles that disease-associated genetic mutations, post-translational modifications, and extrinsic stressors play in the transitions among TDP-43 monomers, liquid condensates, solid condensates, and fibrils are discussed. Finally, we discuss the effectiveness of available regulators of TDP-43 phase separation and aggregation. Understanding the underlying mechanisms that drive the pathological transformation of TDP-43 could help develop therapeutic strategies for TDP-43 pathology.
Collapse
Affiliation(s)
- Yanqing Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Jiani Xiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Hang Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Tianxiong Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Meng Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| | - Yongqi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
3
|
Jirström E, Matveeva A, Baindoor S, Donovan P, Ma Q, Morrissey EP, Arijs I, Boeckx B, Lambrechts D, Garcia-Munoz A, Dillon ET, Wynne K, Ying Z, Matallanas D, Hogg MC, Prehn JHM. Effects of ALS-associated 5'tiRNA Gly-GCC on the transcriptomic and proteomic profile of primary neurons in vitro. Exp Neurol 2025; 385:115128. [PMID: 39719207 DOI: 10.1016/j.expneurol.2024.115128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
tRNA-derived stress-induced RNAs (tiRNAs) are a new class of small non-coding RNA that have emerged as important regulators of cellular stress responses. tiRNAs are derived from specific tRNA cleavage by the stress-induced ribonuclease angiogenin (ANG). Loss-of-function mutations in the ANG gene are linked to amyotrophic lateral sclerosis (ALS), and elevated levels of specific tiRNAs were recently identified in ALS patient serum samples. However, the biological role of tiRNA production in neuronal stress responses and neurodegeneration remains largely unknown. Here, we investigated the genome-wide regulation of neuronal stress responses by a specific tiRNA, 5'tiRNAGly-GCC, which we found to be upregulated in primary neurons exposed to ALS-relevant stresses and in the spinal cord of three ALS mouse models. Whole-transcript RNA sequencing and label-free mass spectrometry on primary neurons transfected with a synthetic mimic of 5'tiRNAGly-GCC revealed predominantly downregulated RNA and protein levels, with more pronounced changes in the proteome. Over half of the downregulated mRNAs contained predicted 5'tiRNAGly-GCC binding sites, indicating that this tiRNA may silence target genes via complementary binding. On the proteome level, we observed reduction in proteins involved in translation initiation and ribosome assembly, pointing to inhibitory effects on translation. Together, these findings suggest that 5'tiRNAGly-GCC is an ALS-associated tiRNA that functions to fine-tune gene expression and supress protein synthesis as part of an ANG-induced neuronal stress response.
Collapse
Affiliation(s)
- Elisabeth Jirström
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Anna Matveeva
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Sharada Baindoor
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | - Paul Donovan
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Qilian Ma
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Elena Perez Morrissey
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Ingrid Arijs
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Bram Boeckx
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium; VIB Center for Cancer Biology, Leuven, Belgium
| | - Amaya Garcia-Munoz
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Eugène T Dillon
- Mass Spectrometry Resource, Conway Institute of Biomolecular & Biomedical Research, University College Dublin 4, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zheng Ying
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - David Matallanas
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
| | - Marion C Hogg
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Jochen H M Prehn
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; FutureNeuro Research Ireland Centre, Royal College of Surgeons in Ireland, Dublin 2, Ireland.
| |
Collapse
|
4
|
Allison RL, Mangione CC, Suneja M, Gawrys J, Melvin BM, Belous N, LaCroix M, Harmelink M, Burnett BG, Ebert AD. IL-1ra and CCL5, but not IL-10, are promising targets for treating SMA astrocyte-driven pathology. Mol Ther 2025; 33:734-751. [PMID: 39673131 PMCID: PMC11853362 DOI: 10.1016/j.ymthe.2024.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/30/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024] Open
Abstract
Spinal muscular atrophy (SMA) is a pediatric genetic disorder characterized by the loss of spinal cord motor neurons (MNs). Although the mechanisms underlying MN loss are not clear, current data suggest that glial cells contribute to disease pathology. We have previously found that SMA astrocytes drive microglial activation and MN loss potentially through the upregulation of NF-κB-mediated pro-inflammatory cytokines. In this study, we tested the ability of neutralizing C-C motif chemokine ligand 5 (CCL5) while increasing either interleukin-10 (IL-10) or IL-1 receptor antagonist (IL-1ra) to reduce the pro-inflammatory phenotype of SMA astrocytes. While IL-10 was ineffective, IL-1ra ameliorated SMA astrocyte-driven glial activation and MN loss in induced pluripotent stem cell-derived cultures in vitro. In vivo AAV5 delivered IL-1ra overexpression, and miR-30 small hairpin RNA knockdown of CCL5 made modest but significant improvements in lifespan, weight gain, MN number, and motor function of SMNΔ7 mice. These data identify IL-1ra and CCL5 as possible therapeutic targets for SMA and highlight the importance of glial-targeted therapeutics for neurodegenerative disease.
Collapse
Affiliation(s)
- Reilly L Allison
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Cecelia C Mangione
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD 20814, USA
| | - Mya Suneja
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jessica Gawrys
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Brendan M Melvin
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD 20814, USA
| | - Natalya Belous
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD 20814, USA
| | - Megan LaCroix
- Department of Neurology (Child Neurology), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Matthew Harmelink
- Department of Neurology (Child Neurology), Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Barrington G Burnett
- Department of Anatomy, Physiology, and Genetics, Uniformed Services University of the Health Sciences, F. Edward Hebert School of Medicine, Bethesda, MD 20814, USA
| | - Allison D Ebert
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| |
Collapse
|
5
|
Al-Azzam N, To JH, Gautam V, Street LA, Nguyen CB, Naritomi JT, Lam DC, Madrigal AA, Lee B, Jin W, Avina A, Mizrahi O, Mueller JR, Ford W, Schiavon CR, Rebollo E, Vu AQ, Blue SM, Madakamutil YL, Manor U, Rothstein JD, Coyne AN, Jovanovic M, Yeo GW. Inhibition of RNA splicing triggers CHMP7 nuclear entry, impacting TDP-43 function and leading to the onset of ALS cellular phenotypes. Neuron 2024; 112:4033-4047.e8. [PMID: 39486415 DOI: 10.1016/j.neuron.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/08/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is linked to the reduction of certain nucleoporins in neurons. Increased nuclear localization of charged multivesicular body protein 7 (CHMP7), a protein involved in nuclear pore surveillance, has been identified as a key factor damaging nuclear pores and disrupting transport. Using CRISPR-based microRaft, followed by gRNA identification (CRaft-ID), we discovered 55 RNA-binding proteins (RBPs) that influence CHMP7 localization, including SmD1, a survival of motor neuron (SMN) complex component. Immunoprecipitation-mass spectrometry (IP-MS) and enhanced crosslinking and immunoprecipitation (CLIP) analyses revealed CHMP7's interactions with SmD1, small nuclear RNAs, and splicing factor mRNAs in motor neurons (MNs). ALS induced pluripotent stem cell (iPSC)-MNs show reduced SmD1 expression, and inhibiting SmD1/SMN complex increased CHMP7 nuclear localization. Crucially, overexpressing SmD1 in ALS iPSC-MNs restored CHMP7's cytoplasmic localization and corrected STMN2 splicing. Our findings suggest that early ALS pathogenesis is driven by SMN complex dysregulation.
Collapse
Affiliation(s)
- Norah Al-Azzam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Neurosciences Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Jenny H To
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Vaishali Gautam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Lena A Street
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Chloe B Nguyen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jack T Naritomi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dylan C Lam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Laboratories for Innovative Medicines, San Diego, CA, USA
| | - Assael A Madrigal
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Department of Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Benjamin Lee
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Wenhao Jin
- Sanford Laboratories for Innovative Medicines, San Diego, CA, USA
| | - Anthony Avina
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Orel Mizrahi
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jasmine R Mueller
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Willard Ford
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Cara R Schiavon
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA; Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Elena Rebollo
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA; Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Anthony Q Vu
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yashwin L Madakamutil
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Uri Manor
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA; Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alyssa N Coyne
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Stem Cell Institute Innovation Center and Stem Cell Program, University of California San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA; Sanford Laboratories for Innovative Medicines, San Diego, CA, USA.
| |
Collapse
|
6
|
Wen J, Li Y, Qin Y, Yan L, Zhang K, Li A, Wang Z, Yu F, Lai J, Yang W, Liu YU, Qin D, Su H. Lycorine protects motor neurons against TDP-43 proteinopathy-induced degeneration in cross-species models with amyotrophic lateral sclerosis. Pharmacol Res 2024; 210:107518. [PMID: 39603574 DOI: 10.1016/j.phrs.2024.107518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/13/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Aggregation of TAR-DNA binding protein-43 (TDP-43) is a pathological feature present in nearly 97 % cases of amyotrophic lateral sclerosis (ALS), making it an attractive target for pathogenic studies and drug screening. Here, we have performed a high-throughput screening of 1500 compounds from a natural product library and identified that lycorine, a naturally occurring alkaloid, significantly decreases the level of TDP-43A315T in a cellular model. We further demonstrate that lycorine reduces the level of TDP-43A315T both through inhibiting its synthesis and by promoting its degradation by the ubiquitin-proteasome system (UPS). Importantly, treatment with lycorine significantly attenuates TDP-43 proteinopathy and improves functional recovery in TDP-43A315T-expressing Caenorhabditis elegans and mouse models. These findings suggest that lycorine is a promising lead compound that has therapeutic potential for ALS.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Yunhao Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Yanzhu Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
| | - Lingli Yan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Ke Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Ang Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Ziying Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Feng Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Jianheng Lai
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China
| | - Wei Yang
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; GuiZhou University Medical College, Guiyang 550025, China
| | - Yong U Liu
- Laboratory for Neuroimmunology in Health and Diseases, Center for Medical Research on Innovation and Translation, Institute of Clinical Medicine, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, China.
| | - Dajiang Qin
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510799, China.
| | - Huanxing Su
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao.
| |
Collapse
|
7
|
Ishihara T, Koyama A, Atsuta N, Tada M, Toyoda S, Kashiwagi K, Hirokawa S, Hatano Y, Yokoseki A, Nakamura R, Tohnai G, Izumi Y, Kaji R, Morita M, Tamura A, Kano O, Aoki M, Kuwabara S, Kakita A, Sobue G, Onodera O. SMN2 gene copy number affects the incidence and prognosis of motor neuron diseases in Japan. BMC Med Genomics 2024; 17:263. [PMID: 39506867 PMCID: PMC11539640 DOI: 10.1186/s12920-024-02026-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND The copy number status (CNS) of the survival motor neuron (SMN) gene may influence the risk and prognosis of amyotrophic lateral sclerosis (ALS) and lower motor neuron diseases (LMND) other than spinal muscular atrophy (SMA). However, previous studies of this association, mainly from Europe, have yielded controversial results, suggesting possible regional differences. Here, we investigated the effect of the SMN gene in Japanese patients with ALS and LMND. METHODS We examined the SMN copy numbers and clinical histories of 487 Japanese patients with sporadic ALS (281 men; mean age at onset 61.5 years), 50 with adult LMND (50 men; mean age at onset 58.4 years) and 399 Japanese controls (171 men; mean age 62.2 years). Patients with pathogenic mutations in ALS-causing genes were excluded. SMN1 and SMN2 copy numbers were determined using the droplet digital polymerase chain reaction. RESULTS The frequency of a copy number of one for the SMN2 gene was higher in patients with ALS (38.0%) than in healthy controls (30.8%) (odds ratio (OR) = 1.37, 95% confidence interval (CI) = 1.04-1.82, p < 0.05). The SMN2 copy number affected the survival time of patients with ALS (median time: 0 copies, 34 months; 1 copy, 39 months; 2 copies, 44 months; 3 copies, 54 months; log-rank test, p < 0.05). Cox regression analysis revealed that the SMN2 copy number was associated with increased mortality (hazard ratio = 0.84, 95% CI = 0.72-0.98, p < 0.05). Also, null SMN2 cases were significantly more frequent in the LMND group (12.0%) than in the control group (4.8%) (OR = 2.73, 95% CI = 1.06-6.98, p < 0.05). CONCLUSIONS Our findings suggest that SMN2 copy number reduction may adversely affect the onset and prognosis of MND, including ALS and LMND, in Japanese.
