1
|
Shi C, Huang M, Zheng Y, Wang C, Lam HY, Wang S, Zeng L, Peng Y, Gu Y, Li Y, Hao H, Chen H, Chen C, Kumar AP, Barceló D, Li H. Endocrine disruption of Triphenyl Phosphate via VIT-2 in Caenorhabditis elegans: A comparative analysis with estradiol and 4-hydroxytamoxifen. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138546. [PMID: 40347610 DOI: 10.1016/j.jhazmat.2025.138546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Triphenyl phosphate (TPHP) is widely used as a flame retardant and plasticizer in consumer products and is frequently detected in the environment. TPHP competitively binds to estrogen receptors, exhibiting both estrogenic and anti-estrogenic effects, leading to ongoing debate about its role. This study demonstrates that TPHP shows a higher affinity for the estrogen receptor NHR-14 in Caenorhabditis elegans (C. elegans) compared to the typical estrogen estradiol (E2) and the estrogen antagonist 4-hydroxytamoxifen (4-HT). The study also examines the production, distribution, and transport of the estrogen biomarker Vitellogenin family member 2 (VIT-2) following exposure to TPHP, E2, and 4-HT. Environmentally-relevant concentrations of TPHP significantly increased VIT-2 transcription and protein expression levels in C. elegans during early pregnancy, similar to the effects observed with E2. However, during peak pregnancy, TPHP exposure led to abnormal accumulation of VIT-2, primarily due to an increase in the Gibbs Free Energy of the VIT-2_RME-2 complex, which reduced their affinity and subsequently impaired the normal transport of VIT-2. These findings provide novel insights into the toxic mechanisms of TPHP in oviparous animals, highlighting its broader environmental impacts and emphasizing the urgency for further research and regulatory actions to mitigate its risks.
Collapse
Affiliation(s)
- Chongli Shi
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Mengyan Huang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yang Zheng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chen Wang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Susu Wang
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lingjun Zeng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Peng
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yu Li
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haibin Hao
- Department of Critical Care Medicine, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Haibo Chen
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Center for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, Ctra Sacramento s/n, Almería 04120, Spain
| | - Hui Li
- Institute of Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Hansel MC, Lubina KA, Roepke TA, Ohman-Strickland P, Kannan K, Wang C, Miller RK, O'Connor TG, Rivera-Núñez Z, Barrett ES. Maternal organophosphate esters and sex steroid hormones in mid-pregnancy. ENVIRONMENTAL RESEARCH 2025; 271:121063. [PMID: 39922261 PMCID: PMC11959487 DOI: 10.1016/j.envres.2025.121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/23/2024] [Accepted: 02/05/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND/AIMS Organophosphate esters (OPEs) are synthetic chemicals used in consumer products as flame retardants and plasticizers. OPEs are potential endocrine disruptors, but little is known regarding gestational OPE exposure and maternal sex steroid hormones in human pregnancy. METHODS Understanding Pregnancy Signals and Infant Development (UPSIDE) cohort participants (n=265) provided biospecimens and completed questionnaires in each trimester. In second trimester samples, we measured urinary OPE metabolite concentrations using HPLC-MS/MS. In second and third trimester serum samples, we measured sex steroids (total testosterone [TT], free testosterone, estrone [E1], estradiol [E2], and estriol [E3]) using LC-MS/MS. We fitted linear regression and linear mixed models examining each log-transformed, specific gravity-adjusted OPE metabolite in relation to sex steroid concentrations, adjusting for covariates. Three OPEs with >70% detection were considered continuously; six less prevalent metabolites were dichotomized (above vs below lower limit of detection). Secondary models were fit for male and female fetuses, separately. Results are shown as % difference in hormone levels. RESULTS Percent detection of OPEs ranged from 26% to 100%. Diphenyl phosphate (DPHP) had the highest concentration (median 0.9 ng/mL). Across trimesters 2 and 3, a log-unit increase in dibutyl phosphate/di-isobutyl phosphate (DBUP/DIBP) was associated with lower TT (%Δ = -6.6, 95%CI: 11.5, -1.5), E1 (%Δ = -5.6, 95%CI: 10.8, -0.1), and E2 (%Δ = -5.3, 95%CI: 8.2, -2.3). Compared to those with non-detectable levels, participants with detectable bis(methylphenyl) phosphate (BMPP) had lower E3 (%Δ = -45.9, 95%CI: 67.9, -8.9) and participants with detectable bis(2-chloroethyl) phosphate (BCETP) had lower E2 (%Δ = -1.4, 95%CI: 2.4, -0.4). Numerous associations were observed in trimesters 2 and 3, individually. We observed several differences by fetal sex that varied in magnitude and direction. CONCLUSION OPEs may act as endocrine disruptors by altering maternal sex steroid hormones during pregnancy, with some differences by fetal sex. Further research is needed to understand implications for maternal and child health.
Collapse
Affiliation(s)
- Megan C Hansel
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Katherine A Lubina
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental & Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Pamela Ohman-Strickland
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
| | | | - Christina Wang
- Clinical and Translational Science Institute, The Lundquist Institute at Harbor -UCLA Medical Center, Torrance, CA, USA
| | - Richard K Miller
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas G O'Connor
- Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Departments of Psychiatry, Psychology, Neuroscience, University of Rochester, NY, USA
| | - Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA; Department of Obstetrics and Gynecology, University of Rochester Medical Center, Rochester, NY, USA; Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
3
|
Du Z, Chen D, Du X, Chen G, Chen T, Zheng W. Identification of the associations between co-exposure to organophosphate flame retardants and thyroid dysfunction and exposure risk factors in residents of Shanghai, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125911. [PMID: 40010591 DOI: 10.1016/j.envpol.2025.125911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Toxicological studies indicate that organophosphate flame retardants (OPFRs) may cause thyroid dysfunction. However, population epidemiologic evidence is still limited and little is known about the effects of mixed exposures to OPFRs. This study included 436 community residents from Shanghai, China. We measured the levels of 9 OPFRs in 3 categories and 5 commonly used thyroid function indicators (TFIs) in serum samples from all participants. Multiple linear regression and restricted cubic spline model were used to examine the association between exposure to individual OPFRs and TFIs. Weighted quantile sum regression and Bayesian kernel-machine regression models were used to elucidate the joint impact of mixed OPFRs on thyroid function and the dose-response relationship. Machine learning combined with the SHapley Additive exPlanations algorithm identified important risk factors for exposure to OPFRs in the population. The results indicated that the residents were generally exposed to OPFRs. Exposure to either single or mixed OPFRs was significantly associated with TFI levels, particularly free thyroxine (FT4) and free triiodothyronine (FT3). Tri-n-butyl-phosphate (TBP), Tris-2-butoxy ethyl-phosphate (TBEP), and Tris-2-chloroethyl-phosphate (TCEP) were major contributors to the co-exposure effect. The dose-response relationship further revealed the trend in the impact of OPFRs on thyroid function. Education, occupation, age, body mass index, personal annual income, indoor time, and mollusk intake are noteworthy risk characteristics for population exposure to OPFRs. These findings suggest that OPFRs are environmental drivers of thyroid dysfunction in humans and provide clues for further risk management.
Collapse
Affiliation(s)
- Zhiyuan Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Donghua Chen
- Department of Prevention & Healthcare, Community Health Service Center of Waigang Town, Jiading District, Shanghai, 201806, China
| | - Xiushuai Du
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Guanghua Chen
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China
| | - Tian Chen
- Department of Environmental Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China; State Environmental Protection Key Laboratory of the Assessment of Effects of Emerging Pollutants on Environmental and Human Health, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, 200336, China.
| | - Weiwei Zheng
- Key Laboratory of the Public Health Safety, Ministry of Education, Department of Environmental Health, School of Public Health, Fudan University, Shanghai, 200032, China; Center for Water and Health, School of Public Health, Fudan University, Shanghai, 200032, China; Key Laboratory of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
4
|
Bradford YM, Van Slyke CE, Muyskens JB, Tseng WC, Howe DG, Fashena D, Martin R, Paddock H, Pich C, Ramachandran S, Ruzicka L, Singer A, Taylor R, Westerfield M. ZFIN updates to support zebrafish environmental exposure data. Genetics 2025; 229:iyaf021. [PMID: 39903545 PMCID: PMC11912870 DOI: 10.1093/genetics/iyaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/06/2025] Open
Abstract
The Zebrafish Information Network (ZFIN, zfin.org) is the database resource for genetic, genomic, and phenotypic data from research using zebrafish, Danio rerio. ZFIN curates information about genetic perturbations, gene expression, phenotype, gene function, and human disease models from zebrafish research publications and makes these data available to researchers worldwide. Over the past 20 years, zebrafish have increasingly been used to investigate the effects of environmental exposures, becoming an ideal model to study toxicity, phenotypic outcomes, and gene-chemical interactions. Despite this, database resources supporting zebrafish toxicology and environmental exposure research are limited. To fill this gap, ZFIN has expanded functionality to incorporate and convey toxicology data better. ZFIN annotations for gene expression, phenotype, and human disease models include information about genotypes and experimental conditions used. One type of experimental condition the database captures is the application of chemicals to zebrafish. ZFIN annotates chemicals using the Chemical Entities of Biological Interest Ontology (ChEBI) along with the Zebrafish Experimental Conditions Ontology (ZECO) to denote route of exposure and other experimental conditions. These features allow researchers to search phenotypes and human disease models linked to chemicals more efficiently. Here, we discuss how experimental conditions are displayed on ZFIN web pages, the data displayed on chemical term pages, and how to search and download data associated with chemical exposure experiments.
Collapse
Affiliation(s)
- Yvonne M Bradford
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Ceri E Van Slyke
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Jonathan B Muyskens
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Wei-Chia Tseng
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Douglas G Howe
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - David Fashena
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Ryan Martin
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Holly Paddock
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Christian Pich
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Sridhar Ramachandran
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Leyla Ruzicka
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Amy Singer
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Ryan Taylor
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| | - Monte Westerfield
- The Institute of Neuroscience, University of Oregon, 5291 University of Oregon, Eugene, OR 97403-5291, USA
| |
Collapse
|
5
|
Lian H, Li J, Miao M, Chen Y, Liang H, Chen J, Luan M, Yuan W, Liu Y, Wang Z. Associations of gestational exposure to organophosphate esters with thyroid hormones in cord plasma and the safety threshold of exposure in pregnant women. ENVIRONMENTAL RESEARCH 2025; 267:120639. [PMID: 39701348 DOI: 10.1016/j.envres.2024.120639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND As a class of synthetic chemicals, organophosphate esters (OPEs) were shown to have thyroid hormones (THs) disrupting potentials in animal studies, while epidemiological evidence on gestational exposure to OPEs and thyroid disruption is limited. Besides, assessment on the safety threshold of OPEs exposure during gestation is especially scarce. METHODS Based on the Shanghai Minhang Birth Cohort Study, we measured maternal urine concentration of 8 OPE metabolites and THs levels in cord plasma and examined their associations using multiple linear regression and quantile g-computation (QGC) models. The benchmark dose (BMD) and its lower limit (BMDL) of urine OPE metabolites concentrations were further estimated via the Bayesian Benchmark Dose Analysis System (BBMD) to reflect the safety threshold of exposure in pregnant women. The corresponding daily intake (DI) of BMDL was then calculated and compared with the current oral reference dose (RfD). RESULTS A total of 309 mother-newborn pairs were included in this study. Gestational bis (2-butoxyethyl) phosphate (BBOEP) exposure was associated with higher total triiodothyronine (TT3), free triiodothyronine (FT3), total thyroxine (TT4), and free thyroxine (FT4) in cord plasma, while bis(1,3-dichloro-2-propyl) phosphate (BDCPP) was observed to be associated with lower TT3 and FT3/FT4 but higher thyroid stimulating hormone (TSH). In addition, sex-specific effects were observed for bis (2-chloroethyl) phosphate (BCEP), which was associated with lower TT3 in cord plasma of female newborns, and lower TT4 and FT4 in male newborns. Similar results were obtained through QGC model and BBOEP was identified as the main contributor to the higher levels of TT3 and FT3. With benchmark response (BMR) of 10% and background response (P0) of 97.5% for both TT3 and FT3, the BMDL10 of urine BBOEP concentration was 0.50 μg/L. Further, the corresponding DI of tris (2-butoxyethyl) phosphate (TBOEP), which is the precursor of BBOEP, was 2.53 μg/kg BW/d. CONCLUSIONS Our findings suggest associations between gestational exposure to OPEs and altered THs biomarkers. According to the estimated BMD10 (BMDL10) of BBOEP and the corresponding DI, the current RfD of 15 μg/kg BW/d for TBOEP may not protect pregnant women and their newborns from thyroid disruption.