Collapse
Affiliation(s)
- Tomohiko Ishihara
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan.
- Advanced Treatment of Neurological Diseases Branch, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Akihide Koyama
- Division of Legal Medicine, Graduate School of Medicine and Dental Science, Niigata University, Niigata, Japan
| | - Naoki Atsuta
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Mari Tada
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Saori Toyoda
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenta Kashiwagi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Sachiko Hirokawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuya Hatano
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Akio Yokoseki
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Ryoichi Nakamura
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Genki Tohnai
- Division of ALS Research, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yuishin Izumi
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ryuji Kaji
- Department of Neurology, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mitsuya Morita
- Division of Neurology, Department of Internal Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Asako Tamura
- Department of Neurology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Osamu Kano
- Department of Neurology, Toho University Faculty of Medicine, Tokyo, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Gen Sobue
- Division of ALS Research, Aichi Medical University School of Medicine, Nagakute, Japan
- Aichi Medical University, Nagakute, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
8
|
Lang R, Hodgson RE, Shelkovnikova TA. TDP-43 in nuclear condensates: where, how, and why. Biochem Soc Trans 2024; 52:1809-1825. [PMID: 38958608 PMCID: PMC11668305 DOI: 10.1042/bst20231447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
TDP-43 is an abundant and ubiquitously expressed nuclear protein that becomes dysfunctional in a spectrum of neurodegenerative diseases. TDP-43's ability to phase separate and form/enter biomolecular condensates of varying size and composition is critical for its functionality. Despite the high density of phase-separated assemblies in the nucleus and the nuclear abundance of TDP-43, our understanding of the condensate-TDP-43 relationship in this cellular compartment is only emerging. Recent studies have also suggested that misregulation of nuclear TDP-43 condensation is an early event in the neurodegenerative disease amyotrophic lateral sclerosis. This review aims to draw attention to the nuclear facet of functional and aberrant TDP-43 condensation. We will summarise the current knowledge on how TDP-43 containing nuclear condensates form and function and how their homeostasis is affected in disease.
Collapse
Affiliation(s)
- Ruaridh Lang
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| | - Rachel E. Hodgson
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| | - Tatyana A. Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| |
Collapse
|
9
|
Rzepnikowska W, Kaminska J, Kochański A. The molecular mechanisms that underlie IGHMBP2-related diseases. Neuropathol Appl Neurobiol 2024; 50:e13005. [PMID: 39119929 DOI: 10.1111/nan.13005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 07/18/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
Immunoglobulin Mu-binding protein 2 (IGHMBP2) pathogenic variants result in the fatal, neurodegenerative disease spinal muscular atrophy with respiratory distress type 1 (SMARD1) and the milder, Charcot-Marie-Tooth (CMT) type 2S (CMT2S) neuropathy. More than 20 years after the link between IGHMBP2 and SMARD1 was revealed, and 10 years after the discovery of the association between IGHMBP2 and CMT2S, the pathogenic mechanism of these diseases is still not well defined. The discovery that IGHMBP2 functions as an RNA/DNA helicase was an important step, but it did not reveal the pathogenic mechanism. Helicases are enzymes that use ATP hydrolysis to catalyse the separation of nucleic acid strands. They are involved in numerous cellular processes, including DNA repair and transcription; RNA splicing, transport, editing and degradation; ribosome biogenesis; translation; telomere maintenance; and homologous recombination. IGHMBP2 appears to be a multifunctional factor involved in several cellular processes that regulate gene expression. It is difficult to determine which processes, when dysregulated, lead to pathology. Here, we summarise our current knowledge of the clinical presentation of IGHMBP2-related diseases. We also overview the available models, including yeast, mice and cells, which are used to study the function of IGHMBP2 and the pathogenesis of the related diseases. Further, we discuss the structure of the IGHMBP2 protein and its postulated roles in cellular functioning. Finally, we present potential anomalies that may result in the neurodegeneration observed in IGHMBP2-related disease and highlight the most prominent ones.
Collapse
Affiliation(s)
- Weronika Rzepnikowska
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Joanna Kaminska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Andrzej Kochański
- Neuromuscular Unit, Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, 02-106, Poland
| |
Collapse
|
10
|
Huang WP, Ellis BCS, Hodgson RE, Sanchez Avila A, Kumar V, Rayment J, Moll T, Shelkovnikova TA. Stress-induced TDP-43 nuclear condensation causes splicing loss of function and STMN2 depletion. Cell Rep 2024; 43:114421. [PMID: 38941189 DOI: 10.1016/j.celrep.2024.114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
TDP-43 protein is dysregulated in several neurodegenerative diseases, which often have a multifactorial nature and may have extrinsic stressors as a "second hit." TDP-43 undergoes reversible nuclear condensation in stressed cells including neurons. Here, we demonstrate that stress-inducible nuclear TDP-43 condensates are RNA-depleted, non-liquid assemblies distinct from the known nuclear bodies. Their formation requires TDP-43 oligomerization and ATP and is inhibited by RNA. Using a confocal nanoscanning assay, we find that amyotrophic lateral sclerosis (ALS)-linked mutations alter stress-induced TDP-43 condensation by changing its affinity to liquid-like ribonucleoprotein assemblies. Stress-induced nuclear condensation transiently inactivates TDP-43, leading to loss of interaction with its protein binding partners and loss of function in splicing. Splicing changes are especially prominent and persisting for STMN2 RNA, and STMN2 protein becomes rapidly depleted early during stress. Our results point to early pathological changes to TDP-43 in the nucleus and support therapeutic modulation of stress response in ALS.
Collapse
Affiliation(s)
- Wan-Ping Huang
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Brittany C S Ellis
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Rachel E Hodgson
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Anna Sanchez Avila
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Vedanth Kumar
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Jessica Rayment
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
11
|
Wanat JJ, McCann JJ, Tingey M, Atkins J, Merlino CO, Lee-Soety JY. Yeast Npl3 regulates replicative senescence outside of TERRA R-loop resolution and co-transcriptional processing. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 44:486-506. [PMID: 38976968 DOI: 10.1080/15257770.2024.2374023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024]
Abstract
Eukaryotic cells without telomerase experience progressively shorter telomeres with each round of cell division until cell cycle arrest is initiated, leading to replicative senescence. When yeast TLC1, which encodes the RNA template of telomerase, is deleted, senescence is accompanied by increased expression of TERRA (non-coding telomere repeat-containing RNA). Deletion of Npl3, an RNA-processing protein with telomere maintenance functions, accelerates senescence in tlc1Δ cells and significantly increases TERRA levels. Using genetic approaches, we set out to determine how Npl3 is involved in regulating TERRA expression and maintaining telomere homeostasis. Even though Npl3 regulates hyperrecombination, we found that Npl3 does not help resolve RNA:DNA hybrids formed during TERRA synthesis in the same way as RNase H1 and H2. Furthermore, Rad52 is still required for cells to escape senescence by telomere recombination in the absence of Npl3. Npl3 also works separately from the THO/TREX pathway for processing nascent RNA for nuclear export. However, deleting Dot1, a histone methyltransferase involved in tethering telomeres to the nuclear periphery, rescued the accelerated senescence phenotype of npl3Δ cells. Thus, our study suggests that Npl3 plays an additional role in regulating cellular senescence outside of RNA:DNA hybrid resolution and co-transcriptional processing.
Collapse
Affiliation(s)
- Jennifer J Wanat
- Department of Biology, Washington College, Chestertown, Maryland, USA
| | - Jennifer J McCann
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Mark Tingey
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Jessica Atkins
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Corinne O Merlino
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| | - Julia Y Lee-Soety
- Department of Biology, Saint Joseph's University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Tapken I, Detering NT, Claus P. What could be the function of the spinal muscular atrophy-causing protein SMN in macrophages? Front Immunol 2024; 15:1375428. [PMID: 38863697 PMCID: PMC11165114 DOI: 10.3389/fimmu.2024.1375428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Spinal Muscular Atrophy (SMA), a neurodegenerative disorder, extends its impact beyond the nervous system. The central protein implicated in SMA, Survival Motor Neuron (SMN) protein, is ubiquitously expressed and functions in fundamental processes such as alternative splicing, translation, cytoskeletal dynamics and signaling. These processes are relevant for all cellular systems, including cells of the immune system such as macrophages. Macrophages are capable of modulating their splicing, cytoskeleton and expression profile in order to fulfil their role in tissue homeostasis and defense. However, less is known about impairment or dysfunction of macrophages lacking SMN and the subsequent impact on the immune system of SMA patients. We aimed to review the potential overlaps between SMN functions and macrophage mechanisms highlighting the need for future research, as well as the current state of research addressing the role of macrophages in SMA.
Collapse
Affiliation(s)
- Ines Tapken
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Nora T. Detering
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| | - Peter Claus
- SMATHERIA gGmbH – Non-Profit Biomedical Research Institute, Hannover, Germany
- Center for Systems Neuroscience (ZSN), Hannover, Germany
| |
Collapse
|
13
|
Campagne S. U1 snRNP Biogenesis Defects in Neurodegenerative Diseases. Chembiochem 2024; 25:e202300864. [PMID: 38459794 DOI: 10.1002/cbic.202300864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/10/2024]
Abstract
The U1 small ribonucleoprotein (U1 snRNP) plays a pivotal role in the intricate process of gene expression, specifically within nuclear RNA processing. By initiating the splicing reaction and modulating 3'-end processing, U1 snRNP exerts precise control over RNA metabolism and gene expression. This ribonucleoparticle is abundantly present, and its complex biogenesis necessitates shuttling between the nuclear and cytoplasmic compartments. Over the past three decades, extensive research has illuminated the crucial connection between disrupted U snRNP biogenesis and several prominent human diseases, notably various neurodegenerative conditions. The perturbation of U1 snRNP homeostasis has been firmly established in diseases such as Spinal Muscular Atrophy, Pontocerebellar hypoplasia, and FUS-mediated Amyotrophic Lateral Sclerosis. Intriguingly, compelling evidence suggests a potential correlation in Fronto-temporal dementia and Alzheimer's disease as well. Although the U snRNP biogenesis pathway is conserved across all eukaryotic cells, neurons, in particular, appear to be highly susceptible to alterations in spliceosome homeostasis. In contrast, other cell types exhibit a greater resilience to such disturbances. This vulnerability underscores the intricate relationship between U1 snRNP dynamics and the health of neuronal cells, shedding light on potential avenues for understanding and addressing neurodegenerative disorders.
Collapse
Affiliation(s)
- Sebastien Campagne
- University of Bordeaux, INSERM U1212, CNRS UMR5320, ARNA unit 146, rue Leo Saignat, 33077, Bordeaux
- Institut Européen de Chimie et de Biologie, 2, rue Robert Escarpit, 33600, Pessac
| |
Collapse
|
14
|
Fakim H, Vande Velde C. The implications of physiological biomolecular condensates in amyotrophic lateral sclerosis. Semin Cell Dev Biol 2024; 156:176-189. [PMID: 37268555 DOI: 10.1016/j.semcdb.2023.05.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/04/2023]
Abstract
In recent years, there has been an emphasis on the role of phase-separated biomolecular condensates, especially stress granules, in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). This is largely due to several ALS-associated mutations occurring in genes involved in stress granule assembly and observations that pathological inclusions detected in ALS patient neurons contain stress granule proteins, including the ALS-linked proteins TDP-43 and FUS. However, protein components of stress granules are also found in numerous other phase-separated biomolecular condensates under physiological conditions which are inadequately discussed in the context of ALS. In this review, we look beyond stress granules and describe the roles of TDP-43 and FUS in physiological condensates occurring in the nucleus and neurites, such as the nucleolus, Cajal bodies, paraspeckles and neuronal RNA transport granules. We also discuss the consequences of ALS-linked mutations in TDP-43 and FUS on their ability to phase separate into these stress-independent biomolecular condensates and perform their respective functions. Importantly, biomolecular condensates sequester multiple overlapping protein and RNA components, and their dysregulation could contribute to the observed pleiotropic effects of both sporadic and familial ALS on RNA metabolism.
Collapse
Affiliation(s)
- Hana Fakim
- Department of Neurosciences, Université de Montréal, and CHUM Research Center, Montréal, QC, Canada
| | - Christine Vande Velde
- Department of Neurosciences, Université de Montréal, and CHUM Research Center, Montréal, QC, Canada.
| |
Collapse
|
15
|
Dos Passos PM, Hemamali EH, Mamede LD, Hayes LR, Ayala YM. RNA-mediated ribonucleoprotein assembly controls TDP-43 nuclear retention. PLoS Biol 2024; 22:e3002527. [PMID: 38422113 DOI: 10.1371/journal.pbio.3002527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/12/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.
Collapse
Affiliation(s)
- Patricia M Dos Passos
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Erandika H Hemamali
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Lohany D Mamede
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| | - Lindsey R Hayes
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Yuna M Ayala
- Edward Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
16
|
Khalil B, Linsenmeier M, Smith CL, Shorter J, Rossoll W. Nuclear-import receptors as gatekeepers of pathological phase transitions in ALS/FTD. Mol Neurodegener 2024; 19:8. [PMID: 38254150 PMCID: PMC10804745 DOI: 10.1186/s13024-023-00698-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/13/2023] [Indexed: 01/24/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders on a disease spectrum that are characterized by the cytoplasmic mislocalization and aberrant phase transitions of prion-like RNA-binding proteins (RBPs). The common accumulation of TAR DNA-binding protein-43 (TDP-43), fused in sarcoma (FUS), and other nuclear RBPs in detergent-insoluble aggregates in the cytoplasm of degenerating neurons in ALS/FTD is connected to nuclear pore dysfunction and other defects in the nucleocytoplasmic transport machinery. Recent advances suggest that beyond their canonical role in the nuclear import of protein cargoes, nuclear-import receptors (NIRs) can prevent and reverse aberrant phase transitions of TDP-43, FUS, and related prion-like RBPs and restore their nuclear localization and function. Here, we showcase the NIR family and how they recognize cargo, drive nuclear import, and chaperone prion-like RBPs linked to ALS/FTD. We also discuss the promise of enhancing NIR levels and developing potentiated NIR variants as therapeutic strategies for ALS/FTD and related neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Bilal Khalil
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
| | - Miriam Linsenmeier
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, U.S.A
| | - Courtney L Smith
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
- Mayo Clinic Graduate School of Biomedical Sciences, Neuroscience Track, Mayo Clinic, Jacksonville, FL, 32224, U.S.A
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, U.S.A..
| | - Wilfried Rossoll
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, U.S.A..
| |
Collapse
|
17
|
Khalifah BA, Alghamdi SA, Alhasan AH. Unleashing the potential of catalytic RNAs to combat mis-spliced transcripts. Front Bioeng Biotechnol 2023; 11:1244377. [PMID: 38047291 PMCID: PMC10690607 DOI: 10.3389/fbioe.2023.1244377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/23/2023] [Indexed: 12/05/2023] Open
Abstract
Human transcriptome can undergo RNA mis-splicing due to spliceopathies contributing to the increasing number of genetic diseases including muscular dystrophy (MD), Alzheimer disease (AD), Huntington disease (HD), myelodysplastic syndromes (MDS). Intron retention (IR) is a major inducer of spliceopathies where two or more introns remain in the final mature mRNA and account for many intronic expansion diseases. Potential removal of such introns for therapeutic purposes can be feasible when utilizing bioinformatics, catalytic RNAs, and nano-drug delivery systems. Overcoming delivery challenges of catalytic RNAs was discussed in this review as a future perspective highlighting the significance of utilizing synthetic biology in addition to high throughput deep sequencing and computational approaches for the treatment of mis-spliced transcripts.
Collapse
Affiliation(s)
- Bashayer A. Khalifah
- Institute for Bioengineering, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Ali H. Alhasan
- Institute for Bioengineering, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
- College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
18
|
Falker-Gieske C. Transcriptome driven discovery of novel candidate genes for human neurological disorders in the telomer-to-telomer genome assembly era. Hum Genomics 2023; 17:94. [PMID: 37872607 PMCID: PMC10594789 DOI: 10.1186/s40246-023-00543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND With the first complete draft of a human genome, the Telomere-to-Telomere Consortium unlocked previously concealed genomic regions for genetic analyses. These regions harbour nearly 2000 potential novel genes with unknown function. In order to uncover candidate genes associated with human neurological pathologies, a comparative transcriptome study using the T2T-CHM13 and the GRCh38 genome assemblies was conducted on previously published datasets for eight distinct human neurological disorders. RESULTS The analysis of differential expression in RNA sequencing data led to the identification of 336 novel candidate genes linked to human neurological disorders. Additionally, it was revealed that, on average, 3.6% of the differentially expressed genes detected with the GRCh38 assembly may represent potential false positives. Among the noteworthy findings, two novel genes were discovered, one encoding a pore-structured protein and the other a highly ordered β-strand-rich protein. These genes exhibited upregulation in multiple epilepsy datasets and hold promise as candidate genes potentially modulating the progression of the disease. Furthermore, an analysis of RNA derived from white matter lesions in multiple sclerosis patients indicated significant upregulation of 26 rRNA encoding genes. Additionally, putative pathology related genes were identified for Alzheimer's disease, amyotrophic lateral sclerosis, glioblastoma, glioma, and conditions resulting from the m.3242 A > G mtDNA mutation. CONCLUSION The results presented here underline the potential of the T2T-CHM13 assembly in facilitating the discovery of candidate genes from transcriptome data in the context of human disorders. Moreover, the results demonstrate the value of remapping sequencing data to a superior genome assembly. Numerous potential pathology related genes, either as causative factors or related elements, have been unveiled, warranting further experimental validation.
Collapse
Affiliation(s)
- Clemens Falker-Gieske
- Division of Functional Breeding, Department of Animal Sciences, Georg-August-Universität Göttingen, Burckhardtweg 2, 37077, Göttingen, Germany.
| |
Collapse
|
19
|
Garcia-Vaquero ML, Heim M, Flix B, Pereira M, Palin L, Marques TM, Pinto FR, de Las Rivas J, Voigt A, Besse F, Gama-Carvalho M. Analysis of asymptomatic Drosophila models for ALS and SMA reveals convergent impact on functional protein complexes linked to neuro-muscular degeneration. BMC Genomics 2023; 24:576. [PMID: 37759179 PMCID: PMC10523761 DOI: 10.1186/s12864-023-09562-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 08/08/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Spinal Muscular Atrophy (SMA) and Amyotrophic Lateral Sclerosis (ALS) share phenotypic and molecular commonalities, including the fact that they can be caused by mutations in ubiquitous proteins involved in RNA metabolism, namely SMN, TDP-43 and FUS. Although this suggests the existence of common disease mechanisms, there is currently no model to explain the resulting motor neuron dysfunction. In this work we generated a parallel set of Drosophila models for adult-onset RNAi and tagged neuronal expression of the fly orthologues of the three human proteins, named Smn, TBPH and Caz, respectively. We profiled nuclear and cytoplasmic bound mRNAs using a RIP-seq approach and characterized the transcriptome of the RNAi models by RNA-seq. To unravel the mechanisms underlying the common functional impact of these proteins on neuronal cells, we devised a computational approach based on the construction of a tissue-specific library of protein functional modules, selected by an overall impact score measuring the estimated extent of perturbation caused by each gene knockdown. RESULTS Transcriptome analysis revealed that the three proteins do not bind to the same RNA molecules and that only a limited set of functionally unrelated transcripts is commonly affected by their knock-down. However, through our integrative approach we were able to identify a concerted effect on protein functional modules, albeit acting through distinct targets. Most strikingly, functional annotation revealed that these modules are involved in critical cellular pathways for motor neurons, including neuromuscular junction function. Furthermore, selected modules were found to be significantly enriched in orthologues of human neuronal disease genes. CONCLUSIONS The results presented here show that SMA and ALS disease-associated genes linked to RNA metabolism functionally converge on neuronal protein complexes, providing a new hypothesis to explain the common motor neuron phenotype. The functional modules identified represent promising biomarkers and therapeutic targets, namely given their alteration in asymptomatic settings.
Collapse
Affiliation(s)
- Marina L Garcia-Vaquero
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
- Department of Medicine and Cytometry General Service-15 Nucleus, Cancer Research Centre (IBMCC/CSIC/USAL/IBSAL), CIBERONC, 16 37007, Salamanca, Spain
| | - Marjorie Heim
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, 06108, Nice, Inserm, France
| | - Barbara Flix
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
| | - Marcelo Pereira
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Lucile Palin
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, 06108, Nice, Inserm, France
| | - Tânia M Marques
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Francisco R Pinto
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal
| | - Javier de Las Rivas
- Cancer Research Center (CiC-IBMCC, CSIC/USAL/IBSAL), Consejo Superior de Investigaciones Científicas (CSIC) and University of Salamanca (USAL), 37007, Salamanca, Spain
| | - Aaron Voigt
- Department of Neurology, Medical Faculty, RWTH Aachen University, 52074, Aachen, Germany
- JARA-BRAIN Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich GmbH RWTH Aachen University, 52074, Aachen, Germany
| | - Florence Besse
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, 06108, Nice, Inserm, France
| | - Margarida Gama-Carvalho
- BioISI - Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, 1749-016, Lisbon, Portugal.
| |
Collapse
|
20
|
Pérez‐Berlanga M, Wiersma VI, Zbinden A, De Vos L, Wagner U, Foglieni C, Mallona I, Betz KM, Cléry A, Weber J, Guo Z, Rigort R, de Rossi P, Manglunia R, Tantardini E, Sahadevan S, Stach O, Hruska‐Plochan M, Allain FH, Paganetti P, Polymenidou M. Loss of TDP-43 oligomerization or RNA binding elicits distinct aggregation patterns. EMBO J 2023; 42:e111719. [PMID: 37431963 PMCID: PMC10476175 DOI: 10.15252/embj.2022111719] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/02/2023] [Accepted: 06/12/2023] [Indexed: 07/12/2023] Open
Abstract
Aggregation of the RNA-binding protein TAR DNA-binding protein 43 (TDP-43) is the key neuropathological feature of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). In physiological conditions, TDP-43 is predominantly nuclear, forms oligomers, and is contained in biomolecular condensates assembled by liquid-liquid phase separation (LLPS). In disease, TDP-43 forms cytoplasmic or intranuclear inclusions. How TDP-43 transitions from physiological to pathological states remains poorly understood. Using a variety of cellular systems to express structure-based TDP-43 variants, including human neurons and cell lines with near-physiological expression levels, we show that oligomerization and RNA binding govern TDP-43 stability, splicing functionality, LLPS, and subcellular localization. Importantly, our data reveal that TDP-43 oligomerization is modulated by RNA binding. By mimicking the impaired proteasomal activity observed in ALS/FTLD patients, we found that monomeric TDP-43 forms inclusions in the cytoplasm, whereas its RNA binding-deficient counterpart aggregated in the nucleus. These differentially localized aggregates emerged via distinct pathways: LLPS-driven aggregation in the nucleus and aggresome-dependent inclusion formation in the cytoplasm. Therefore, our work unravels the origins of heterogeneous pathological species reminiscent of those occurring in TDP-43 proteinopathy patients.