Collapse
Affiliation(s)
- Hongchao Lian
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Jiong Li
- Department of Epidemiology, School of Public Health, Nanjing Medical University, 211166, Nanjing, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yao Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Jiaxian Chen
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Public Health, Fudan University, Shanghai, 200237, China
| | - Min Luan
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China
| | - Yinan Liu
- Minhang Maternal and Child Health Hospital, Shanghai, 201100, China.
| | - Ziliang Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 200237, China.
| |
Collapse
|
6
|
Jia T, Liu W, Keller AA, Gao L, Xu X, Wu W, Wang X, Yu Y, Zhao G, Li B, Deng J, Mao T, Chen C. Potential impact of organophosphate esters on thyroid eye disease based on machine learning and molecular docking. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177835. [PMID: 39631328 DOI: 10.1016/j.scitotenv.2024.177835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/07/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in daily commodities and building materials. Some OPEs, acting as agonists of the thyroid-stimulating hormone receptor (TSHR), may contribute to the development of thyroid eye disease (TED). This study analyzes the serum and urine of patients and control groups, using machine learning and molecular docking to investigate the potential impact of OPEs on TED. Results indicate significantly higher concentrations of OPEs and di-OPEs of TED patients compared to controls (Mann-Whitney U test, p < 0.05). Aryl OPEs exhibit the strongest binding affinity with TSHR. We developed a predictive model for OPE-TSHR affinity to explore the impact of OPE structural features on TSHR activity and effectively capture the complex relationships between changes in OPE side chains and their effects on TSHR. Predictions from the USEPA's database indicate that 28 % of 1011 OPEs have a tendency to bind with TSHR. Furthermore, a high-accuracy classification model successfully identified key substructures associated with high affinity for TSHR. This study not only enhances our understanding of the complex relationship between the structural diversity of OPEs and their thyroid impact but also offers molecular design insights to prevent releasing OPEs with high thyroid harm potential into the environment.
Collapse
Affiliation(s)
- Tianqi Jia
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
| | - Wenbin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China..
| | - Arturo A Keller
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA.
| | - Lirong Gao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaotian Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wenqi Wu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xiaoxia Wang
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yang Yu
- Department of Endocrinology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guang Zhao
- Department of Clinical Laboratory, 989th Hospital of the Joint Logistic Support Force of the PLA, Luoyang 471031, China
| | - Baohui Li
- Department of Clinical Laboratory, 989th Hospital of the Joint Logistic Support Force of the PLA, Luoyang 471031, China
| | - Jinglin Deng
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Tianao Mao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chunci Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
7
|
Zhang Q, Yang L, Wang H, Wu C, Cao R, Zhao M, Su G, Wang C. A comprehensive evaluation of the endocrine-disrupting effects of emerging organophosphate esters. ENVIRONMENT INTERNATIONAL 2024; 193:109120. [PMID: 39500118 DOI: 10.1016/j.envint.2024.109120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The ubiquitous presence of organophosphate esters (OPEs) in the environment has prompted growing concerns about their potential health risks, particularly their endocrine-disrupting effects. This study comprehensively evaluated the endocrine-disrupting properties of six emerging OPEs: five aryl-OPEs (2-ethylhexyl diphenyl phosphate (EHDPP), tris (2-biphenylyl) phosphate (TBPP), resorcinol bis (diphenyl phosphate) (RDP), 4-hydroxyphenyl diphenyl phosphate (para-OH-TPHP), and 3-hydroxyphenyl diphenyl phosphate (meta-OH-TPHP) and one alkyl-OPE, triallyl phosphate (TAP). Our findings revealed that all tested aryl-OPEs exhibited antagonistic effects on one or more hormone receptors. Importantly, para-OH-TPHP demonstrated the most potent antagonistic activity, inhibiting estrogen receptor α (ERα), thyroid hormone receptor β (TRβ), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) with the concentration of test compounds showing 20 % relative inhibitory concentration (RIC20) value below 10-6 mol/L (M). RDP antagonized ERα and cortical receptors (GR and MR), TBPP affected TRβ and GR, while EHDPP and meta-OH-TPHP targeted MR. Regarding steroidogenesis, para-OH-TPHP significantly inhibited genes for estrogen (cyp19) and cortisol synthesis (cyp11b2), and along with meta-OH-TPHP, EHDPP, TAP, and RDP downregulated cyp11a1, a rate-limiting enzyme in hormone synthesis. All compounds caused malformations and swimming abnormalities in zebrafish embryos/larvae at concentrations of 10-7 M or higher, with para-OH-TPHP showing nearly 50 % peak induction. Furthermore, the six compounds tested influenced genes associated with the hypothalamic-pituitary-gonadal (HPG) axis in both zebrafish larvae and adult female zebrafish, in addition to affecting the reproductive behavior of zebrafish. A weighted scoring system was employed to rank the endocrine-disrupting potency of the OPEs, with para-OH-TPHP exhibiting the highest risk, followed by EHDPP, RDP, TBPP, meta-OH-TPHP, and TAP. Collectively, our results highlight the significant endocrine-disrupting effects of emerging OPEs, underscoring the urgent need for further research to assess their potential health implications.
Collapse
Affiliation(s)
- Quan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Liuqing Yang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Huiyun Wang
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Chengwang Wu
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Rui Cao
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Meirong Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Cui Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China.
| |
Collapse
|
8
|
Li H, Tong J, Wang X, Lu M, Yang F, Gao H, Gan H, Yan S, Gao G, Huang K, Cao Y, Tao F. Associations of prenatal exposure to individual and mixed organophosphate esters with ADHD symptom trajectories in preschool children: The modifying effects of maternal Vitamin D. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135541. [PMID: 39154480 DOI: 10.1016/j.jhazmat.2024.135541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/31/2024] [Accepted: 08/14/2024] [Indexed: 08/20/2024]
Abstract
BACKGROUND Organophosphate esters (OPEs) are a class of environmental chemicals with endocrine-disrupting properties. Epidemiologic studies have demonstrated that prenatal OPEs exposure is associated with neurodevelopmental disorders in offspring. However, studies assessing the effects of prenatal OPEs exposure on the dynamic changes in attention deficit hyperactivity disorder (ADHD) symptoms in preschoolers are scarce. Since vitamin D has been demonstrated to have a "neuroprotective" effect, the modifying effects of maternal vitamin D were estimated. METHODS The present study included 2410 pregnant women from the Ma'anshan Birth Cohort. The levels of OPEs in the mothers' urine were examined in the three trimesters. The Chinese version of the Conners Abbreviated Symptom Questionnaire was used to examine preschoolers' ADHD symptoms at 3, 5, and 6 years of age. ADHD symptom trajectories were fitted via group-based trajectory modeling. We used multinomial logistic regression, Bayesian kernel machine regression, quantile-based g-computation, and generalized linear models to assess individual and mixed relationships between OPEs during pregnancy and preschoolers' ADHD symptoms and trajectories. RESULTS Preschoolers' ADHD symptom scores were fitted to 3 trajectories, including the low-score, moderate-score, and high-score groups. First-trimester dibutyl phosphate (DBP), second-trimester bis(2-butoxyethyl) phosphate (BBOEP), and third-trimester diphenyl phosphate (DPHP) were associated with an increased risk in the high-score group (p < 0.05). BBOEP in the third trimester was associated with decreased risk in the moderate-score group (OR = 0.89, 95% CI: 0.79, 1.00). For mothers with 25(OH)D deficiency, a positive relationship was observed between OPEs during pregnancy and symptom trajectories. Our results did not reveal any mixed effects of OPEs on ADHD symptom trajectories. CONCLUSION Prenatal exposure to OPEs had heterogeneous associations with ADHD symptom trajectories in preschoolers. Additionally, the effect of individual OPEs on symptom trajectories was intensified by vitamin D deficiency.
Collapse
Affiliation(s)
- Han Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Juan Tong
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China
| | - Xing Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Mengjuan Lu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China
| | - Fengyu Yang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hui Gao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China; Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China
| | - Shuangqin Yan
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan 243011, Anhui, China
| | - Guopeng Gao
- Ma'anshan Maternal and Child Health Care Hospital, Ma'anshan 243011, Anhui, China
| | - Kun Huang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China; National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Hefei 230032, Anhui, China; National Health Commission Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
9
|
Liu C, Yang J, Guan L, Jing L, Xiao S, Sun L, Xu B, Zhao H. Intersection of Aging and Particulate Matter 2.5 Exposure in Real World: Effects on Inflammation and Endocrine Axis Activities in Rats. Int J Endocrinol 2024; 2024:8501696. [PMID: 38966821 PMCID: PMC11223905 DOI: 10.1155/2024/8501696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/13/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Exposure to particulate matter 2.5 (PM2.5) is detrimental to multiple organ systems. Given the factor that aging also alters the cellularity and response of immune system and dysfunction of hypothalamic-pituitary-adrenal, -gonad and -thyroid axes, it is imperative to investigate whether chronic exposure to PM2.5 interacts with aging in these aspects. In this study, two-months-old Sprague-Dawley rats were exposed to real world PM2.5 for 16 months. PM2.5 exposure diminished the relative numbers of CD4+ T cells and CD8+ T cells and increased the relative number of B cells in the peripheral blood of male rats. Conversely, only reduced relative number of CD4+ T cells was seen in the blood of female rats. These shifts resulted in elevated levels of proinflammatory factors interleukin-6 and tumor necrosis factor-α in the circulatory systems of both sex, with females also evidencing a rise in interleukin-1β levels. Moreover, heightened interleukin-6 was solely discernible in the hippocampus of female subjects, while increased tumor necrosis factor-α concentrations were widespread in female brain regions but confined to the male hypothalamus. Notable hormonal decreases were observed following PM2.5 exposure in both sex. These comprised declines in biomolecules such as corticotrophin-releasing hormone and cortisol, generated by the hypothalamic-pituitary-adrenal axis, and thyroid-releasing hormone and triiodothyronine, produced by the hypothalamic-pituitary-thyroid axis. Hormonal elements such as gonadotropin-releasing hormone, luteinizing hormone, and follicle-stimulating hormone, derived from the hypothalamic-pituitary-gonad axis, were also diminished. Exclusive to male rats was a reduction in adrenocorticotropic hormone levels, whereas a fall in thyroid-stimulating hormone was unique to female rats. Decreases in sex-specific hormones, including testosterone, estradiol, and progesterone, were also noted. These findings significantly enrich our comprehension of the potential long-term health repercussions associated with PM2.5 interaction particularly among the aging populace.
Collapse
Affiliation(s)
- Cuiying Liu
- School of Nursing, Capital Medical University, Beijing, China
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jian Yang
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Longfei Guan
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Liwei Jing
- School of Nursing, Capital Medical University, Beijing, China
| | - Shuqin Xiao
- School of Nursing, Capital Medical University, Beijing, China
| | - Liu Sun
- School of Nursing, Capital Medical University, Beijing, China
| | - Baohui Xu
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heng Zhao
- Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Zhou Y, Zhang L, Wang P, Li Q, Li J, Wang H, Gui Y, Liu Y, Sui X, Li J, Shi H, Zhang Y. Prenatal organophosphate esters exposure and neurodevelopment trajectory in infancy: Evidence from the Shanghai Maternal-Child Pairs Cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172366. [PMID: 38614325 DOI: 10.1016/j.scitotenv.2024.172366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Concerns remain about the neurotoxic properties of the ubiquitous organophosphate esters (OPEs), the replacement of the toxicant polybrominated diphenyl ethers. OBJECTIVES We examined the associations of prenatal exposure to OPEs and their mixtures with early-life neurodevelopment trajectories. METHODS Totally 1276 mother-child pairs were recruited from the Shanghai Maternal-Child Pairs Cohort. A high-performance liquid chromatography-triple quadrupole mass spectrometer was used to measure the levels of 7 OPEs in cord serum. Ages and Stages Questionnaires was used to examine children's neuropsychological development at 2, 6, 12, and 24 months of age. Group-based trajectory models were applied to derive the neurodevelopmental trajectories. Multiple linear regression and logistic regression model were performed to assess the relationships between OPEs exposure and neurodevelopment and trajectories. Mixtures for widely detected OPEs (n = 4) were investigated using quantile-based g-computation. RESULTS Tributyl phosphate (TBP), tris (2-butoxy ethyl) phosphate (TBEP), tris(1,3-dichloro-2-propyl) phosphate (TDCPP), and 2-ethylhexyl diphenyl phosphate (EHDPP), had detection rates >50 %. TDCPP had the highest median concentration (1.02 μg/L) in cord serum. EHDPP concentrations were negatively associated with scores in most domains at 12 months of age, with effect values (β) ranging from -1.89 to -0.57. EHDPP could negatively affect the total ASQ (OR = 1.07, 95 % CI: 1, 1.15) and gross-motor (OR = 1.09, 95 % CI: 1.02, 1.17) trajectory in infancy. Joint exposure to OPEs was associated with decreased scores in the total ASQ, gross-motor, fine-motor and problem-solving domain of 12-month-old infants, with β ranging from -5.93 to -1.25. In addition, the qgcomp models indicated significant positive associations between the concentrations of OPEs mixtures and risks of the persistently low group of the total ASQ, gross-motor and fine-motor development in early childhood. The impact of OPEs was more pronounced in boys. DISCUSSION Our findings suggested OPEs, especially EHDPP, had a persistently negative effect on neurodevelopment during the first 2 years.