Collapse
Affiliation(s)
| | - Vera I Wiersma
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Aurélie Zbinden
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Laura De Vos
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Ulrich Wagner
- Department of Pathology and Molecular Pathology, University Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - Chiara Foglieni
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero CantonaleBellinzonaSwitzerland
| | - Izaskun Mallona
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Katharina M Betz
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Antoine Cléry
- Department of Biology, Institute of BiochemistryETH ZurichZurichSwitzerland
| | - Julien Weber
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Zhongning Guo
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Ruben Rigort
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Pierre de Rossi
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Ruchi Manglunia
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Elena Tantardini
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Sonu Sahadevan
- Department of Quantitative BiomedicineUniversity of ZurichZurichSwitzerland
| | - Oliver Stach
- Department of BiochemistryUniversity of ZurichZurichSwitzerland
| | | | | | - Paolo Paganetti
- Neurodegeneration Research Group, Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Ospedaliero CantonaleBellinzonaSwitzerland
| | | |
Collapse
|
21
|
Dos Passos PM, Hemamali EH, Mamede LD, Hayes LR, Ayala YM. RNA-mediated ribonucleoprotein assembly controls TDP-43 nuclear retention. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.06.552215. [PMID: 37609278 PMCID: PMC10441353 DOI: 10.1101/2023.08.06.552215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
TDP-43 is an essential RNA-binding protein strongly implicated in the pathogenesis of neurodegenerative disorders characterized by cytoplasmic aggregates and loss of nuclear TDP-43. The protein shuttles between nucleus and cytoplasm, yet maintaining predominantly nuclear TDP-43 localization is important for TDP-43 function and for inhibiting cytoplasmic aggregation. We previously demonstrated that specific RNA binding mediates TDP-43 self-assembly and biomolecular condensation, requiring multivalent interactions via N- and C-terminal domains. Here, we show that these complexes play a key role in TDP-43 nuclear retention. TDP-43 forms macromolecular complexes with a wide range of size distribution in cells and we find that defects in RNA binding or inter-domain interactions, including phase separation, impair the assembly of the largest species. Our findings suggest that recruitment into these macromolecular complexes prevents cytoplasmic egress of TDP-43 in a size-dependent manner. Our observations uncover fundamental mechanisms controlling TDP-43 cellular homeostasis, whereby regulation of RNA-mediated self-assembly modulates TDP-43 nucleocytoplasmic distribution. Moreover, these findings highlight pathways that may be implicated in TDP-43 proteinopathies and identify potential therapeutic targets.
Collapse
|
22
|
Oiwa K, Watanabe S, Onodera K, Iguchi Y, Kinoshita Y, Komine O, Sobue A, Okada Y, Katsuno M, Yamanaka K. Monomerization of TDP-43 is a key determinant for inducing TDP-43 pathology in amyotrophic lateral sclerosis. SCIENCE ADVANCES 2023; 9:eadf6895. [PMID: 37540751 PMCID: PMC10403219 DOI: 10.1126/sciadv.adf6895] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/05/2023] [Indexed: 08/06/2023]
Abstract
The cytoplasmic aggregation of TAR DNA binding protein-43 (TDP-43), also known as TDP-43 pathology, is the pathological hallmark of amyotrophic lateral sclerosis (ALS). However, the mechanism underlying TDP-43 cytoplasmic mislocalization and subsequent aggregation remains unclear. Here, we show that TDP-43 dimerization/multimerization is impaired in the postmortem brains and spinal cords of patients with sporadic ALS and that N-terminal dimerization-deficient TDP-43 consists of pathological inclusion bodies in ALS motor neurons. Expression of N-terminal dimerization-deficient mutant TDP-43 in Neuro2a cells and induced pluripotent stem cell-derived motor neurons recapitulates TDP-43 pathology, such as Nxf1-dependent cytoplasmic mislocalization and aggregate formation, which induces seeding effects. Furthermore, TDP-DiLuc, a bimolecular luminescence complementation reporter assay, could detect decreased N-terminal dimerization of TDP-43 before TDP-43 pathological changes caused by the transcription inhibition linked to aberrant RNA metabolism in ALS. These findings identified TDP-43 monomerization as a critical determinant inducing TDP-43 pathology in ALS.
Collapse
Affiliation(s)
- Kotaro Oiwa
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Kazunari Onodera
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Yukako Kinoshita
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Okiru Komine
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
| | - Akira Sobue
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
- Medical Interactive Research and Academia Industry Collaboration Center, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi, Japan
| | - Yohei Okada
- Department of Neural iPSC Research, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Aichi 480-1195, Japan
- Department of Neurology, Aichi Medical University School of Medicine, Nagakute, Aichi 480-1195, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan
- Department of Neuroscience and Pathobiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8560, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
23
|
Li K, Wang Z. lncRNA NEAT1: Key player in neurodegenerative diseases. Ageing Res Rev 2023; 86:101878. [PMID: 36738893 DOI: 10.1016/j.arr.2023.101878] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/09/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Neurodegenerative diseases are the most common causes of disability worldwide. Given their high prevalence, devastating symptoms, and lack of definitive diagnostic tests, there is an urgent need to identify potential biomarkers and new therapeutic targets. Long non-coding RNAs (lncRNAs) have recently emerged as powerful regulatory molecules in neurodegenerative diseases. Among them, lncRNA nuclear paraspeckle assembly transcript 1 (NEAT1) has been reported to be upregulated in Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). However, whether this is part of a protective or harmful mechanism is still unclear. This review summarizes our current knowledge of the role of NEAT1 in neurodegenerative diseases and its association with the characteristic aggregation of misfolded proteins: amyloid-β and tau in AD, α-synuclein in PD, mutant huntingtin in HD, and TAR DNA-binding protein-43 fused in sarcoma/translocated in liposarcoma in ALS. The aim of this review is to stimulate further research on more precise and effective treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Kun Li
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China
| | - Ziqiang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan 250014, China; Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China.
| |
Collapse
|
24
|
Miyashita A, Kobayashi M, Yokota T, Zochodne DW. Diabetic Polyneuropathy: New Strategies to Target Sensory Neurons in Dorsal Root Ganglia. Int J Mol Sci 2023; 24:ijms24065977. [PMID: 36983051 PMCID: PMC10051459 DOI: 10.3390/ijms24065977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/29/2023] Open
Abstract
Diabetic polyneuropathy (DPN) is the most common type of diabetic neuropathy, rendering a slowly progressive, symmetrical, and length-dependent dying-back axonopathy with preferential sensory involvement. Although the pathogenesis of DPN is complex, this review emphasizes the concept that hyperglycemia and metabolic stressors directly target sensory neurons in the dorsal root ganglia (DRG), leading to distal axonal degeneration. In this context, we discuss the role for DRG-targeting gene delivery, specifically oligonucleotide therapeutics for DPN. Molecules including insulin, GLP-1, PTEN, HSP27, RAGE, CWC22, and DUSP1 that impact neurotrophic signal transduction (for example, phosphatidylinositol-3 kinase/phosphorylated protein kinase B [PI3/pAkt] signaling) and other cellular networks may promote regeneration. Regenerative strategies may be essential in maintaining axon integrity during ongoing degeneration in diabetes mellitus (DM). We discuss specific new findings that relate to sensory neuron function in DM associated with abnormal dynamics of nuclear bodies such as Cajal bodies and nuclear speckles in which mRNA transcription and post-transcriptional processing occur. Manipulating noncoding RNAs such as microRNA and long-noncoding RNA (specifically MALAT1) that regulate gene expression through post-transcriptional modification are interesting avenues to consider in supporting neurons during DM. Finally, we present therapeutic possibilities around the use of a novel DNA/RNA heteroduplex oligonucleotide that provides more efficient gene knockdown in DRG than the single-stranded antisense oligonucleotide.
Collapse
Affiliation(s)
- Akiko Miyashita
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Masaki Kobayashi
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Department of Neurology, Nissan Tamagawa Hospital, Tokyo 158-0095, Japan
| | - Takanori Yokota
- Department of Neurology, Neurological Science, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Douglas W. Zochodne
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, The Neuroscience and Mental Health Institute and The Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: ; Tel.: +1-780-248-1928; Fax: +1-780-248-1807
| |
Collapse
|
25
|
Riboldi GM, Faravelli I, Rinchetti P, Lotti F. SMN post-translational modifications in spinal muscular atrophy. Front Cell Neurosci 2023; 17:1092488. [PMID: 36874214 PMCID: PMC9981653 DOI: 10.3389/fncel.2023.1092488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/26/2023] [Indexed: 02/19/2023] Open
Abstract
Since its first identification as the gene responsible for spinal muscular atrophy (SMA), the range of survival motor neuron (SMN) protein functions has increasingly expanded. This multimeric complex plays a crucial role in a variety of RNA processing pathways. While its most characterized function is in the biogenesis of ribonucleoproteins, several studies have highlighted the SMN complex as an important contributor to mRNA trafficking and translation, axonal transport, endocytosis, and mitochondria metabolism. All these multiple functions need to be selectively and finely modulated to maintain cellular homeostasis. SMN has distinct functional domains that play a crucial role in complex stability, function, and subcellular distribution. Many different processes were reported as modulators of the SMN complex activities, although their contribution to SMN biology still needs to be elucidated. Recent evidence has identified post-translational modifications (PTMs) as a way to regulate the pleiotropic functions of the SMN complex. These modifications include phosphorylation, methylation, ubiquitination, acetylation, sumoylation, and many other types. PTMs can broaden the range of protein functions by binding chemical moieties to specific amino acids, thus modulating several cellular processes. Here, we provide an overview of the main PTMs involved in the regulation of the SMN complex with a major focus on the functions that have been linked to SMA pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Francesco Lotti
- Center for Motor Neuron Biology and Diseases, Departments of Pathology & Cell Biology, and Neurology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
26
|
Kobayashi H, Makise N, Shinozaki-Ushiku A, Zhang L, Ishibashi Y, Ikegami M, Tsuda Y, Kohsaka S, Ushiku T, Oda K, Miyagawa K, Aburatani H, Mano H, Tanaka S. Dramatic response to entrectinib in a patient with malignant peripheral nerve sheath tumor harboring novel SNRNP70-NTRK3 fusion gene. Genes Chromosomes Cancer 2023; 62:47-51. [PMID: 35906852 DOI: 10.1002/gcc.23089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/07/2022] Open
Abstract
Neurotropic tropomyosin receptor kinase (NTRK) gene rearrangements have been reported in limited cases of sarcomas; however, to date, there has been only one report of such rearrangements in malignant peripheral nerve sheath tumors (MPNSTs). Herein, we describe a 51-year-old male patient with a buttock tumor arising from the sciatic nerve, which was diagnosed as MPNST with positive S-100 staining, negative SOX10 staining, and loss of trimethylation at lysine 27 of histone H3 (H3K27me3) confirmed by immunohistochemistry. Soon after the resection of the primary tumor, the patient was found to have pulmonary and lymph node metastases. Chemotherapy with eribulin and trabectedin showed limited effects. However, the patient responded rapidly to pazopanib, but severe side effects caused discontinuation of the treatment. RNA panel testing revealed a novel fusion gene between Small Nuclear Ribonucleoprotein U1 Subunit 70 (SNRNP70) gene and NTRK3 gene. Furthermore, loss of NF1, SUZ12, and CDKN2A genes was confirmed by DNA panel testing, which is compatible with a histological diagnosis of MPNST. SNRNP70 possesses a coiled-coiled domain and seems to induce constitutive activation of NTRK3 through dimerization. In fact, immunohistochemistry revealed diffuse staining of pan-TRK within tumor cells. Treatment with entrectinib, which is an NTRK inhibitor, showed a quick and durable response for 10 months. Although NTRK rearrangements are very rare in MPNST, this case highlights the importance of genetic testing in MPNST, especially using an RNA panel for the detection of rare fusion genes.