Collapse
Affiliation(s)
- Yuhan Zhou
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Liyi Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Pengpeng Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Qiang Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Putuo District Center for Disease Control & Prevention, Shanghai 200333, China
| | - Jinhong Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Hang Wang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yuyan Gui
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Yang Liu
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Xinyao Sui
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Jiufeng Li
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China
| | - Huijing Shi
- Key Laboratory of Public Health Safety, Ministry of Education, Department of Maternal, Child and Adolescent Health, School of Public Health, Fudan University, Shanghai, China
| | - Yunhui Zhang
- Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, Shanghai 200032, China; Key Laboratory of Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai 200032, China.
| |
Collapse
|
11
|
Chen Y, Liu Q, Wang Y, Jiang M, Zhang J, Liu Y, Lu X, Tang H, Liu X. Triphenyl phosphate interferes with the synthesis of steroid hormones through the PPARγ/CD36 pathway in human trophoblast JEG-3 cells. ENVIRONMENTAL TOXICOLOGY 2024; 39:3400-3409. [PMID: 38450882 DOI: 10.1002/tox.24186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 11/02/2023] [Accepted: 02/18/2024] [Indexed: 03/08/2024]
Abstract
Triphenyl phosphate (TPhP), a chemical commonly found in human placenta and breast milk, has been shown to disturb the endocrine system. Our previous study confirmed that TPhP could accumulate in the placenta and interference with placental lipid metabolism and steroid hormone synthesis, as well as induce endoplasmic reticulum (ER) stress through PPARγ in human placental trophoblast JEG-3 cells. However, the molecular mechanism underlying this disruption remains unknown. Our study aimed to identify the role of the PPARγ/CD36 pathway in TPhP-induced steroid hormone disruption. We found that TPhP increased lipid accumulation, total cholesterol, low- and high-density protein cholesterol, progesterone, estradiol, glucocorticoid, and aldosterone levels, and genes related to steroid hormones synthesis, including 3βHSD1, 17βHSD1, CYP11A, CYP19, and CYP21. These effects were largely blocked by co-exposure with either a PPARγ antagonist GW9662 or knockdown of CD36 using siRNA (siCD36). Furthermore, an ER stress inhibitor 4-PBA attenuated the effect of TPhP on progesterone and glucocorticoid levels, and siCD36 reduced ER stress-related protein levels induced by TPhP, including BiP, PERK, and CHOP. These findings suggest that ER stress may also play a role in the disruption of steroid hormone synthesis by TPhP. As our study has shed light on the PPARγ/CD36 pathway's involvement in the disturbance of steroid hormone biosynthesis by TPhP in the JEG-3 cells, further investigations of the potential impacts on the placental function and following birth outcome are warranted.
Collapse
Affiliation(s)
- Yuting Chen
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Qian Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yao Wang
- Dazhou Center Hospital, Dazhou, China
| | - Mengzhu Jiang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Jing Zhang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Yuguo Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoxun Lu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Xiaoshan Liu
- Dongguan Key Laboratory of Environmental Medicine, The First Dongguan Affiliated Hospital, School of Public Health, Guangdong Medical University, Dongguan, China
| |
Collapse
|
12
|
Qadeer A, Anis M, Warner GR, Potts C, Giovanoulis G, Nasr S, Archundia D, Zhang Q, Ajmal Z, Tweedale AC, Kun W, Wang P, Haoyu R, Jiang X, Shuhang W. Global Environmental and Toxicological Data of Emerging Plasticizers: Current Knowledge, Regrettable Substitution Dilemma, Green Solution and Future Perspectives. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2024; 26:5635-5683. [PMID: 39553194 PMCID: PMC11566117 DOI: 10.1039/d3gc03428c] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The global plasticizer market is projected to increase from $17 billion in 2022 to $22.5 billion in 2027. Various emerging/alternative plasticizers entered the market following the ban on several phthalate plasticizers because of their harmful effects. However, there is limited data (especially peer-reviewed) on emerging plasticizers' toxicity and environmental impact. This review compiles available data on toxicity, exposure, environmental effects, and safe production of emerging plasticizers. It identifies gaps in scientific research and provides evidence that emerging plasticizers are potential cases of regrettable substitution. Several alternative plasticizers, such as acetyl tributyl citrate (ATBC), diisononyl cyclohexane-1,2 dicarboxylate (DINCH), tris-2-ethylhexyl phosphate (TEHP), tricresyl phosphate (TCP), tris-2-ethylhexyl phosphate (TPHP), bis-2-ethylhexyl terephthalate (DEHT), and tris-2-ethylhexyl trimellitate (TOTM), show potential as endocrine disrupting properties and other toxic characteristics. Some chemicals like bis-2-ethylhexyl adipate (DEHA), diisobutyl adipate (DIBA), ATBC, DINCH, bis-2-ethylhexyl sebacate (DOS), diethylene glycol dibenzoate (DEGDB), DEHT, and phosphate esters showed the potential to cause toxicity in aquatic species. Plus, there is great lack of information on compounds like diisononyl adipate (DINA), dibutyl adipate (DBA), diisodecyl adipate (DIDA), dipropylene glycol dibenzoate (DPGDB), dibutyl sebacate (DBS), alkylsulfonic phenyl ester (ASE), trimethyl pentanyl diisobutyrate (TXIB), DEGDB and bis-2-ethylhexyl sebacate (DOS). Some compounds like epoxidized soybean oil (ESBO), castor-oil-mono-hydrogenated acetate (COMGHA), and glycerin triacetate (GTA) are potentially safer or less toxic. Alternative plasticizers such as adipates (LogKow 4.3-10.1), cyclohexane dicarboxylic acids (LogKow 10), phosphate esters (LogKow 2.7-9.5), sebacates (LogKow 6.3-10.1), terephthalates (LogKow 8.4), and vegetable oil derivatives (LogKow 6.4-14.8) have logKow values that are comparable to phthalate plasticizers (LogKow 7.5-10.4), indicating potential bioaccumulation and health consequences. Field studies have demonstrated that phosphate esters can undergo bioaccumulation and biomagnification, but there is a lack of bioaccumulation studies for other compounds. We also discuss the metabolism of emerging plasticizers, though data is limited. Our article highlights that numerous alternative compounds display potential health and ecological risks, indicating they might not be suitable substitutes for legacy plasticizers. There is also a lack of scientific data on most emerging plasticizers. This way, we call for increased research and timely regulatory action to prevent global contamination and health risks. Finally, this study presents a scientifically robust protocol to avoid harmful substitutions and ensure the production of safer chemicals.
Collapse
Affiliation(s)
- Abdul Qadeer
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
- Alpha Planet Institute, Global Environmental and Climate Lab, Beijing, China
- O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, 47405, United States
| | - Muhammad Anis
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
- Alpha Planet Institute, Global Environmental and Climate Lab, Beijing, China
| | - Genoa R. Warner
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Courtney Potts
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | | | - Samia Nasr
- Chemistry Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Qinghuan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Zeeshan Ajmal
- College of Chemistry and Material Science, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
- Alpha Planet Institute, Global Environmental and Climate Lab, Beijing, China
| | - Anthony C. Tweedale
- R.I.S.K. Consultancy (Rebutting Industry Science with Knowledge), Brussels, Belgium
| | - Wang Kun
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Pengfei Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Ren Haoyu
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Xia Jiang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| | - Wang Shuhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Science, Beijing, China
| |
Collapse
|
13
|
Hernandez-Castro I, Eckel SP, Chen X, Yang T, Vigil MJ, Foley HB, Kannan K, Robinson M, Grubbs B, Lerner D, Lurvey N, Al-Marayati L, Habre R, Dunton GF, Farzan SF, Aung MT, Breton CV, Bastain TM. Prenatal exposures to organophosphate ester metabolites and early motor development in the MADRES cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123131. [PMID: 38092343 PMCID: PMC10872268 DOI: 10.1016/j.envpol.2023.123131] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Organophosphate esters (OPEs) are increasingly considered neurotoxicants which may impact gross and fine motor development. We evaluated associations between prenatal OPE exposures and infant motor development. Third trimester urinary concentrations of nine OPE metabolites were measured in 329 mother-infant dyads participating in the Maternal And Developmental Risks from Environmental and Social Stressors (MADRES) cohort. Child gross and fine motor development at 6, 9, 12, and 18-months were assessed with the Ages and Stages Questionnaire-3 (ASQ-3) and operationalized in models using dichotomous instrument-specific cutoffs for typical motor development. Five OPE metabolites with >60% detection were specific-gravity-adjusted, natural log-transformed, and modeled continuously, while four metabolites with <60% detection were modeled dichotomously (detected/not-detected). We fit mixed effects logistic regression between OPE metabolites and fine/gross motor development and assessed sex-specific effects using a statistical interaction term and sex-stratified models. Among children, 31% and 23% had gross and fine motor scores, respectively, below the ASQ-3 at-risk cutoffs at least once across infancy. A doubling in prenatal diphenyl phosphate (DPHP) exposure was associated with 26% increased odds of potential fine motor delays (ORfine = 1.26, 95% CI: 1.02, 1.57, p = 0.04). We also observed significant interactions by infant sex for associations of detected dipropyl phosphate (DPRP) with gross motor development (pinteraction = 0.048) and detected bis(1-chloro-2-propyl) phosphate (BCIPP) with fine motor development (pinteraction = 0.02). Females had greater odds of potential motor delays for both detected DPRP (females vs males ORgross (95% CI) = 1.48 (0.71, 3.09), p = 0.30 vs 0.27 (0.06, 1.29), p = 0.10) and detected BCIPP (females vs males ORfine (95% CI) = 2.72 (1.27, 5.85), p = 0.01 vs 0.76 (0.31, 1.90), p = 0.56). There were no other significant associations between other metabolites and motor development, despite similar patterns. We found evidence of adverse effects of prenatal OPE exposures on infant motor development with greater adverse effects among female infants with some OPE metabolites.
Collapse
Affiliation(s)
- Ixel Hernandez-Castro
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xinci Chen
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tingyu Yang
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mario J Vigil
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helen B Foley
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Morgan Robinson
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Brendan Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Laila Al-Marayati
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Genevieve F Dunton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carrie V Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Yan Q, Xiao Z, Zhang X, Wang G, Zhong C, Qiu D, Huang S, Zheng L, Gao Z. Association of organophosphate flame retardants with all-cause and cause-specific mortality among adults aged 40 years and older. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115690. [PMID: 37976933 DOI: 10.1016/j.ecoenv.2023.115690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/09/2023] [Accepted: 11/11/2023] [Indexed: 11/19/2023]
Abstract
The longitudinal associations of urinary concentrations of diphenyl phosphate (DPHP), bis(2-chloroethyl) phosphate (BCEP), and bis(1,3-dichloro-2-propyl) phosphate (BDCPP) with all-cause, cardiovascular, and cancer mortality in a population of adults aged 40 years and older are still unclear. A total of 3238 participants were included in this cohort study. Urinary BCEP levels were positively associated with all-cause mortality and cardiovascular mortality. Specifically, a logarithmic increase in BCEP concentration was related to a 26 % higher risk of all-cause mortality and a 32 % higher risk of cardiovascular mortality. No significant associations were observed for DPHP and BDCPP in relation to mortality. Doseresponse analysis confirmed the linear associations of BCEP with all-cause and cardiovascular mortality and the nonlinear inverted U-shaped association between DPHP exposure and all-cause mortality. Notably, the economic burden associated with BCEP exposure was estimated, and it was shown that concentrations in the third tertile of BCEP exposure incurred approximately 507 billion dollars of financial burden for all-cause mortality and approximately 717 billion dollars for cardiovascular mortality. These results highlight the importance of addressing exposure to BCEP and its potential health impacts on the population. More research is warranted to explore the underlying mechanisms and develop strategies for reducing exposure to this harmful chemical.