Collapse
Affiliation(s)
- Hiroshi Kobayashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naohiro Makise
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,Division of Surgical Pathology, Chiba Cancer Center, Chiba, Japan
| | - Aya Shinozaki-Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Liuzhe Zhang
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuki Ishibashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masachika Ikegami
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Tsuda
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Division of Integrative Genomics, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science & Medicine Laboratory, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Mano
- Division of Cellular Signaling, National Cancer Center Research Institute, Tokyo, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Chaddha M, Rai H, Gupta R, Thakral D. Integrated analysis of circulating cell free nucleic acids for cancer genotyping and immune phenotyping of tumor microenvironment. Front Genet 2023; 14:1138625. [PMID: 37091783 PMCID: PMC10117686 DOI: 10.3389/fgene.2023.1138625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 03/15/2023] [Indexed: 04/25/2023] Open
Abstract
The circulating cell-free nucleic acids (ccfNAs) consist of a heterogenous cocktail of both single (ssNA) and double-stranded (dsNA) nucleic acids. These ccfNAs are secreted into the blood circulation by both healthy and malignant cells via various mechanisms including apoptosis, necrosis, and active secretion. The major source of ccfNAs are the cells of hematopoietic system under healthy conditions. These ccfNAs include fragmented circulating cell free DNA (ccfDNA), coding or messenger RNA (mRNA), long non-coding RNA (lncRNA), microRNA (miRNA), and mitochondrial DNA/RNA (mtDNA and mtRNA), that serve as prospective biomarkers in assessment of various clinical conditions. For, e.g., free fetal DNA and RNA migrate into the maternal plasma, whereas circulating tumor DNA (ctDNA) has clinical relevance in diagnostic, prognostic, therapeutic targeting, and disease progression monitoring to improve precision medicine in cancer. The epigenetic modifications of ccfDNA as well as circulating cell-free RNA (ccfRNA) such as miRNA and lncRNA show disease-related variations and hold potential as epigenetic biomarkers. The messenger RNA present in the circulation or the circulating cell free mRNA (ccf-mRNA) and long non-coding RNA (ccf-lncRNA) have gradually become substantial in liquid biopsy by acting as effective biomarkers to assess various aspects of disease diagnosis and prognosis. Conversely, the simultaneous characterization of coding and non-coding RNAs in human biofluids still poses a significant hurdle. Moreover, a comprehensive assessment of ccfRNA that may reflect the tumor microenvironment is being explored. In this review, we focus on the novel approaches for exploring ccfDNA and ccfRNAs, specifically ccf-mRNA as biomarkers in clinical diagnosis and prognosis of cancer. Integrating the detection of circulating tumor DNA (ctDNA) for cancer genotyping in conjunction with ccfRNA both quantitatively and qualitatively, may potentially hold immense promise towards precision medicine. The current challenges and future directions in deciphering the complexity of cancer networks based on the dynamic state of ccfNAs will be discussed.
Collapse
Affiliation(s)
| | | | - Ritu Gupta
- *Correspondence: Deepshi Thakral, ; Ritu Gupta,
| | | |
Collapse
|
28
|
Molecular Investigations of Protein Aggregation in the Pathogenesis of Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 24:ijms24010704. [PMID: 36614144 PMCID: PMC9820914 DOI: 10.3390/ijms24010704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating progressive neurodegenerative disorder characterized by selective loss of lower and upper motor neurons (MNs) in the brain and spinal cord, resulting in paralysis and eventually death due to respiratory insufficiency. Although the fundamental physiological mechanisms underlying ALS are not completely understood, the key neuropathological hallmarks of ALS pathology are the aggregation and accumulation of ubiquitinated protein inclusions within the cytoplasm of degenerating MNs. Herein, we discuss recent insights into the molecular mechanisms that lead to the accumulation of protein aggregates in ALS. This will contribute to a better understanding of the pathophysiology of the disease and may open novel avenues for the development of therapeutic strategies.
Collapse
|
29
|
Huai Y, Mao W, Wang X, Lin X, Li Y, Chen Z, Qian A. How do RNA binding proteins trigger liquid-liquid phase separation in human health and diseases? Biosci Trends 2022; 16:389-404. [PMID: 36464283 DOI: 10.5582/bst.2022.01449] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
RNA-binding proteins (RBPs) lie at the center of post-transcriptional regulation and protein synthesis, adding complexity to RNA life cycle. RBPs also participate in the formation of membrane-less organelles (MLOs) via undergoing liquid-liquid phase separation (LLPS), which underlies the formation of MLOs in eukaryotic cells. RBPs-triggered LLPS mainly relies on the interaction between their RNA recognition motifs (RRMs) and capped mRNA transcripts and the heterotypic multivalent interactions between their intrinsically disordered regions (IDRs) or prion-like domains (PLDs). In turn, the aggregations of RBPs are also dependent on the process of LLPS. RBPs-driven LLPS is involved in many intracellular processes (regulation of translation, mRNA storage and stabilization and cell signaling) and serves as the heart of cellular physiology and pathology. Thus, it is essential to comprehend the potential roles and investigate the internal mechanism of RPBs-triggered LLPS. In this review, we primarily expound on our current understanding of RBPs and they-triggered LLPS and summarize their physiological and pathological functions. Furthermore, we also summarize the potential roles of RBPs-triggered LLPS as novel therapeutic mechanism for human diseases. This review will help understand the mechanisms underlying LLPS and downstream regulation of RBPs and provide insights into the pathogenesis and therapy of complex diseases.
Collapse
Affiliation(s)
- Ying Huai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wenjing Mao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xuehao Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiao Lin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yu Li
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Department of Obstetrics and Gynecology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.,NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| |
Collapse
|
30
|
Nogami M, Sano O, Adachi-Tominari K, Hayakawa-Yano Y, Furukawa T, Iwata H, Ogi K, Okano H, Yano M. DNA damage stress-induced translocation of mutant FUS proteins into cytosolic granules and screening for translocation inhibitors. Front Mol Neurosci 2022; 15:953365. [PMID: 36606141 PMCID: PMC9808394 DOI: 10.3389/fnmol.2022.953365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Fused in sarcoma/translated in liposarcoma (FUS) is an RNA-binding protein, and its mutations are associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), through the DNA damage stress response, aberrant stress granule (SG) formation, etc. We previously reported that translocation of endogenous FUS into SGs was achieved by cotreatment with a DNA double-strand break inducer and an inhibitor of DNA-PK activity. In the present study, we investigated cytoplasmic SG formation using various fluorescent protein-tagged mutant FUS proteins in a human astrocytoma cell (U251) model. While the synergistic enhancement of the migration of fluorescent protein-tagged wild-type FUS to cytoplasmic SGs upon DNA damage induction was observed when DNA-PK activity was suppressed, the fluorescent protein-tagged FUSP525L mutant showed cytoplasmic localization. It migrated to cytoplasmic SGs upon DNA damage induction alone, and DNA-PK inhibition also showed a synergistic effect. Furthermore, analysis of 12 sites of DNA-PK-regulated phosphorylation in the N-terminal LC region of FUS revealed that hyperphosphorylation of FUS mitigated the mislocalization of FUS into cytoplasmic SGs. By using this cell model, we performed screening of a compound library to identify compounds that inhibit the migration of FUS to cytoplasmic SGs but do not affect the localization of the SG marker molecule G3BP1 to cytoplasmic SGs. Finally, we successfully identified 23 compounds that inhibit FUS-containing SG formation without changing normal SG formation. Highlights Characterization of DNA-PK-dependent FUS stress granule localization.A compound library was screened to identify compounds that inhibit the formation of FUS-containing stress granules.
Collapse
Affiliation(s)
- Masahiro Nogami
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan,Shonan Incubation Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan,*Correspondence: Masahiro Nogami,
| | - Osamu Sano
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Keiko Adachi-Tominari
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yoshika Hayakawa-Yano
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan,Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takako Furukawa
- Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hidehisa Iwata
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kazuhiro Ogi
- Innovative Biology Laboratories, Neuroscience Drug Discovery Unit, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan,Shonan Incubation Laboratories, Research, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hideyuki Okano
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan
| | - Masato Yano
- Department of Physiology, School of Medicine, Keio University, Tokyo, Japan,Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan,Masato Yano,
| |
Collapse
|
31
|
Tamaki Y, Urushitani M. Molecular Dissection of TDP-43 as a Leading Cause of ALS/FTLD. Int J Mol Sci 2022; 23:ijms232012508. [PMID: 36293362 PMCID: PMC9604209 DOI: 10.3390/ijms232012508] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
TAR DNA binding protein 43 (TDP-43) is a DNA/RNA binding protein involved in pivotal cellular functions, especially in RNA metabolism. Hyperphosphorylated and ubiquitinated TDP-43-positive neuronal cytoplasmic inclusions are identified in the brain and spinal cord in most cases of amyotrophic lateral sclerosis (ALS) and a substantial proportion of frontotemporal lobar degeneration (FTLD) cases. TDP-43 dysfunctions and cytoplasmic aggregation seem to be the central pathogenicity in ALS and FTLD. Therefore, unraveling both the physiological and pathological mechanisms of TDP-43 may enable the exploration of novel therapeutic strategies. This review highlights the current understanding of TDP-43 biology and pathology, describing the cellular processes involved in the pathogeneses of ALS and FTLD, such as post-translational modifications, RNA metabolism, liquid–liquid phase separation, proteolysis, and the potential prion-like propagation propensity of the TDP-43 inclusions.