Collapse
Affiliation(s)
- Qing Yan
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Zhihao Xiao
- School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Xianli Zhang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Gang Wang
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chunyu Zhong
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Dezhi Qiu
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Songming Huang
- Department of Nephrology, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Lei Zheng
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| | - Zhe Gao
- Department of Neurosurgery, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.
| |
Collapse
|
15
|
Xie Y, Zhang Q, Chen L, Li F, Li M, Guo LH. Emerging organophosphate ester resorcinol bis(diphenyl phosphate) exerts estrogenic effects via estrogen receptor pathways. Toxicology 2023; 499:153649. [PMID: 37827210 DOI: 10.1016/j.tox.2023.153649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Environmental occurrence and human exposure of emerging organophosphate esters (eOPEs) have increased significantly in recent years. Resorcinol bis(diphenyl) phosphate (RDP) is one of the major eOPEs detected in indoor dust, but the knowledge on its toxicities and health risks is rather limited. In this study, we investigated the in vitro estrogenic effects and underlying mechanism of RDP in comparison with a legacy OPE triphenyl phosphate (TPHP). Our results showed that RDP promoted MCF-7 cell proliferation with the lowest effect concentration of 2.5 μM, and the maximum enhancement of 1.6 folds is greater than that of TPHP (1.3 folds). The effect was inhibited completely by an estrogen receptor (ER) antagonist, suggesting that ER activation was responsible for the enhancement. In luciferase reporter gene assays both RDP and TPHP activated ER transcriptional activity at 2.5 μM, but RDP activity was higher than TPHP. Competitive fluorescence binding assays showed that RDP bound to ER with an IC10 of 0.26 μM, which is 20 folds lower than TPHP (5.6 μM). Molecular docking simulation revealed that both RDP and TPHP interacted with ER at the binding pocket of estradiol, although the hydrogen bonds were different. Taken together, RDP exerted stronger estrogenic effects than TPHP through ER-mediated pathways and may pose more health risks.
Collapse
Affiliation(s)
- Yue Xie
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Qi Zhang
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Lu Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Fangfang Li
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China
| | - Minjie Li
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, 168 Xueyuan Street, Hangzhou, Zhejiang 310018, China; College of Quality and Safety Engineering, China Jiliang University, 258 Xueyuan Street, Hangzhou, Zhejiang 310018, China.
| |
Collapse
|
16
|
Sun J, Liu Q, Zhang R, Xing L. Organophosphate esters in rural wastewater along the Yangtze river Basin: Occurrence, removal efficiency and environmental implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118830. [PMID: 37591091 DOI: 10.1016/j.jenvman.2023.118830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
Organophosphate esters (OPEs) discharged from rural domestic wastewater were one of the important sources of OPEs in receiving water bodies, which has posed a potential threat to the ecological environment. However, very little information on the characteristics of OPEs in the rural domestic wastewater is available. Herein, the occurrence, removal efficiency and environmental implication of OPEs in rural domestic wastewater treatment facilities (RD-WWTFs) along the Yangtze River Basin were investigated. Results indicated that the median concentrations of ΣAlkyl-OPEs, ΣHalogenated-OPEs, ΣAryl-OPEs and the total OPE (ΣOPEs) in influents were 28.28, 99.25, 10.22 and 136.84 ng/L, while the median concentrations of them in effluents were 25.80, 141.86, 7.98 and 173.31 ng/L, respectively. Undoubtedly, halogenated OPEs were the most abundant in both influent and effluent, followed by alkyl and aryl OPEs, and they accounted for average proportions of 69.50%, 19.96%and 10.54% for influents, and 78.16%, 16.14%and 5.71% for effluents, respectively. Specifically, tris(2-chloroisopropyl) phosphate (TCPP, median: 55.17 ng/L in influents and 85.75 ng/L in effluents) was the dominant contributor to the ΣOPEs concentrations with average proportions of 37.75% and 47.33% for influents and effluents, respectively. Moreover, the concentration ranks for most OPEs except for aryl OPEs from high to low were upper reaches > lower reaches > middle reaches. However, negative values of tris(2-chloroethyl)phosphate (TCEP, -32.4%), TCPP (-55.4%) and tris(1,3-dichloroisopropyl) phosphate (TDCPP, -26.3%) were observed. The removal rates of alkyl OPEs (10-20%) and aryl OPEs (20-30%) were also not sufficient. Ecological risk values of ΣOPEs showed that there were 2.44% of high risk, 31.7% of moderate risk and 41.5% of low risk for effluents; while 0.00%, 48.8% and 46.3% were exhibited in high, moderate and low risk for influents, indicating that very slight reduction in risk was achieved by the RD-WWTFs.
Collapse
Affiliation(s)
- Jie Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 210096, China; Suzhou Capital Greinworth Environmental Protection Technology Co., Ltd., Suzhou, 215126, China
| | - Qixuan Liu
- Suzhou Capital Greinworth Environmental Protection Technology Co., Ltd., Suzhou, 215126, China
| | - Rutao Zhang
- Suzhou Capital Greinworth Environmental Protection Technology Co., Ltd., Suzhou, 215126, China
| | - Liqun Xing
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China; Nanjing University & Yancheng Academy of Environmental Protection Technology and Engineering, Yancheng, 224000, China; School of Wetlands, Yancheng Teachers University, Yancheng, 224007, China.
| |
Collapse
|
17
|
Wu G, Gao L, Zhang S, Du D, Xue Y. Effects of copper oxide nanoparticles on reproductive system of zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115252. [PMID: 37467561 DOI: 10.1016/j.ecoenv.2023.115252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) were regarded as the versatile materials in daily life and the in-depth evaluation of their biological effects is of great concern. Herein the female and male zebrafishes were chosen as the model animals to analyze the reproductive toxicity caused by CuO NPs at low concentration (10, 50 and 100 μg/L) After 20-days exposure, the structure of zebrafish ovary and testis were impaired. Moreover, the contents of 17β-estradiol (E2) in both females and males were increased, while the contents of testosterone (T) were decreased, indicating the imbalanced sex hormones caused by CuO NPs. The expression of genes along the hypothalamic pituitary-gonad (HPG) axis, were examined with quantitative real-time PCR to further evaluate the toxic mechanisms. Meanwhile, the levels of erα/er2β and cyp19a in female zebrafishes and erα/er2β, lhr, hmgra/hmgrb, 3βhsd and 17βhsd in male zebrafishes were obviously up-regulated. While, the level of αr was obviously down-regulated in female and male zebrafishes. Thus, the obtained data uncovered that long-term exposure of CuO NPs with low dose could trigger the endocrine disorder, resulting in the disturbance of E2 and T level, inhibition of gonad development, and alteration of HPG axis genes. In brief, this study enriched the toxicological data of NPs on aquatic vertebrates and provided the theoretical support for assessing the environmental safety of NPs.
Collapse
Affiliation(s)
- Guizhu Wu
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Pollutants, Zhenjiang 212013, China
| | - Lu Gao
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Pollutants, Zhenjiang 212013, China
| | - Shaoming Zhang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Pollutants, Zhenjiang 212013, China.
| | - Yonglai Xue
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou 215009, China; Jiangsu Province Engineering Research Center of Green Technology and Contigency Management for Emerging Pollutants, Zhenjiang 212013, China.
| |
Collapse
|
18
|
Hernandez-Castro I, Eckel SP, Howe CG, Niu Z, Kannan K, Robinson M, Foley HB, Grubbs B, Al-Marayati L, Lerner D, Lurvey N, Aung MT, Habre R, Dunton GF, Farzan SF, Breton CV, Bastain TM. Sex-specific effects of prenatal organophosphate ester (OPE) metabolite mixtures and adverse infant birth outcomes in the maternal and developmental risks from environmental and social stressors (MADRES) pregnancy cohort. ENVIRONMENTAL RESEARCH 2023; 226:115703. [PMID: 36934865 PMCID: PMC10101931 DOI: 10.1016/j.envres.2023.115703] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Organophosphate esters (OPEs) are used as flame retardants and plasticizers in various consumer products. Limited prior research suggests sex-specific effects of prenatal OPE exposures on fetal development. We evaluated overall and sex-specific associations between prenatal OPE exposures and gestational age (GA) at birth and birthweight for gestational age (BW for GA) z-scores among the predominately low-income, Hispanic MADRES cohort. METHODS Nine OPE metabolite concentrations were measured in 421 maternal urine samples collected during a third trimester visit (GA = 31.5 ± 2.0 weeks). We examined associations between single urinary OPE metabolites and GA at birth and BW for GA z-scores using linear regression models and Generalized Additive Models (GAMs) and effects from OPE mixtures using Bayesian Kernel Machine Regression (BKMR). We also assessed sex-specific differences in single metabolite analyses by evaluating statistical interactions and stratifying by sex. RESULTS We did not find significant associations between individual OPE metabolites and birth outcomes in the full infant sample; however, we found that higher bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) was associated with earlier GA at birth among male infants (p = 0.04), and a nonlinear, inverted U-shape association between the sum of dibutyl phosphate and di-isobutyl phosphate (DNBP + DIBP) and GA at birth among female infants (p = 0.03). In mixtures analysis, higher OPE metabolite mixture exposures was associated with lower GA at birth, which was primarily driven by female infants. No associations were observed between OPE mixtures and BW for GA z-scores. CONCLUSION Higher BDCIPP and DNBP + DIBP concentrations were associated with earlier GA at birth among male and female infants, respectively. Higher exposure to OPE mixtures was associated with earlier GA at birth, particularly among female infants. However, we saw no associations between prenatal OPEs and BW for GA. Our results suggest sex-specific impacts of prenatal OPE exposures on GA at birth.
Collapse
Affiliation(s)
- Ixel Hernandez-Castro
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Sandrah P Eckel
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, New Hampshire, USA
| | - Zhongzheng Niu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Morgan Robinson
- Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Helen B Foley
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brendan Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Laila Al-Marayati
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | - Max T Aung
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Genevieve F Dunton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carrie V Breton
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa M Bastain
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
19
|
Hall AM, Keil AP, Choi G, Ramos AM, Richardson DB, Olshan AF, Martin CL, Villanger GD, Reichborn-Kjennerud T, Zeiner P, Øvergaard KR, Sakhi AK, Thomsen C, Aase H, Engel SM. Prenatal organophosphate ester exposure and executive function in Norwegian preschoolers. Environ Epidemiol 2023; 7:e251. [PMID: 37304339 PMCID: PMC10256412 DOI: 10.1097/ee9.0000000000000251] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 04/26/2023] [Indexed: 06/13/2023] Open
Abstract
Organophosphate esters (OPEs) are ubiquitous chemicals, used as flame retardants and plasticizers. OPE usage has increased over time as a substitute for other controlled compounds. This study investigates the impact of prenatal OPE exposure on executive function (EF) in preschoolers. Methods We selected 340 preschoolers from the Norwegian Mother, Father, and Child Cohort Study. Diphenyl-phosphate (DPhP), di-n-butyl-phosphate (DnBP), bis(2-butoxyethyl) phosphate (BBOEP), and bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) were measured in maternal urine. EF was measured using the Behavior Rating Inventory of Executive Functioning-Preschool (BRIEF-P) and the Stanford-Binet fifth edition (SB-5). EF scores were scaled so a higher score indicated worse performance. We estimated exposure-outcome associations and evaluated modification by child sex using linear regression. Results Higher DnBP was associated with lower EF scores across multiple rater-based domains. Higher DPhP and BDCIPP were associated with lower SB-5 verbal working memory (β = 0.49, 95% CI = 0.12, 0.87; β = 0.53, 95% CI = 0.08, 1.02), and higher BBOEP was associated with lower teacher-rated inhibition (β = 0.34, 95% CI = 0.01, 0.63). DPhP was associated with lower parent-reported BRIEF-P measures in boys but not girls [inhibition: boys: 0.37 (95% CI = 0.03, 0.93); girls: -0.48 (95% CI = -1.27, 0.19); emotional control: boys: 0.44 (95% CI = -0.13, 1.26); girls: -0.83 (95% CI = -1.73, -0.00); working memory: boys: 0.49 (95% CI = 0.03, 1.08); girls: -0.40 (95% CI = -1.11, 0.36)]. Fewer sex interactions were observed for DnBP, BBOEP, and BDCIPP, with irregular patterns observed across EF domains. Conclusions We found some evidence prenatal OPE exposure may impact EF in preschoolers and variation in associations by sex.
Collapse
Affiliation(s)
- Amber M. Hall
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Alexander P. Keil
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Giehae Choi
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Amanda M. Ramos
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - David B. Richardson
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Andrew F. Olshan
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Chantel L. Martin
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Gro D. Villanger
- Department of Child Health and Development, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ted Reichborn-Kjennerud
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Mental Disorders, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Zeiner
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kristin R. Øvergaard
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Amrit K. Sakhi
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Thomsen
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Heidi Aase
- Department of Child Health and Development, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie M. Engel
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
20
|
Hu L, Zhou B, Li Y, Song L, Wang J, Yu M, Li X, Liu L, Kou J, Wang Y, Hu X, Mei S. Independent and combined effects of exposure to organophosphate esters on thyroid hormones in children and adolescents. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:3833-3846. [PMID: 36592286 DOI: 10.1007/s10653-022-01464-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/19/2022] [Indexed: 06/01/2023]
Abstract
Toxicological studies suggest that organophosphate esters (OPEs) may impair thyroid function. Epidemiological evidence, related to children and adolescents, has not been reported, and little is known about the combined effects of exposure to OPE mixtures. In this study, we collected information of 1156 children and adolescents (aged 6-18 years, 48.4% males) from a cross-sectional study in Liuzhou, China, and measured the levels of 15 urinary OPE metabolites and 5 serum thyroid hormones. Multivariate linear regression and quantile g-computation (QGC) approach were used to examine the associations which adjusted for demographic and lifestyle characteristics. Few participants had levels of triiodothyronine (T3) and free thyroxine (FT4) outside age-specific pediatric ranges. QGC analyses showed that individuals in the second, third, and fourth quartiles (Q2-Q4) of exposure had 3.93% (2.14%, 5.75%), 8.01% (4.32%, 11.8%), and 12.3% (6.54%, 18.3%) higher T3 than those in the first quartile (Q1), with similar pattern for free triiodothyronine (FT3). Individuals in Q2 and Q3 had higher thyroid-stimulating hormone (TSH) than those in Q1, but no differences were observed in TSH between Q1-Q4. In contrast, compared to the lowest quartile, FT4 was lower for those in Q2 (- 1.54%; 95% CI: - 3.02%, -0.04%), Q3 (-3.07%; 95% CI: -5.95%, -0.09%), and Q4 (-4.56%; 95% CI: - 8.80%, - 0.13%). These associations were consistent with the results from multivariate linear regression. When stratified by sex, OPE exposure (individual or mixtures) was associated with increased T3 and FT3 in males and decreased FT4 in females. This study provides the first evidence to characterize the thyroid-disrupting effects of OPE exposure in children and adolescents.
Collapse
Affiliation(s)
- Liqin Hu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Lulu Song
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jin Wang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Jing Kou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xijiang Hu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, Hubei, China
| |
Collapse
|
21
|
Percy Z, Chen A, Sucharew H, Yang W, Vuong AM, Braun JM, Lanphear B, Ospina M, Calafat AM, Cecil KM, Xu Y, Yolton K. Early-life exposure to a mixture of organophosphate esters and child behavior. Int J Hyg Environ Health 2023; 250:114162. [PMID: 36989997 PMCID: PMC10149607 DOI: 10.1016/j.ijheh.2023.114162] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023]
Abstract
Organophosphate esters (OPEs), widely used as flame retardants and plasticizers for commercial and residential purposes, are suspected of being neurotoxic. We aimed to assess exposure to an OPE mixture in early life and its relationship to parent-reported child behavior. We measured urinary concentrations of three OPE metabolites, bis-2-chloroethyl phosphate (BCEP), bis(1,3-dichloro-2-propyl) phosphate (BDCIPP), and diphenyl phosphate (DPHP), at pregnancy (16 and 26 weeks of gestation and delivery) and postnatal time points (ages 1, 2, 3, and 5 years) in the Health Outcomes and Measures of the Environment Study, a longitudinal pregnancy and birth cohort in Cincinnati, Ohio, USA (enrolled 2003-2006, n = 219). We used latent variable analysis in structural equations models and quantile g-computation to investigate associations of a mixture of the three OPE metabolites with parent-reported child behaviors at 3 and 8 years, measured using the Behavioral Assessment System for Children, Second Edition. Higher log-transformed urinary OPE latent variable values at 16 weeks were associated with fewer externalizing problem behaviors (ß = -5.74; 95% CI = -11.24, -0.24) and fewer overall behavioral problems at age 3 years (ß = -5.26; 95% CI = -10.33, -0.19), whereas having higher OPEs at delivery was associated with poorer overall behavioral problems at age 3 years (ß = 2.87; 95% CI = 0.13, 5.61). OPE latent variable values at 16 weeks, 26 weeks, and delivery were not associated with child behavior at 8 years. However, higher OPE latent variable values at 3 years were associated with fewer externalizing behaviors at 8 years (ß = -2.62; 95% CI = -5.13, -0.12). The quantile g-computation estimates had directions largely consistent with the latent variable analysis results. Pregnancy and postnatal urinary OPE metabolite mixtures were associated with child internalizing, externalizing, and overall negative behaviors at 3 and 8 years, but we did not identify a consistent pattern in terms of the direction of the effects or a particularly sensitive time point.
Collapse
Affiliation(s)
- Zana Percy
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA.
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Heidi Sucharew
- Department of Emergency Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Weili Yang
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Ann M Vuong
- Department of Epidemiology and Biostatistics, School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Bruce Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Maria Ospina
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Antonia M Calafat
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Kim M Cecil
- Department of Radiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA; Department of Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
22
|
Gan H, Zhang Y, Wang YF, Tao FB, Gao H. Relationships of prenatal organophosphate ester exposure with pregnancy and birth outcomes: A systematic scoping review of epidemiological studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 252:114642. [PMID: 36791503 DOI: 10.1016/j.ecoenv.2023.114642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Exposure to organophosphate esters (OPEs) during pregnancy has been suggested to be associated with adverse pregnancy and birth outcomes. However, relevant investigations are scarce, and the findings are inconsistent. We aimed to conduct a scoping review to provide an overview of these associations. Electronic databases, including MEDLINE (through PubMed), Web of Science, and CNKI (China National Knowledge Infrastructure), were searched from inception to March 2022 and updated in July 2022. A total of 8 studies (1860 participants) were included. Limited evidence indicates that OPE exposure during pregnancy may be negatively associated with both maternal and neonatal triiodothyronine and tetraiodothyronine concentrations but positively associated with thyroid-stimulating hormone concentrations. OPE exposure during pregnancy may be associated with lower insulin concentrations. OPE exposure during pregnancy was associated with gestational age in a sex-specific manner. Intrauterine OPE exposure might increase the risk of preterm birth in female infants but decrease the risk of preterm birth in male infants. Prenatal OPE exposure might be associated with an increased risk of low birth weight. The current scoping review suggests that OPE exposure during pregnancy may disturb pregnancy and birth health, including adverse thyroid function and birth size. Because of the limited evidence obtained for most associations, additional studies followed by a traditional systematic review are needed to confirm these findings.
Collapse
Affiliation(s)
- Hong Gan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Yi Zhang
- Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Ya-Fei Wang
- Nursing Department, Anhui Medical College, Hefei 230601, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Hui Gao
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
23
|
Hall AM, Ramos AM, Drover SS, Choi G, Keil AP, Richardson DB, Martin CL, Olshan AF, Villanger GD, Reichborn-Kjennerud T, Zeiner P, Øvergaard KR, Sakhi AK, Thomsen C, Aase H, Engel SM. Gestational organophosphate ester exposure and preschool attention-deficit/hyperactivity disorder in the Norwegian Mother, Father, and Child cohort study. Int J Hyg Environ Health 2023; 248:114078. [PMID: 36455478 PMCID: PMC9898152 DOI: 10.1016/j.ijheh.2022.114078] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/11/2022] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Attention-deficit/hyperactivity-disorder (ADHD) is a leading neurodevelopmental disorder in children worldwide; however, few modifiable risk factors have been identified. Organophosphate esters (OPEs) are ubiquitous chemical compounds that are increasingly prevalent as a replacement for other regulated chemicals. Current research has linked OPEs to neurodevelopmental deficits. The purpose of this study was to assess gestational OPE exposure on clinically-assessed ADHD in children at age 3 years. METHODS In this nested case-control study within the Norwegian Mother, Father, and Child Cohort study, we evaluated the impact of OPE exposure at 17 weeks' gestation on preschool-age ADHD. Between 2007 and 2011, 260 ADHD cases were identified using the Preschool Age Psychiatric Assessment and compared to a birth-year-stratified control group of 549 children. We categorized bis(2-butoxyethyl) phosphate (BBOEP) and bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) as values < limit of detection (LOD) (BBOEP N = 386, BDCIPP N = 632), ≥LOD but < limit of quantification (LOQ) (BBOEP N = 413; BDCIPP N = 75), or above LOQ (BBOEP N = 70; BDCIPP N = 102). Diphenyl phosphate (DPhP) and di-n-butyl phosphate (DnBP) were categorized as quartiles and also modeled with a log10 linear term. We estimated multivariable adjusted odds ratios (ORs) using logistic regression and examined modification by sex using an augmented product term approach. RESULTS Mothers in the 3rd DnBP quartile had 1.71 times the odds of having a child with ADHD compared to the 1st quartile (95%CI: 1.13, 2.58); a similar trend was observed for log10 DnBP and ADHD. Mothers with BDCIPP ≥ LOD but < LOQ had 1.39 times the odds of having a child with ADHD compared to those with BDCIPP < LOD (95%CI: 0.83, 2.31). Girls had lower odds of ADHD with increasing BBOEP exposure (log10 OR: 0.55 (95%CI: 0.37, 0.93), however boys had a weakly increased odds (log10 OR: 1.25 (95%CI: 0.74, 2.11) p-interaction = 0.01]. CONCLUSIONS We found modest increased odds of preschool ADHD with higher DnBP and BDCIPP exposure.
Collapse
Affiliation(s)
- Amber M Hall
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Amanda M Ramos
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Samantha Sm Drover
- Department of Public Health Sciences, School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Giehae Choi
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander P Keil
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - David B Richardson
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Chantel L Martin
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andrew F Olshan
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Gro D Villanger
- Department of Child Health and Development, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ted Reichborn-Kjennerud
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Mental Disorders, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Pål Zeiner
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Kristin R Øvergaard
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Amrit K Sakhi
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Cathrine Thomsen
- Department of Food Safety, Division of Climate and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Heidi Aase
- Department of Child Health and Development, Division of Mental and Physical Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Stephanie M Engel
- Department of Epidemiology, Gillings School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| |
Collapse
|
24
|
Shi X, Wu R, Wang X, Huang W, Zheng S, Zhang Q, Peng J, Tan W, Wu K. Effects of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) on reproductive and endocrine function in female zebrafish (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114326. [PMID: 36435001 DOI: 10.1016/j.ecoenv.2022.114326] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDEs), a group of brominated flame retardants (BFRs), were reported exist extensively in various ecological environmental. Studies have indicated that PBDEs induce reproductive toxic effects on human health, but the mechanisms remain poorly understood. In this study, the adult female zebrafish were used to investigate the effects of 2, 2', 4, 4'-tetrabromodiphenyl ether (BDE-47) on the reproductive endocrine system and its mechanism. METHODS Female zebrafish (AB strains) were continuously exposed to BDE-47 at the concentrations of 0, 10, 50, 100 and 500 µg/L till 21 days. The morphology of ovary were stained and evaluated with hematoxylin-eosin (H&E), and levels of sex hormones including follicle-stimulating hormone (FSH), luteinizing hormone (LH), testosterone (T) and 17β-estradiol (E2) and the biomarkers of oxidative stress such as superoxide dismutase (SOD) and malondialdehyde (MDA), were measured via ELISA. Subsequently, the expression of genes along the hypothalamic pituitary-gonad (HPG) and oxidative stress were determined using quantitative real-time PCR (qRT-PCR). RESULT The results showed that exposure to high level of BDE-47 reduced the index of condition factor (CF) and gonadosomatic index (GSI). Treatment with BDE-47 impaired the normal development and structure of oocytes in zebrafish ovary. Moreover, the steroid hormone of FSH, LH, T and E2 were significantly decreased in BDE-47 exposure group. A dose-dependent elevation in SOD activity and MDA levels were recorded. Meanwhile, the transcription level of cyp19a, cyp19b, fshβ, lhβ were up-regulated while the transcription of fshr, lhr, cyp17a, 17βhsd were down-regulated in the gonad of female adult zebrafish. CONCLUSION Exposure to BDE-47 have detrimental impact on the development of ovary, decreasing sex hormone levels, inducing oxidative damage as well as altering HPG axis-related genes.