Collapse
Affiliation(s)
- Yoshitaka Tamaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Makoto Urushitani
- Department of Neurology, Shiga University of Medical Science, Otsu 520-2192, Japan
- Correspondence:
| |
Collapse
|
32
|
Yamazaki T, Yamamoto T, Hirose T. Micellization: A new principle in the formation of biomolecular condensates. Front Mol Biosci 2022; 9:974772. [PMID: 36106018 PMCID: PMC9465675 DOI: 10.3389/fmolb.2022.974772] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/20/2022] [Indexed: 11/18/2022] Open
Abstract
Phase separation is a fundamental mechanism for compartmentalization in cells and leads to the formation of biomolecular condensates, generally containing various RNA molecules. RNAs are biomolecules that can serve as suitable scaffolds for biomolecular condensates and determine their forms and functions. Many studies have focused on biomolecular condensates formed by liquid-liquid phase separation (LLPS), one type of intracellular phase separation mechanism. We recently identified that paraspeckle nuclear bodies use an intracellular phase separation mechanism called micellization of block copolymers in their formation. The paraspeckles are scaffolded by NEAT1_2 long non-coding RNAs (lncRNAs) and their partner RNA-binding proteins (NEAT1_2 RNA-protein complexes [RNPs]). The NEAT1_2 RNPs act as block copolymers and the paraspeckles assemble through micellization. In LLPS, condensates grow without bound as long as components are available and typically have spherical shapes to minimize surface tension. In contrast, the size, shape, and internal morphology of the condensates are more strictly controlled in micellization. Here, we discuss the potential importance and future perspectives of micellization of block copolymers of RNPs in cells, including the construction of designer condensates with optimal internal organization, shape, and size according to design guidelines of block copolymers.
Collapse
Affiliation(s)
- Tomohiro Yamazaki
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Tetsuya Yamamoto
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| |
Collapse
|
33
|
Dash BP, Freischmidt A, Weishaupt JH, Hermann A. Downstream Effects of Mutations in SOD1 and TARDBP Converge on Gene Expression Impairment in Patient-Derived Motor Neurons. Int J Mol Sci 2022; 23:ijms23179652. [PMID: 36077049 PMCID: PMC9456253 DOI: 10.3390/ijms23179652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive and fatal neurodegenerative disease marked by death of motor neurons (MNs) present in the spinal cord, brain stem and motor cortex. Despite extensive research, the reason for neurodegeneration is still not understood. To generate novel hypotheses of putative underlying molecular mechanisms, we used human induced pluripotent stem cell (hiPSCs)-derived motor neurons (MNs) from SOD1- and TARDBP (TDP-43 protein)-mutant-ALS patients and healthy controls to perform high-throughput RNA-sequencing (RNA-Seq). An integrated bioinformatics approach was employed to identify differentially expressed genes (DEGs) and key pathways underlying these familial forms of the disease (fALS). In TDP43-ALS, we found dysregulation of transcripts encoding components of the transcriptional machinery and transcripts involved in splicing regulation were particularly affected. In contrast, less is known about the role of SOD1 in RNA metabolism in motor neurons. Here, we found that many transcripts relevant for mitochondrial function were specifically altered in SOD1-ALS, indicating that transcriptional signatures and expression patterns can vary significantly depending on the causal gene that is mutated. Surprisingly, however, we identified a clear downregulation of genes involved in protein translation in SOD1-ALS suggesting that ALS-causing SOD1 mutations shift cellular RNA abundance profiles to cause neural dysfunction. Altogether, we provided here an extensive profiling of mRNA expression in two ALS models at the cellular level, corroborating the major role of RNA metabolism and gene expression as a common pathomechanism in ALS.
Collapse
Affiliation(s)
- Banaja P. Dash
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
| | | | - Jochen H. Weishaupt
- Division of Neurodegeneration, Department of Neurology, Mannheim Center for Translational Neurosciences, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Andreas Hermann
- Translational Neurodegeneration Section “Albrecht-Kossel”, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock, University Medical Center Rostock, 18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, 18147 Rostock, Germany
- Correspondence: ; Tel.: +49-(0)381-494-9541; Fax: +49-(0)381-494-9542
| |
Collapse
|
34
|
Jablonka S, Hennlein L, Sendtner M. Therapy development for spinal muscular atrophy: perspectives for muscular dystrophies and neurodegenerative disorders. Neurol Res Pract 2022; 4:2. [PMID: 34983696 PMCID: PMC8725368 DOI: 10.1186/s42466-021-00162-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/21/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Major efforts have been made in the last decade to develop and improve therapies for proximal spinal muscular atrophy (SMA). The introduction of Nusinersen/Spinraza™ as an antisense oligonucleotide therapy, Onasemnogene abeparvovec/Zolgensma™ as an AAV9-based gene therapy and Risdiplam/Evrysdi™ as a small molecule modifier of pre-mRNA splicing have set new standards for interference with neurodegeneration. MAIN BODY Therapies for SMA are designed to interfere with the cellular basis of the disease by modifying pre-mRNA splicing and enhancing expression of the Survival Motor Neuron (SMN) protein, which is only expressed at low levels in this disorder. The corresponding strategies also can be applied to other disease mechanisms caused by loss of function or toxic gain of function mutations. The development of therapies for SMA was based on the use of cell culture systems and mouse models, as well as innovative clinical trials that included readouts that had originally been introduced and optimized in preclinical studies. This is summarized in the first part of this review. The second part discusses current developments and perspectives for amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease, as well as the obstacles that need to be overcome to introduce RNA-based therapies and gene therapies for these disorders. CONCLUSION RNA-based therapies offer chances for therapy development of complex neurodegenerative disorders such as amyotrophic lateral sclerosis, muscular dystrophies, Parkinson's and Alzheimer's disease. The experiences made with these new drugs for SMA, and also the experiences in AAV gene therapies could help to broaden the spectrum of current approaches to interfere with pathophysiological mechanisms in neurodegeneration.
Collapse
Affiliation(s)
- Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, Versbacher Str. 5, 97078, Wuerzburg, Germany.
| |
Collapse
|
35
|
Mann JR, Donnelly CJ. RNA modulates physiological and neuropathological protein phase transitions. Neuron 2021; 109:2663-2681. [PMID: 34297914 PMCID: PMC8434763 DOI: 10.1016/j.neuron.2021.06.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/21/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
Aggregation of RNA-binding proteins (RBPs) is a pathological hallmark of neurodegenerative disorders like amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). In these diseases, TDP-43 and FUS RBPs are depleted from the nuclear compartment, where they are normally localized, and found within cytoplasmic inclusions in degenerating regions of affected individuals' postmortem tissue. The mechanisms responsible for aggregation of these proteins has remained elusive, but recent studies suggest liquid-liquid phase separation (LLPS) might serve as a critical nucleation step in formation of pathological inclusions. The process of phase separation also underlies the formation and maintenance of several functional membraneless organelles (MLOs) throughout the cell, some of which contain TDP-43, FUS, and other disease-linked RBPs. One common ligand of disease-linked RBPs, RNA, is a major component of MLOs containing RBPs and has been demonstrated to be a strong modulator of RBP phase transitions. Although early evidence suggested a largely synergistic effect of RNA on RBP phase separation and MLO assembly, recent work indicates that RNA can also antagonize RBP phase behavior under certain physiological and pathological conditions. In this review, we describe the mechanisms underlying RNA-mediated phase transitions of RBPs and examine the molecular properties of these interactions, such as RNA length, sequence, and secondary structure, that mediate physiological or pathological LLPS.
Collapse
Affiliation(s)
- Jacob R Mann
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA; LiveLikeLouCenter for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA 15213, USA; Center for Protein Conformational Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Christopher J Donnelly
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; LiveLikeLouCenter for ALS Research, University of Pittsburgh Brain Institute, Pittsburgh, PA 15213, USA; Center for Protein Conformational Diseases, University of Pittsburgh, Pittsburgh, PA 15213, USA; Pittsburgh Institute for Neurodegeneration, University of Pittsburgh, Pittsburgh PA 15213.
| |
Collapse
|
36
|
Wu S, Du L. Protein Aggregation in the Pathogenesis of Ischemic Stroke. Cell Mol Neurobiol 2021; 41:1183-1194. [PMID: 32529541 PMCID: PMC11448579 DOI: 10.1007/s10571-020-00899-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/05/2020] [Indexed: 01/31/2023]
Abstract
Despite the distinction between ischemic stroke and neurodegenerative disorders, they share numerous pathophysiologies particularly those mediated by inflammation and oxidative stress. Although protein aggregation is considered to be a hallmark of neurodegenerative diseases, the formation of protein aggregates can be also induced within a short time after cerebral ischemia, aggravating cerebral ischemic injury. Protein aggregation uncovers a previously unappreciated molecular overlap between neurodegenerative diseases and ischemic stroke. Unfortunately, compared with neurodegenerative disease, mechanism of protein aggregation after cerebral ischemia and how this can be averted remain unclear. This review highlights current understanding on protein aggregation and its intrinsic role in ischemic stroke.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
37
|
Briese M, Sendtner M. Keeping the balance: The noncoding RNA 7SK as a master regulator for neuron development and function. Bioessays 2021; 43:e2100092. [PMID: 34050960 DOI: 10.1002/bies.202100092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
The noncoding RNA 7SK is a critical regulator of transcription by adjusting the activity of the kinase complex P-TEFb. Release of P-TEFb from 7SK stimulates transcription at many genes by promoting productive elongation. Conversely, P-TEFb sequestration by 7SK inhibits transcription. Recent studies have shown that 7SK functions are particularly important for neuron development and maintenance and it can thus be hypothesized that 7SK is at the center of many signaling pathways contributing to neuron function. 7SK activates neuronal gene expression programs that are key for terminal differentiation of neurons. Proteomics studies revealed a complex protein interactome of 7SK that includes several RNA-binding proteins. Some of these novel 7SK subcomplexes exert non-canonical cytosolic functions in neurons by regulating axonal mRNA transport and fine-tuning spliceosome production in response to transcription alterations. Thus, a picture emerges according to which 7SK acts as a multi-functional RNA scaffold that is integral for neuron homeostasis.
Collapse
Affiliation(s)
- Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| |
Collapse
|
38
|
Ziff OJ, Taha DM, Crerar H, Clarke BE, Chakrabarti AM, Kelly G, Neeves J, Tyzack GE, Luscombe NM, Patani R. Reactive astrocytes in ALS display diminished intron retention. Nucleic Acids Res 2021; 49:3168-3184. [PMID: 33684213 PMCID: PMC8034657 DOI: 10.1093/nar/gkab115] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Reactive astrocytes are implicated in amyotrophic lateral sclerosis (ALS), although the mechanisms controlling reactive transformation are unknown. We show that decreased intron retention (IR) is common to human-induced pluripotent stem cell (hiPSC)-derived astrocytes carrying ALS-causing mutations in VCP, SOD1 and C9orf72. Notably, transcripts with decreased IR and increased expression are overrepresented in reactivity processes including cell adhesion, stress response and immune activation. This was recapitulated in public-datasets for (i) hiPSC-derived astrocytes stimulated with cytokines to undergo reactive transformation and (ii) in vivo astrocytes following selective deletion of TDP-43. We also re-examined public translatome sequencing (TRAP-seq) of astrocytes from a SOD1 mouse model, which revealed that transcripts upregulated in translation significantly overlap with transcripts exhibiting decreased IR. Using nucleocytoplasmic fractionation of VCP mutant astrocytes coupled with mRNA sequencing and proteomics, we identify that decreased IR in nuclear transcripts is associated with enhanced nonsense mediated decay and increased cytoplasmic expression of transcripts and proteins regulating reactive transformation. These findings are consistent with a molecular model for reactive transformation in astrocytes whereby poised nuclear reactivity-related IR transcripts are spliced, undergo nuclear-to-cytoplasmic translocation and translation. Our study therefore provides new insights into the molecular regulation of reactive transformation in astrocytes.