Collapse
Affiliation(s)
- Xiaoling Shi
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Ruotong Wu
- School ofLife Science, Xiamen University, Xiamen 361102, Fujian, China
| | - Xin Wang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wenlong Huang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Shukai Zheng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Qiong Zhang
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Jiajun Peng
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Wei Tan
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Kusheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou 515041, Guangdong, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou 515041, Guangdong, China
| |
Collapse
|
25
|
Guo X, Wu B, Xia W, Gao J, Xie P, Feng L, Sun C, Liang M, Ding X, Zhao D, Ma S, Liu H, Lowe S, Bentley R, Huang C, Qu G, Sun Y. Association of organophosphate ester exposure with cardiovascular disease among US adults: Cross-sectional findings from the 2011-2018 National Health and Nutrition Examination Survey. CHEMOSPHERE 2022; 308:136428. [PMID: 36115470 DOI: 10.1016/j.chemosphere.2022.136428] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/19/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers worldwide. Therefore, the potentially deleterious effect of OPE on human beings deserves extensive attention. The primary objective of this present study was to untangle the relationship between OPE exposure and cardiovascular disease (CVD) among general population. Detailed information about participants' baseline characteristics, involving socioeconomic data, demographic data and key covariates was obtained from National Health and Nutrition Examination Survey (NHANES) 2011-2018. Multivariate logistic regression models with adjustment for prior-determined covariates were utilized to examine the relationship between various OPEs and CVD among US adults and calculate odd ratios (ORs) and corresponding confidence intervals (CIs). Two multi-pollutant statistical strategies (weighted quantile sum regression and Bayesian kernel machine regression) were employed to investigate the joint effect of OPE mixture on CVD. A total of 5067 participants were included in this study. In completely-adjusted logistic model, the highest tertiles of OPE metabolites were positively associated with CVD risk, while the relationships did not reach statistical significance. The weighted quantile sum (WQS) index was significantly correlated with increased prevalence of CVD (adjusted OR: 1.25; CI: 1.02, 1.53, p value = 0.032) and Diphenyl phosphate (DPHP) was the greatest contributor (31.38%). The BKMR also indicated that mixed OPE exposure associated with an increased risk of CVD. Taken together, the present study demonstrated that there were possible links between OPE exposures and increased risk of CVD, while the relationships did not reach statistical significance. Our study provided the suggestive evidence that cumulative effect of OPE mixtures on CVD. DPHP may be a major driver of this positive association. Given the limitation of cross-sectional design and relatively limited kinds of OPE metabolites, further studies are warranted to longitudinally evaluate the potential effect of a wider range of OPEs on CVD or cardiac metabolism.
Collapse
Affiliation(s)
- Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Birong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Weihang Xia
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Juan Gao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Peng Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Linya Feng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Chenyu Sun
- AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, IL, 60657, USA
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Xiuxiu Ding
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Dongdong Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Shaodi Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Haixia Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China
| | - Scott Lowe
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Rachel Bentley
- College of Osteopathic Medicine, Kansas City University, 1750 Independence Ave, Kansas City, MO, 64106, USA
| | - Christy Huang
- Touro University Nevada College of Osteopathic Medicine, 874 American Pacific Dr, Henderson, NV, 89014, United States
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, PR China; Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China; Chaohu Hospital, Anhui Medical University, No. 64 Chaohubei Road, Hefei, 238006, Anhui, China.
| |
Collapse
|
26
|
Hong J, Lu X, Wang J, Jiang M, Liu Q, Lin J, Sun W, Zhang J, Shi Y, Liu X. Triphenyl phosphate disturbs placental tryptophan metabolism and induces neurobehavior abnormal in male offspring. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 243:113978. [PMID: 36007322 DOI: 10.1016/j.ecoenv.2022.113978] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/28/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Epidemiological studies have shown that prenatal triphenyl phosphate (TPhP) exposure is related to abnormal neurobehavior in children. However, the neurodevelopmental toxicity of TPhP in mammals is limited. To study the neurodevelopmental toxicity of TPhP in mammals and investigate the underlying mechanism, we used a mouse intrauterine TPhP exposure model. We measured the inflammatory factors (IL-6, TNFα) and NFκB levels, and tryptophan metabolism in placentae, detected the fetal brain transcriptome, hippocampal neuron development and neurobehavioral in the male offspring. The results showed that the protein level of IL-6, TNFα and NFκB in the placenta of the TPhP treatment group (1, 5 mg/kg) were significantly increased. Change of the protein level of these pro-inflammatory factors in maternal serum or fetal brain was not observed. Expression of genes along tryptophan-serotonin metabolism pathway were significantly decreased. While, the concentration of 5-HT levels in the placenta or fetal brain were significantly increased. Consistent with the increased 5-HT, the Nissl body was reduced in the hippocampus of treatment group. The expression of serotonergic neuron gene markers including Tph2, Htr1A, Htr2A, Pet1 and Lmx1b in the hippocampus of treatment group was significantly decreased. The neurobehavioral test showed that TPhP decreased center time that represent anxiety-like behavior, and reduced learning and memory in male offspring. Meanwhile, expression of genes along tryptophan-kynurenine metabolism pathway were significantly increased. The result of the transcriptome analysis of fetal brain showed that the differentially expressed genes are mainly involved in the transcription regulation of DNA as a template in the nucleus, and the enriched pathways are mainly signal pathways regulated by axon guidance and neurotrophic factors, dopaminergic and cholinergic synapses, suggest that not only serotonergic neuronal was affected. Overall, this study demonstrates that TPhP has the potential to induce placental inflammatory response in the placenta, disturb placental tryptophan metabolism, compromise the neuronal development and synaptic transmission, and cause abnormal neurobehavior in male offspring.
Collapse
Affiliation(s)
- Jiabin Hong
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Xiaoxun Lu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Jieyu Wang
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Mengzhu Jiang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Qian Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Juntong Lin
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Wenjing Sun
- China-America Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical University, Dongguan 523808, Guangdong, China
| | - Jing Zhang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China
| | - Yanwei Shi
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
| | - Xiaoshan Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong 523-808, China.
| |
Collapse
|
27
|
Hong J, Jiang M, Guo L, Lin J, Wang Y, Tang H, Liu X. Prenatal exposure to triphenyl phosphate activated PPARγ in placental trophoblasts and impaired pregnancy outcomes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 301:119039. [PMID: 35192884 DOI: 10.1016/j.envpol.2022.119039] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The health risks of triphenyl phosphate (TPhP) have increased since its widespread application. Using placental trophoblast cell line JEG-3, we demonstrated that TPhP could induce endoplasmic reticulum stress (ERS) and cell apoptosis through PPARγ-mediated lipid metabolism. However, the developmental toxicity of TPhP through the placenta is not known. In this study, prenatal TPhP exposure to mice was investigated. Pregnant mice were orally exposed to TPhP (1 and 5 mg/kg) from embryonic day 0 (E0) until delivery. The results showed that TPhP could accumulate in placenta and impair pregnancy outcomes. After exposure, at E18, placental hormone chorionic gonadotrophin and testosterone levels were significantly decreased, but progesterone and estradiol levels were significantly increased, and placental angiogenesis was activated in the low-dose exposure group. While, in the high-dose exposure group, only estradiol levels were significantly increased. Different with the effect on hormone level or angiogenesis, TPhP significantly increased PPARγ and its regulated lipid transport proteins FABP, FATP, and CD36, and induced lipid accumulation in placental trophoblasts of both low- and high-exposure group. RNA-seq analysis of the placenta identified differentially expressed genes that were mainly involved in the ERS and MAPK signaling pathways. Western blot analysis verified that the protein levels related to ERS stress and apoptosis were significantly increased. To further confirm the role of PPARγ in TPhP mediated placental toxicity, pregnant mice were orally exposed to TPhP (1 mg/kg) or TPhP (1 mg/kg) + GW9662 (PPARγ inhibitor, 2 mg/kg) from E0 until delivery. The results showed that GW9662 could ameliorate the effect of TPhP on placental lipid accumulation, ERS and cell apoptosis, suggesting that PPARγ mediated the placental toxicity of TPhP. Overall, our results indicated that prenatal TPhP exposure impaired pregnancy outcomes, at least partly through PPARγ regulated function of trophoblast.
Collapse
Affiliation(s)
- Jiabin Hong
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Mengzhu Jiang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Lihao Guo
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Juntong Lin
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Yao Wang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Huanwen Tang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Xiaoshan Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China.
| |
Collapse
|
28
|
Meng Y, Xu X, Niu D, Xu Y, Qiu Y, Zhu Z, Zhang H, Yin D. Organophosphate flame retardants induce oxidative stress and Chop/Caspase 3-related apoptosis via Sod1/p53/Map3k6/Fkbp5 in NCI-1975 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153160. [PMID: 35051466 DOI: 10.1016/j.scitotenv.2022.153160] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Organophosphate flame retardants (OPFRs) have been ubiquitously detected in dust and air which could cause damage to human health through inhalation. Currently the understanding of their adverse effects and potential mechanisms on the lung are still limited. In this study, human non-small cell lung cancer cell line NCI-H1975 was used to investigate the cytotoxicity, oxidative stress, cellular apoptosis of 9 typical OPFRs with concentrations varied from 0 to 200 μM, and their toxic mechanism associated with molecular structure was compared. After 72 h, tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) displayed the highest cytotoxicity, followed by 2-ethylhexyl diphenyl phosphate (EHDPP), tris(2-butoxyethyl) phosphate (TBOEP) and tris(2-chloroisopropyl) phosphate (TCIPP), while tris(2-chloroethyl) phosphate (TCEP) and tris(2-ethylhexyl) phosphate (TEHP) exhibited the least suppression on cell viability. These results indicated that the variation of cytotoxicity on OPFRs could only be partially explained by their ester linkage. Moreover, the overexpression of intracellular reactive oxygen species (ROS), free Ca2+ and cellular apoptosis suggested that exposure to OPFRs can lead to apoptosis related to oxidative stress. Six genes associated with oxidative stress and apoptosis were upregulated dramatically compared with the control, demonstrating OPFRs induced Chop/Caspase 3-related apoptosis by activating Sod1/p53/Map3k6/Fkbp5 expression in NCI-H1975 cells. This is the first study to investigate cytotoxicity and related mechanism on commonly-used OPFRs in NCI-H1975 cells.
Collapse
Affiliation(s)
- Yuan Meng
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Xiaojuan Xu
- Department of Pathology and Pathophysiology, Tongji University School of Medicine, Shanghai 200092, China
| | - Dong Niu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yangjie Xu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Yanling Qiu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China.
| | - Zhiliang Zhu
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Hua Zhang
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| | - Daqiang Yin
- Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
29
|
von Hellfeld R, Pannetier P, Braunbeck T. Specificity of time- and dose-dependent morphological endpoints in the fish embryo acute toxicity (FET) test for substances with diverse modes of action: the search for a "fingerprint". ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16176-16192. [PMID: 34643865 PMCID: PMC8827326 DOI: 10.1007/s11356-021-16354-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The fish embryo acute toxicity (FET) test with the zebrafish (Danio rerio) embryo according to OECD TG 236 was originally developed as an alternative test method for acute fish toxicity testing according to, e.g., OECD TG 203. Given the versatility of the protocol, however, the FET test has found application beyond acute toxicity testing as a common tool in environmental hazard and risk assessment. Whereas the standard OECD guideline is restricted to four core endpoints (coagulation as well as lack of somite formation, heartbeat, and tail detachment) for simple, rapid assessment of acute toxicity, further endpoints can easily be integrated into the FET test protocol. This has led to the hypothesis that an extended FET test might allow for the identification of different classes of toxicants via a "fingerprint" of morphological observations. To test this hypothesis, the present study investigated a set of 18 compounds with highly diverse modes of action with respect to acute and sublethal endpoints. Especially at higher concentrations, most observations proved toxicant-unspecific. With decreasing concentrations, however, observations declined in number, but gained in specificity. Specific observations may at best be made at test concentrations ≤ EC10. The existence of a "fingerprint" based on morphological observations in the FET is, therefore, highly unlikely in the range of acute toxicity, but cannot be excluded for experiments at sublethal concentrations.