Collapse
Affiliation(s)
- Oliver J Ziff
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| | - Doaa M Taha
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Hamish Crerar
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Benjamin E Clarke
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Anob M Chakrabarti
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK
| | - Gavin Kelly
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Jacob Neeves
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Giulia E Tyzack
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Nicholas M Luscombe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,UCL Genetics Institute, University College London, Gower Street, London WC1E 6BT, UK.,Okinawa Institute of Science & Technology Graduate University, Okinawa 904-0495, Japan
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.,Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London, WC1N 3BG, UK.,National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, WC1N 3BG, UK
| |
Collapse
|
39
|
Connecting the "dots": RNP granule network in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119058. [PMID: 33989700 DOI: 10.1016/j.bbamcr.2021.119058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022]
Abstract
All cells contain ribonucleoprotein (RNP) granules - large membraneless structures composed of RNA and proteins. Recent breakthroughs in RNP granule research have brought a new appreciation of their crucial role in organising virtually all cellular processes. Cells widely exploit the flexible, dynamic nature of RNP granules to adapt to a variety of functional states and the ever-changing environment. Constant exchange of molecules between the different RNP granules connects them into a network. This network controls basal cellular activities and is remodelled to enable efficient stress response. Alterations in RNP granule structure and regulation have been found to lead to fatal human diseases. The interconnectedness of RNP granules suggests that the RNP granule network as a whole becomes affected in disease states such as a representative neurodegenerative disease amyotrophic lateral sclerosis (ALS). In this review, we summarize available evidence on the communication between different RNP granules and on the RNP granule network disruption as a primary ALS pathomechanism.
Collapse
|
40
|
McCluggage F, Fox AH. Paraspeckle nuclear condensates: Global sensors of cell stress? Bioessays 2021; 43:e2000245. [PMID: 33748979 DOI: 10.1002/bies.202000245] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022]
Abstract
Paraspeckles are nuclear condensates, or membranelees organelles, that are built on the long noncoding RNA, NEAT1, and have been linked to many diseases. Although originally described as constitutive structures, here, in reviewing this field, we develop the hypothesis that cells increase paraspeckle abundance as part of a general stress response, to aid pro-survival pathways. Paraspeckles increase in many scenarios: when cells transform from one state to another, become infected with viruses and bacteria, begin to degenerate, under inflammation, in aging, and in cancer. Cells increase paraspeckles by increasing transcription of NEAT1 and adjusting its RNA processing. These increases in NEAT1 are driven by numerous stress-sensing signaling pathways, including signaling to mitochondria and stress granules, revealing crosstalk between the cytoplasm and nucleoplasm in the stress response. Thus, paraspeckles are an important piece of the puzzle in cellular homeostasis, and could be considered RNA-scaffolded nuclear equivalents of dynamic stress-induced structures that form in the cytoplasm. We speculate that, in general, cells rely on phase-separated paraspeckles to transiently tweak gene regulation in times of cellular flux.
Collapse
Affiliation(s)
- Finn McCluggage
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia.,School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Archa H Fox
- School of Molecular Sciences, University of Western Australia, Crawley, Western Australia, Australia.,School of Human Sciences, University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
41
|
Ji C, Bader J, Ramanathan P, Hennlein L, Meissner F, Jablonka S, Mann M, Fischer U, Sendtner M, Briese M. Interaction of 7SK with the Smn complex modulates snRNP production. Nat Commun 2021; 12:1278. [PMID: 33627647 PMCID: PMC7904863 DOI: 10.1038/s41467-021-21529-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/29/2021] [Indexed: 11/09/2022] Open
Abstract
Gene expression requires tight coordination of the molecular machineries that mediate transcription and splicing. While the interplay between transcription kinetics and spliceosome fidelity has been investigated before, less is known about mechanisms regulating the assembly of the spliceosomal machinery in response to transcription changes. Here, we report an association of the Smn complex, which mediates spliceosomal snRNP biogenesis, with the 7SK complex involved in transcriptional regulation. We found that Smn interacts with the 7SK core components Larp7 and Mepce and specifically associates with 7SK subcomplexes containing hnRNP R. The association between Smn and 7SK complexes is enhanced upon transcriptional inhibition leading to reduced production of snRNPs. Taken together, our findings reveal a functional association of Smn and 7SK complexes that is governed by global changes in transcription. Thus, in addition to its canonical nuclear role in transcriptional regulation, 7SK has cytosolic functions in fine-tuning spliceosome production according to transcriptional demand. The noncoding RNA 7SK controls the transcription of mRNAs. Here, the authors show that the 7SK complex interacts with the Smn complex, suggesting crosstalk between transcription and snRNP assembly.
Collapse
Affiliation(s)
- Changhe Ji
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Jakob Bader
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Pradhipa Ramanathan
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Luisa Hennlein
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,Experimental Systems Immunology, Max Planck Institute of Biochemistry, Martinsried, Germany.,Department for Systems Immunology & Proteomics, Institute of Innate Immunity, University Hospitals, University of Bonn, Bonn, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany.,NNF Center for Protein Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Utz Fischer
- Department of Biochemistry, Theodor Boveri Institute, University of Wuerzburg, Wuerzburg, Germany
| | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| | - Michael Briese
- Institute of Clinical Neurobiology, University Hospital Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
42
|
Buratti E. Trends in Understanding the Pathological Roles of TDP-43 and FUS Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:243-267. [PMID: 33433879 DOI: 10.1007/978-3-030-51140-1_15] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Following the discovery of TDP-43 and FUS involvement in amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD), the major challenge in the field has been to understand their physiological functions, both in normal and disease conditions. The hope is that this knowledge will improve our understanding of disease and lead to the development of effective therapeutic options. Initially, the focus has been directed at characterizing the role of these proteins in the control of RNA metabolism, because the main function of TDP-43 and FUS is to bind coding and noncoding RNAs to regulate their life cycle within cells. As a result, we now have an in-depth picture of the alterations that occur in RNA metabolism following their aggregation in various ALS/FTLD models and, to a somewhat lesser extent, in patients' brains. In parallel, progress has been made with regard to understanding how aggregation of these proteins occurs in neurons, how it can spread in different brain regions, and how these changes affect various metabolic cellular pathways to result in neuronal death. The aim of this chapter will be to provide a general overview of the trending topics in TDP-43 and FUS investigations and to highlight what might represent the most promising avenues of research in the years to come.
Collapse
Affiliation(s)
- Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy.
| |
Collapse
|
43
|
Jutzi D, Campagne S, Schmidt R, Reber S, Mechtersheimer J, Gypas F, Schweingruber C, Colombo M, von Schroetter C, Loughlin FE, Devoy A, Hedlund E, Zavolan M, Allain FHT, Ruepp MD. Aberrant interaction of FUS with the U1 snRNA provides a molecular mechanism of FUS induced amyotrophic lateral sclerosis. Nat Commun 2020; 11:6341. [PMID: 33311468 PMCID: PMC7733473 DOI: 10.1038/s41467-020-20191-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the RNA-binding protein Fused in Sarcoma (FUS) cause early-onset amyotrophic lateral sclerosis (ALS). However, a detailed understanding of central RNA targets of FUS and their implications for disease remain elusive. Here, we use a unique blend of crosslinking and immunoprecipitation (CLIP) and NMR spectroscopy to identify and characterise physiological and pathological RNA targets of FUS. We find that U1 snRNA is the primary RNA target of FUS via its interaction with stem-loop 3 and provide atomic details of this RNA-mediated mode of interaction with the U1 snRNP. Furthermore, we show that ALS-associated FUS aberrantly contacts U1 snRNA at the Sm site with its zinc finger and traps snRNP biogenesis intermediates in human and murine motor neurons. Altogether, we present molecular insights into a FUS toxic gain-of-function involving direct and aberrant RNA-binding and strengthen the link between two motor neuron diseases, ALS and spinal muscular atrophy (SMA).
Collapse
Affiliation(s)
- Daniel Jutzi
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Sébastien Campagne
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Ralf Schmidt
- Computational and Systems Biology, Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Stefan Reber
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Jonas Mechtersheimer
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Foivos Gypas
- Computational and Systems Biology, Biozentrum, University of Basel, CH-4056, Basel, Switzerland
- Friedrich Miescher Institute for Biomedical Research, CH-4058, Basel, Switzerland
| | | | - Martino Colombo
- Celgene Institute of Translational Research (CITRE), 41092, Seville, Spain
| | - Christine von Schroetter
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, CH-8093, Zürich, Switzerland
| | - Fionna E Loughlin
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, CH-8093, Zürich, Switzerland
- Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, 3800, Australia
| | - Anny Devoy
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Eva Hedlund
- Department of Neuroscience, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, CH-4056, Basel, Switzerland
| | - Frédéric H-T Allain
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zürich, CH-8093, Zürich, Switzerland.
| | - Marc-David Ruepp
- United Kingdom Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Maurice Wohl Clinical Neuroscience Institute, London, UK.
| |
Collapse
|
44
|
de Boer EMJ, Orie VK, Williams T, Baker MR, De Oliveira HM, Polvikoski T, Silsby M, Menon P, van den Bos M, Halliday GM, van den Berg LH, Van Den Bosch L, van Damme P, Kiernan MC, van Es MA, Vucic S. TDP-43 proteinopathies: a new wave of neurodegenerative diseases. J Neurol Neurosurg Psychiatry 2020; 92:jnnp-2020-322983. [PMID: 33177049 PMCID: PMC7803890 DOI: 10.1136/jnnp-2020-322983] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/28/2020] [Accepted: 09/13/2020] [Indexed: 12/31/2022]
Abstract
Inclusions of pathogenic deposits containing TAR DNA-binding protein 43 (TDP-43) are evident in the brain and spinal cord of patients that present across a spectrum of neurodegenerative diseases. For instance, the majority of patients with sporadic amyotrophic lateral sclerosis (up to 97%) and a substantial proportion of patients with frontotemporal lobar degeneration (~45%) exhibit TDP-43 positive neuronal inclusions, suggesting a role for this protein in disease pathogenesis. In addition, TDP-43 inclusions are evident in familial ALS phenotypes linked to multiple gene mutations including the TDP-43 gene coding (TARDBP) and unrelated genes (eg, C9orf72). While TDP-43 is an essential RNA/DNA binding protein critical for RNA-related metabolism, determining the pathophysiological mechanisms through which TDP-43 mediates neurodegeneration appears complex, and unravelling these molecular processes seems critical for the development of effective therapies. This review highlights the key physiological functions of the TDP-43 protein, while considering an expanding spectrum of neurodegenerative diseases associated with pathogenic TDP-43 deposition, and dissecting key molecular pathways through which TDP-43 may mediate neurodegeneration.