Collapse
Affiliation(s)
- Rebecca von Hellfeld
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
- University of Aberdeen, Institute of Biological and Environmental Science, 23 St Machar Drive, AB24 3UU, Aberdeen, UK.
| | - Pauline Pannetier
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany
| | - Thomas Braunbeck
- Center for Organismal Studies, Aquatic Ecology and Toxicology Section, University of Heidelberg, Im Neuenheimer Feld 504, 69120, Heidelberg, Germany.
| |
Collapse
|
30
|
Liu X, Lu X, Hong J, Zhang J, Lin J, Jiang M, Liu Q, Choi K, Zhang J. Effects of long‐term exposure to TDCPP in zebrafish (
Danio rerio
) – Alternations of hormone balance and gene transcriptions along hypothalamus‐pituitary axes. Animal Model Exp Med 2022; 5:239-247. [PMID: 35234363 PMCID: PMC9240729 DOI: 10.1002/ame2.12215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/02/2023] Open
Abstract
Background TDCPP is one of the major chemical of organophosphate flame retardants (OPFRs) that has been detected ubiquitously in both the environment and biota. Previously we observed that it influenced the concentrations of sex and thyroid hormones in a sex‐dependent pattern, leading to reproductive impairments after short‐term exposure in zebrafish. Here we investigate the consequences of longer‐term exposure to TDCPP on the hypothalamic‐pituitary‐gonad (HPG), hypothalamic‐pituitary‐interrenal (HPI), and hypothalamic‐pituitary‐thyroid (HPT) axes of zebrafish (Danio rerio). Methods A 120‐day exposure test to 0.005, 0.05 and 0.5 mg/L TDCPP was initiated with fertilized eggs. Sex steroid hormones in the treated fishes were measured and transcriptional changes were analyzed. Results In female fish, exposure to TDCPP resulted in increases in plasma cortisol, follicle stimulating hormone (FSH), luteinizing hormone (LH), 17β‐estradiol (E2), cortisol, thyroxine (T4), and triiodothyronine (T3). Transcription of most target genes along HPG, HPI and HPT axes were increased by the exposure. While in male fish the exposure led to decreases in cortisol, FSH, LH, T4, T3, testosterone (T), and 11‐ketotestosterone (11‐KT). Transcription of genes along HPG, HPI and HPT axes, especially steroidogenic genes, were inhibited in male zebrafish. While, E2/T or E2/11‐KT ratio was increased in both female and females. The sex‐dependent changes in hormones might be due to differential responses to TDCPP induced stresses. An increase in cortisol level coincided with increases in E2 and THs in female fish, while in males decreases in cortisol as well as T, 11‐KT and THs were observed. Long‐term exposure to TDCPP at very low (μg/L) concentrations could disrupt hormone balances in a sex dependent way. Conclusion This study revealed that TDCPP could affect endocrine axes – HPG, HPI and HPT – in zebrafish, and impair zebrafish development.
Collapse
Affiliation(s)
- Xiaoshan Liu
- School of Public Health Dongguan Key Laboratory of Environmental Medicine Guangdong Medical University Guangdong China
| | - Xiaoxun Lu
- School of Public Health Dongguan Key Laboratory of Environmental Medicine Guangdong Medical University Guangdong China
| | - Jiabin Hong
- School of Public Health Dongguan Key Laboratory of Environmental Medicine Guangdong Medical University Guangdong China
| | - Jing Zhang
- School of Public Health Dongguan Key Laboratory of Environmental Medicine Guangdong Medical University Guangdong China
| | - Juntong Lin
- School of Public Health Dongguan Key Laboratory of Environmental Medicine Guangdong Medical University Guangdong China
| | - Mengzhu Jiang
- School of Public Health Dongguan Key Laboratory of Environmental Medicine Guangdong Medical University Guangdong China
| | - Qian Liu
- School of Public Health Dongguan Key Laboratory of Environmental Medicine Guangdong Medical University Guangdong China
| | - Kyungho Choi
- Graduate School of Public Health and Institute of Health and Environment Seoul National University Seoul Korea
| | - Jingjing Zhang
- Affiliated Hospital of Guangdong Medical University & Key Laboratory of Zebrafish Model for Development and Disease Guangdong Medical University Zhanjiang China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang Zhanjiang Guangdong China
| |
Collapse
|
31
|
Hu L, Yu M, Li Y, Liu L, Li X, Song L, Wang Y, Mei S. Association of exposure to organophosphate esters with increased blood pressure in children and adolescents. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 295:118685. [PMID: 34923060 DOI: 10.1016/j.envpol.2021.118685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Organophosphate esters (OPEs) are widely added to various industrial and consumer products, and are mainly used as flame retardants and plasticizers. Existing epidemiological studies suggest that OPE exposure may be linked to increased blood pressure (BP) and hypertension risk in adults. However, it remains unclear whether OPE exposure is associated with increased BP in children and adolescents. Here, we investigated the associations between OPE exposure and BP levels in 6-18-year-old children and adolescents from a cross-sectional study in Liuzhou, China. OPE metabolites were determined in spot urine samples (n = 1194) collected between April and May 2018. Three measurements of systolic and diastolic BP for each participant were averaged as study outcomes. Associations of OPE exposure with age-, sex- and height-standardized BP were assessed using linear regression models. We found that each natural log unit increment of bis(1,3-dichloro-2-propyl) phosphate (BDCIPP) was associated with a 0.06 standard deviation unit (95% confidant interval (CI): 0.01, 0.11) increase in systolic BP z-score. When conducting stratified analysis based on sex, age, and BMI category, BDCIPP was shown to be positively associated with systolic/diastolic BP z-score in females, but not in males. The associations between bis(2-butoxyethyl) phosphate (BBOEP) and systolic/diastolic BP z-score were pronounced in adolescents, but not in children. Moreover, a significant positive association between 1-hydroxy-2-propyl bis(1-chloro-2-propyl) phosphate (BCIPHIPP) and diastolic BP z-score was observed in obese subjects. The present study provides the first evidence that OPE exposure was related to increased BP in children and adolescents. Given the scarcity of high-quality evidence supporting these results, the health effects of OPEs are warrant investigation in well-designed prospective studies.
Collapse
Affiliation(s)
- Liqin Hu
- Institute of Maternal and Child Health, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China; State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China
| | - Lulu Song
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China; Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei, 430030, China.
| |
Collapse
|
32
|
Fabrication of molecularly imprinted nanochannel membrane for ultrasensitive electrochemical detection of triphenyl phosphate. Anal Chim Acta 2022; 1192:339374. [DOI: 10.1016/j.aca.2021.339374] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/18/2021] [Accepted: 12/10/2021] [Indexed: 11/22/2022]
|
33
|
Thambirajah AA, Wade MG, Verreault J, Buisine N, Alves VA, Langlois VS, Helbing CC. Disruption by stealth - Interference of endocrine disrupting chemicals on hormonal crosstalk with thyroid axis function in humans and other animals. ENVIRONMENTAL RESEARCH 2022; 203:111906. [PMID: 34418447 DOI: 10.1016/j.envres.2021.111906] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Thyroid hormones (THs) are important regulators of growth, development, and homeostasis of all vertebrates. There are many environmental contaminants that are known to disrupt TH action, yet their mechanisms are only partially understood. While the effects of Endocrine Disrupting Chemicals (EDCs) are mostly studied as "hormone system silos", the present critical review highlights the complexity of EDCs interfering with TH function through their interactions with other hormonal axes involved in reproduction, stress, and energy metabolism. The impact of EDCs on components that are shared between hormone signaling pathways or intersect between pathways can thus extend beyond the molecular ramifications to cellular, physiological, behavioral, and whole-body consequences for exposed organisms. The comparatively more extensive studies conducted in mammalian models provides encouraging support for expanded investigation and highlight the paucity of data generated in other non-mammalian vertebrate classes. As greater genomics-based resources become available across vertebrate classes, better identification and delineation of EDC effects, modes of action, and identification of effective biomarkers suitable for HPT disruption is possible. EDC-derived effects are likely to cascade into a plurality of physiological effects far more complex than the few variables tested within any research studies. The field should move towards understanding a system of hormonal systems' interactions rather than maintaining hormone system silos.
Collapse
Affiliation(s)
- Anita A Thambirajah
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada
| | - Michael G Wade
- Environmental Health Science & Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Jonathan Verreault
- Centre de Recherche en Toxicologie de l'environnement (TOXEN), Département des Sciences Biologiques, Université du Québec à Montréal, Succursale Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - Nicolas Buisine
- UMR7221 Physiologie Moléculaire et Adaptation, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Paris Cedex 05, France
| | - Verônica A Alves
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Québec City, QC, G1K 9A9, Canada
| | - Caren C Helbing
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8P 5C2, Canada.
| |
Collapse
|
34
|
Ji X, Li N, Ma M, Li X, Zhu K, Rao K, Wang Z, Wang J, Fang Y. Comparison of the mechanisms of estrogen disrupting effects between triphenyl phosphate (TPhP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 229:113069. [PMID: 34890987 DOI: 10.1016/j.ecoenv.2021.113069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/05/2021] [Indexed: 06/13/2023]
Abstract
As the typical aryl-organophosphate flame retardants (OPFRs), triphenyl phosphate (TPhP) and tris(1,3-dichloro-2-propyl) phosphate (TDCIPP) were reported to be estrogen disruptors. However, estrogen receptor α (ERα) binding experiments could not explain their biological effects. In this study, their action on ERα, G protein-coupled estrogen receptor (GPER) and the synthesis of 17β-estradiol (E2) were investigated using in vitro assays and molecular docking. The results showed that TPhP acted as an ERα agonist and recruited steroid receptor co-activator 1 (SRC1) and 3 (SRC3), which was found for the first time. Unlike TPhP, TDCIPP acted as an ERα antagonist. However, both TPhP and TDCIPP activated the estrogen pathway by GPER in SKBR3 cells which were lack of ERα. Although molecular docking results revealed that both TPhP and TDCIPP could dock into ERα and GPER, their substituent groups and combination mode might affect the receptor activation. In addition, by using estrogen biosynthesis assay in H295R cells, both of TPhP and TDCIPP were found to promote E2 synthesis and E2/T ratio involving their different alteration on levels of progesterone, testosterone and estrone, and expression of various key genes. Our data proposed estrogen-disrupting mechanism frameworks of TPhP and TDCIPP. Moreover, our results will contribute to future construction of adverse outcome pathway (AOP) framework of endocrine disruptors.
Collapse
Affiliation(s)
- Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Public Health, Qingdao University, Qingdao 266000, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xinyan Li
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Kongrui Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zijian Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingfeng Wang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| | - Yanjun Fang
- Tianjin Institute of Environmental and Operational Medicine, Key Laboratory of Risk Assessment and Control for Environment & Food Safety, Tianjin 300050, China
| |
Collapse
|
35
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
36
|
Wiegand J, Cheng V, Reddam A, Avila-Barnard S, Volz DC. Triphenyl phosphate-induced pericardial edema is associated with elevated epidermal ionocytes within zebrafish embryos. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 89:103776. [PMID: 34798236 PMCID: PMC8724387 DOI: 10.1016/j.etap.2021.103776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 05/16/2023]
Abstract
Triphenyl phosphate (TPHP) is an organophosphate ester-based plasticizer and flame retardant. The objective of this study was to identify the potential role of epidermal ionocytes in mediating TPHP-induced pericardial edema within zebrafish embryos. Exposure to TPHP from 24 to 72 h post fertilization (hpf) resulted in a significant increase in pericardial edema and the number of ionocytes at 72 hpf relative to time-matched embryos treated with vehicle. In addition, co-exposure of embryos to mannitol (an osmotic diuretic) blocked TPHP-induced pericardial edema and effects on ionocyte abundance. However, knockdown of ATPase1a1.4 - an abundant Na+/K+-ATPase localized to epidermal ionocytes - mitigated TPHP-induced effects on ionocyte abundance but not pericardial edema, whereas co-exposure of embryos to ouabain - a Na+/K+-ATPase inhibitor - enhanced TPHP-induced pericardial edema but not ionocyte abundance. Overall, our findings suggest that TPHP may have multiple mechanisms of toxicity leading to an increase in ionocyte abundance and pericardial edema within developing zebrafish embryos.