Collapse
Affiliation(s)
- Eva Maria Johanna de Boer
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Viyanti K Orie
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Timothy Williams
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Mark R Baker
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Clinical Neurophysiology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Hugo M De Oliveira
- Department of Neurology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Tuomo Polvikoski
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- Department of Neuropathology, Royal Victoria Infirmary, Newcastle upon Tyne, UK
| | - Matthew Silsby
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Parvathi Menon
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Mehdi van den Bos
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| | - Glenda M Halliday
- Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Leonard H van den Berg
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Philip van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), University of Leuven, Leuven, Belgium
- Center for Brain & Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
- Department of Neurology, University Hospital Leuven, Leuven, Belgium
| | - Matthew C Kiernan
- Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Michael A van Es
- Department of Neurology, Brain Centre Rudolf Magnus, Universitair Medisch Centrum Utrecht, Utrecht, The Netherlands
| | - Steve Vucic
- Westmead Clinical School, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
45
|
Henson HE, Taylor MR. A sart1 Zebrafish Mutant Results in Developmental Defects in the Central Nervous System. Cells 2020; 9:cells9112340. [PMID: 33105605 PMCID: PMC7690441 DOI: 10.3390/cells9112340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022] Open
Abstract
The spliceosome consists of accessory proteins and small nuclear ribonucleoproteins (snRNPs) that remove introns from RNA. As splicing defects are associated with degenerative conditions, a better understanding of spliceosome formation and function is essential. We provide insight into the role of a spliceosome protein U4/U6.U5 tri-snRNP-associated protein 1, or Squamous cell carcinoma antigen recognized by T-cells (Sart1). Sart1 recruits the U4.U6/U5 tri-snRNP complex to nuclear RNA. The complex then associates with U1 and U2 snRNPs to form the spliceosome. A forward genetic screen identifying defects in choroid plexus development and whole-exome sequencing (WES) identified a point mutation in exon 12 of sart1 in Danio rerio (zebrafish). This mutation caused an up-regulation of sart1. Using RNA-Seq analysis, we identified additional upregulated genes, including those involved in apoptosis. We also observed increased activated caspase 3 in the brain and eye and down-regulation of vision-related genes. Although splicing occurs in numerous cells types, sart1 expression in zebrafish was restricted to the brain. By identifying sart1 expression in the brain and cell death within the central nervous system (CNS), we provide additional insights into the role of sart1 in specific tissues. We also characterized sart1's involvement in cell death and vision-related pathways.
Collapse
Affiliation(s)
- Hannah E. Henson
- Chemical Biology and Therapeutics Department, St. Jude Children’s Research Hospital, Memphis, TN 38015, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Correspondence: ; Tel.: +1-731-661-5520
| | - Michael R. Taylor
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA;
| |
Collapse
|
46
|
Zakharova M. Modern approaches in gene therapy of motor neuron diseases. Med Res Rev 2020; 41:2634-2655. [PMID: 32638429 DOI: 10.1002/med.21705] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/12/2022]
Abstract
Motor neuron disorders are a group of neurodegenerative diseases characterized by muscle weakness, loss of ambulation, respiratory insufficiency, leading to an early death. Spinal muscular atrophy (SMA) and amyotrophic lateral sclerosis are the most common and fatal motor neuron diseases. The last 3 years became very successful for novel gene therapy approaches in SMA in infants. Two innovative drugs-nusinersen (Spinraza) and onasemnogene abeparvovec (Zolgensma) have been approved by health authorities. The numerous molecular and genetic overlaps between different neurodegenerative diseases are of great importance in the development of innovative therapeutic strategies, including viral vector therapy and RNA modulating approaches.
Collapse
Affiliation(s)
- Maria Zakharova
- Sixth Neurology Department (Department of Neuroinfectious Diseases), Research Center of Neurology, Moscow, Russia
| |
Collapse
|
47
|
Griffin C, Saint-Jeannet JP. Spliceosomopathies: Diseases and mechanisms. Dev Dyn 2020; 249:1038-1046. [PMID: 32506634 DOI: 10.1002/dvdy.214] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
The spliceosome is a complex of RNA and proteins that function together to identify intron-exon junctions in precursor messenger-RNAs, splice out the introns, and join the flanking exons. Mutations in any one of the genes encoding the proteins that make up the spliceosome may result in diseases known as spliceosomopathies. While the spliceosome is active in all cell types, with the majority of the proteins presumably expressed ubiquitously, spliceosomopathies tend to be tissue-specific as a result of germ line or somatic mutations, with phenotypes affecting primarily the retina in retinitis pigmentosa, hematopoietic lineages in myelodysplastic syndromes, or the craniofacial skeleton in mandibulofacial dysostosis. Here we describe the major spliceosomopathies, review the proposed mechanisms underlying retinitis pigmentosa and myelodysplastic syndromes, and discuss how this knowledge may inform our understanding of craniofacial spliceosomopathies.
Collapse
Affiliation(s)
- Casey Griffin
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| | - Jean-Pierre Saint-Jeannet
- Department of Molecular Pathobiology, New York University College of Dentistry, New York, New York, USA
| |
Collapse
|
48
|
Osman EY, Van Alstyne M, Yen PF, Lotti F, Feng Z, Ling KK, Ko CP, Pellizzoni L, Lorson CL. Minor snRNA gene delivery improves the loss of proprioceptive synapses on SMA motor neurons. JCI Insight 2020; 5:130574. [PMID: 32516136 DOI: 10.1172/jci.insight.130574] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 05/13/2020] [Indexed: 12/17/2022] Open
Abstract
Spinal muscular atrophy (SMA) is an inherited neuromuscular disorder caused by reduced expression of the survival motor neuron (SMN) protein. SMN has key functions in multiple RNA pathways, including the biogenesis of small nuclear ribonucleoproteins that are essential components of both major (U2-dependent) and minor (U12-dependent) spliceosomes. Here we investigated the specific contribution of U12 splicing dysfunction to SMA pathology through selective restoration of this RNA pathway in mouse models of varying phenotypic severity. We show that virus-mediated delivery of minor snRNA genes specifically improves select U12 splicing defects induced by SMN deficiency in cultured mammalian cells, as well as in the spinal cord and dorsal root ganglia of SMA mice without increasing SMN expression. This approach resulted in a moderate amelioration of several parameters of the disease phenotype in SMA mice, including survival, weight gain, and motor function. Importantly, minor snRNA gene delivery improved aberrant splicing of the U12 intron-containing gene Stasimon and rescued the severe loss of proprioceptive sensory synapses on SMA motor neurons, which are early signatures of motor circuit dysfunction in mouse models. Taken together, these findings establish the direct contribution of U12 splicing dysfunction to synaptic deafferentation and motor circuit pathology in SMA.
Collapse
Affiliation(s)
- Erkan Y Osman
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Meaghan Van Alstyne
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Pei-Fen Yen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Francesco Lotti
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Zhihua Feng
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Karen Ky Ling
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Chien-Ping Ko
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, California, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - Christian L Lorson
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
49
|
Sapaly D, Delers P, Coridon J, Salman B, Letourneur F, Dumont F, Lefebvre S. The Small-Molecule Flunarizine in Spinal Muscular Atrophy Patient Fibroblasts Impacts on the Gemin Components of the SMN Complex and TDP43, an RNA-Binding Protein Relevant to Motor Neuron Diseases. Front Mol Biosci 2020; 7:55. [PMID: 32363199 PMCID: PMC7181958 DOI: 10.3389/fmolb.2020.00055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/18/2020] [Indexed: 01/01/2023] Open
Abstract
The motor neurodegenerative disease spinal muscular atrophy (SMA) is caused by alterations of the survival motor neuron 1 (SMN1) gene involved in RNA metabolism. Although the disease mechanisms are not completely elucidated, SMN protein deficiency leads to abnormal small nuclear ribonucleoproteins (snRNPs) assembly responsible for widespread splicing defects. SMN protein localizes in nuclear bodies that are lost in SMA and adult onset amyotrophic lateral sclerosis (ALS) patient cells harboring TDP-43 or FUS/TLS mutations. We previously reported that flunarizine recruits SMN into nuclear bodies and improves the phenotype of an SMA mouse model. However, the precise mode of action remains elusive. Here, a marked reduction of the integral components of the SMN complex is observed in severe SMA patient fibroblast cells. We show that flunarizine increases the protein levels of a subset of components of the SMN-Gemins complex, Gemins2-4, and markedly reduces the RNA and protein levels of the pro-oxydant thioredoxin-interacting protein (TXNIP) encoded by an mRNA target of Gemin5. We further show that SMN deficiency causes a dissociation of the localization of the SMN complex components from the same nuclear bodies. The accumulation of TDP-43 in SMN-positive nuclear bodies is also perturbed in SMA cells. Notably, TDP-43 is found to co-localize with SMN in nuclear bodies of flunarizine-treated SMA cells. Our findings indicate that flunarizine reverses cellular changes caused by SMN deficiency in SMA cells and further support the view of a common pathway in RNA metabolism underlying infantile and adult motor neuron diseases.
Collapse
Affiliation(s)
- Delphine Sapaly
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| | - Perrine Delers
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| | - Jennifer Coridon
- BioMedTech Facilities INSERM US36 - CNRS UMS 2009, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| | - Badih Salman
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| | | | - Florent Dumont
- Genom'ic Platform, INSERM U1016, Institut Cochin, Paris, France
| | - Suzie Lefebvre
- INSERM UMR-S 1124, Toxicité Environnementale, Cibles Thérapeutiques, Signalisation Cellulaire et Biomarqueurs, Campus Saint-Germain-des-Prés, Université de Paris, Paris, France
| |
Collapse
|
50
|
Catinozzi M, Mallik M, Frickenhaus M, Been M, Sijlmans C, Kulshrestha D, Alexopoulos I, Weitkunat M, Schnorrer F, Storkebaum E. The Drosophila FUS ortholog cabeza promotes adult founder myoblast selection by Xrp1-dependent regulation of FGF signaling. PLoS Genet 2020; 16:e1008731. [PMID: 32302304 PMCID: PMC7190187 DOI: 10.1371/journal.pgen.1008731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/29/2020] [Accepted: 03/20/2020] [Indexed: 11/18/2022] Open
Abstract
The number of adult myofibers in Drosophila is determined by the number of founder myoblasts selected from a myoblast pool, a process governed by fibroblast growth factor (FGF) signaling. Here, we show that loss of cabeza (caz) function results in a reduced number of adult founder myoblasts, leading to a reduced number and misorientation of adult dorsal abdominal muscles. Genetic experiments revealed that loss of caz function in both adult myoblasts and neurons contributes to caz mutant muscle phenotypes. Selective overexpression of the FGF receptor Htl or the FGF receptor-specific signaling molecule Stumps in adult myoblasts partially rescued caz mutant muscle phenotypes, and Stumps levels were reduced in caz mutant founder myoblasts, indicating FGF pathway deregulation. In both adult myoblasts and neurons, caz mutant muscle phenotypes were mediated by increased expression levels of Xrp1, a DNA-binding protein involved in gene expression regulation. Xrp1-induced phenotypes were dependent on the DNA-binding capacity of its AT-hook motif, and increased Xrp1 levels in founder myoblasts reduced Stumps expression. Thus, control of Xrp1 expression by Caz is required for regulation of Stumps expression in founder myoblasts, resulting in correct founder myoblast selection.
Collapse
Affiliation(s)
- Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Moushami Mallik
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Marie Frickenhaus
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Marije Been
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Céline Sijlmans
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Divita Kulshrestha
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| | - Ioannis Alexopoulos
- General Instruments Department, Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Manuela Weitkunat
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Frank Schnorrer
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried, Germany
- Aix Marseille University, CNRS, IBDM, Marseille, France
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Muenster, Germany
- Faculty of Medicine, University of Muenster, Muenster, Germany
| |
Collapse
|