Collapse
Affiliation(s)
- Jenna Wiegand
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Vanessa Cheng
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Aalekhya Reddam
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Sarah Avila-Barnard
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
37
|
Tao Y, Hu L, Liu L, Yu M, Li Y, Li X, Liu W, Luo D, Covaci A, Xia W, Xu S, Li Y, Mei S. Prenatal exposure to organophosphate esters and neonatal thyroid-stimulating hormone levels: A birth cohort study in Wuhan, China. ENVIRONMENT INTERNATIONAL 2021; 156:106640. [PMID: 34015666 DOI: 10.1016/j.envint.2021.106640] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Increasing animal studies have indicated that organophosphate esters (OPEs) have endocrine-disruptive potential. However, human epidemiological evidence is limited, especially in susceptible populations, such as pregnant women and neonates. The purpose of this present study was to examine the trimester-specific relationships of prenatal exposure to OPEs with neonatal thyroid-stimulating hormone (TSH). METHOD A total of 102 mother-newborn pairs were recruited from a birth cohort study between April 2015 and September 2016 in Wuhan, China. Eight OPE metabolites were detectable in urine samples from pregnant women across the different three trimesters. Neonatal TSH levels were measured using time-resolved immunofluorescence assay. The associations between maternal urinary OPE metabolites and neonatal TSH and the critical exposure windows of fetal vulnerability were estimated using multiple informant models. RESULTS Seven OPE metabolites with detection frequency > 50% (52.9%-98.0%) were detected in repeated urine samples from different three trimesters, and the urinary OPE metabolites across pregnancy was of high variability (ICCs: 0.09-0.26). After adjusted for confounders (e.g., maternal age, prepregnancy BMI, passive smoking during pregnancy), some suggestive associations were observed between maternal urinary OPE metabolites and neonatal TSH in different trimesters. A doubling of second trimester di-o-cresyl phosphate & di-p-cresyl phosphate (DoCP & DpCP) was associated with a 7.82% increase in neonatal TSH level (95% CI: -0.70%, 17.06%, p-value = 0.07), a doubling of third trimester diphenyl phosphate (DPHP) was associated with a 4.71% decrease in neonatal TSH level (95% CI: -9.80%, 0.67%, p-value = 0.09), and a doubling of third trimester bis(2-butoxyethyl) phosphate (BBOEP) was associated with a 6.38% increase in neonatal TSH level (95% CI: -0.12%, 13.31%, p = 0.05). However, such associations did not differ materially across trimesters. When performing stratified analysis by infant sex, the associations were statistically significant and were sex-dependent.In females, maternal urinary DoCP & DpCP concentrations in each trimester were associated with increased neonatal TSH levels, and urinary DPHP concentration in the third trimester was associated with decreased neonatal TSH level. In males, maternal urinary BBOEP concentration in the first trimester was positively related to neonatal TSH level. CONCLUSION This prospective study demonstrated that prenatal exposure to OPEs can lead to a sex-dependent change in neonatal TSH levels. Although the sex-selective effect was differed among various urinary OPE metabolites, more evidence was supported that OPE exposure was related to increased TSH levels for both males and females.
Collapse
Affiliation(s)
- Yun Tao
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China; Hospital Management Institute of Wuhan University, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, PR China
| | - Liqin Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ling Liu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Meng Yu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yaping Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Xiang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Wenyu Liu
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China; Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Dan Luo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Wei Xia
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Shunqing Xu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yuanyuan Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| | - Surong Mei
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
38
|
Chen Q, Lian X, An J, Geng N, Zhang H, Challis JK, Luo Y, Liu Y, Su G, Xie Y, Li Y, Liu Z, Shen Y, Giesy JP, Gong Y. Life Cycle Exposure to Environmentally Relevant Concentrations of Diphenyl Phosphate (DPhP) Inhibits Growth and Energy Metabolism of Zebrafish in a Sex-Specific Manner. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13122-13131. [PMID: 34523920 DOI: 10.1021/acs.est.1c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Due to commercial uses and environmental degradation of aryl phosphate esters, diphenyl phosphate (DPhP) is frequently detected in environmental matrices and is thus of growing concern worldwide. However, information on potential adverse effects of chronic exposure to DPhP at environmentally realistic concentrations was lacking. Here, we investigated the effects of life cycle exposure to DPhP on zebrafish at environmentally relevant concentrations of 0.8, 3.9, or 35.6 μg/L and employed a dual-omics approach (metabolomics and transcriptomics) to characterize potential modes of action. Exposure to DPhP at 35.6 μg/L for 120 days resulted in significant reductions in body mass and length of male zebrafish, but did not cause those same effects to females. Predominant toxicological mechanisms, including inhibition of oxidative phosphorylation, down-regulation of fatty acid oxidation, and up-regulation of phosphatidylcholine degradation, were revealed by integrated dual-omics analysis and successfully linked to adverse outcomes. Activity of succinate dehydrogenase and protein content of carnitine O-palmitoyltransferase 1 were significantly decreased in livers of male fish exposed to DPhP, which further confirmed the proposed toxicological mechanisms. This study is the first to demonstrate that chronic, low-level exposure to DPhP can retard growth via inhibiting energy output in male zebrafish.
Collapse
Affiliation(s)
- Qiliang Chen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xiaolong Lian
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Jingjing An
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Ningbo Geng
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Haijun Zhang
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, SK, Canada
| | - Yun Luo
- CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China
| | - Yaxin Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Guanyong Su
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yuwei Xie
- Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, SK, Canada
| | - Yingwen Li
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Zhihao Liu
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Yanjun Shen
- Chongqing Key Laboratory of Animal Biology, School of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, SK, Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon S7N 5B4, SK, Canada
- Department of Environmental Sciences, Baylor University, Waco, Texas 76798-7266, United States
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu, China
| | - Yufeng Gong
- Toxicology Centre, University of Saskatchewan, Saskatoon S7N 5B3, SK, Canada
| |
Collapse
|
39
|
Percy Z, Vuong AM, Xu Y, Xie C, Ospina M, Calafat AM, Hoofnagle A, Lanphear BP, Braun JM, Cecil KM, Dietrich KN, Yolton K, Chen A. Maternal Urinary Organophosphate Esters and Alterations in Maternal and Neonatal Thyroid Hormones. Am J Epidemiol 2021; 190:1793-1802. [PMID: 33778842 DOI: 10.1093/aje/kwab086] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Production of organophosphate esters (OPEs), which represent a major flame-retardant class present in consumer goods, has increased over the past 2 decades. Experimental studies suggest that OPEs may be associated with thyroid hormone disruption, but few human studies have examined this association. We quantified OPE metabolites in the urine of 298 pregnant women from Cincinnati, Ohio, in the Health Outcomes and Measures of the Environment Study (enrolled 2003-2006) at 3 time points (16 and 26 weeks' gestation, and at delivery), and thyroid hormones in 16-week maternal and newborn cord sera. Urinary bis(1,3-dichloro-2-propyl)-phosphate concentrations were generally associated with decreased triiodothyronine and thyroxine levels and increased thyroid-stimulating hormone levels in maternal and newborn thyroid hormones in quartile dose-response analyses and multiple informant models. There was weaker evidence for thyroid hormone alterations in association with diphenyl-phosphate and di-n-butyl-phosphate. Bis-2-chloroethyl-phosphate was not associated with alterations in thyroid hormones in any analyses. We did not observe any evidence of effect modification by infant sex. These results suggest that gestational exposure to some OPEs may influence maternal and neonatal thyroid function, although replication in other cohorts is needed.
Collapse
|
40
|
Bajard L, Negi CK, Mustieles V, Melymuk L, Jomini S, Barthelemy-Berneron J, Fernandez MF, Blaha L. Endocrine disrupting potential of replacement flame retardants - Review of current knowledge for nuclear receptors associated with reproductive outcomes. ENVIRONMENT INTERNATIONAL 2021; 153:106550. [PMID: 33848905 DOI: 10.1016/j.envint.2021.106550] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIM Endocrine disrupting chemicals (EDCs) constitute a major public health concern because they can induce a large spectrum of adverse effects by interfering with the hormonal system. Rapid identification of potential EDCs using in vitro screenings is therefore critical, particularly for chemicals of emerging concerns such as replacement flame retardants (FRs). The review aimed at identifying (1) data gaps and research needs regarding endocrine disrupting (ED) properties of replacement FRs and (2) potential EDCs among these emerging chemicals. METHODS A systematic search was performed from open literature and ToxCast/Tox21 programs, and results from in vitro tests on the activities of 52 replacement FRs towards five hormone nuclear receptors (NRs) associated with reproductive outcomes (estrogen, androgen, glucocorticoid, progesterone, and aryl hydrocarbon receptors) were compiled and organized into tables. Findings were complemented with information from structure-based in silico model predictions and in vivo information when relevant. RESULTS For the majority of the 52 replacement FRs, experimental in vitro data on activities towards these five NRs were either incomplete (15 FRs) or not found (24 FRs). Within the replacement FRs for which effect data were found, some appeared as candidate EDCs, such as triphenyl phosphate (TPhP) and tris(1,3-dichloropropyl)phosphate (TDCIPP). The search also revealed shared ED profiles. For example, anti-androgenic activity was reported for 19 FRs and predicted for another 21 FRs. DISCUSSION This comprehensive review points to critical gaps in knowledge on ED potential for many replacement FRs, including chemicals to which the general population is likely exposed. Although this review does not cover all possible characteristics of ED, it allowed the identification of potential EDCs associated with reproductive outcomes, calling for deeper evaluation and possibly future regulation of these chemicals. By identifying shared ED profiles, this work also raises concerns for mixture effects since the population is co-exposed to several FRs and other chemicals.
Collapse
Affiliation(s)
- Lola Bajard
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ62500 Brno, Czechia
| | - Chander K Negi
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ62500 Brno, Czechia
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Ciber de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain; Instituto de Investigacion Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Lisa Melymuk
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ62500 Brno, Czechia
| | - Stéphane Jomini
- ANSES, Agence Nationale de Sécurité Sanitaire de l'alimentation, de l'environnement et du travail, Direction de l'Evaluation des Risques, Unité Evaluation des Substances Chimiques, 14 rue Pierre Marie Curie. 94701 Maisons-Alfort Cedex, France
| | - Johanna Barthelemy-Berneron
- ANSES, Agence Nationale de Sécurité Sanitaire de l'alimentation, de l'environnement et du travail, Direction de l'Evaluation des Risques, Unité Evaluation des Substances Chimiques, 14 rue Pierre Marie Curie. 94701 Maisons-Alfort Cedex, France
| | - Mariana F Fernandez
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Ciber de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain; Instituto de Investigacion Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ62500 Brno, Czechia.
| |
Collapse
|
41
|
Shi Q, Guo W, Shen Q, Han J, Lei L, Chen L, Yang L, Feng C, Zhou B. In vitro biolayer interferometry analysis of acetylcholinesterase as a potential target of aryl-organophosphorus flame-retardants. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124999. [PMID: 33454525 DOI: 10.1016/j.jhazmat.2020.124999] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/20/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Organophosphorus flame retardants (OPFRs) have been implicated as neurotoxicants, but their potential neurotoxicity and mechanisms remain poorly understood. Herein, we investigated the neurotoxicity of selected OPFRs using zebrafish as a model organism. Environmentally relevant concentrations (3-1500 nM) of three classes of OPFRs (aryl-OPFRs, chlorinated-OPFRs, and alkyl-OPFRs) were tested in zebrafish larvae (2-144 h post-fertilisation) alongside the neurotoxic chemical chlorpyrifos (CPF) that inhibits acetylcholinesterase (AChE). Exposure to aryl-OPFRs and CPF inhibited AChE activities, while chlorinated- and alkyl-OPFRs did not inhibit these enzymes. Biolayer interferometry (BLI) was used to probe interactions between OPFRs and AChE. The association and dissociation response curves showed that, like CPF, all three selected aryl-OPFRs, triphenyl phosphate (TPHP), tricresyl phosphate (TCP) and cresyl diphenyl phosphate (CDP), bound directly to AChE. The affinity constant (KD) for TPHP, TCP, CDP and CPF was 2.18 × 10-4, 5.47 × 10-5, 1.05 × 10-4 and 1.70 × 10-5 M, respectively. In addition, molecular docking revealed that TPHP, TCP, CDP and CPF bound to AChE with glide scores of - 7.8, - 8.3, - 8.1 and - 7.3, respectively. Furthermore, the calculated binding affinity between OPFRs and AChE correlated well with the KD values measured by BLI. The present study revealed that aryl-OPFRs can act as potent AChE inhibitors, and may therefore present a significant ecological risk to aquatic organisms.
Collapse
Affiliation(s)
- Qipeng Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Wei Guo
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; State Key Laboratory for Conservation and Utilization of Bio-Resources, School of Life Sciences, Center for Life Sciences, Yunnan University, Kunming 650091, China
| | - Qiancheng Shen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Key Laboratory of Tumor Microenvironment and Inflammation, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, China
| | - Jian Han
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lei Lei
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chenglian Feng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
42
|
Sun D, Chen Q, Zhu B, Zhao H, Duan S. Multigenerational reproduction and developmental toxicity, and HPG axis gene expression study on environmentally-relevant concentrations of nonylphenol in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 764:144259. [PMID: 33387771 DOI: 10.1016/j.scitotenv.2020.144259] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Nonylphenol (NP) is a toxic xenobiotic compound, which is persistent in the aquatic environment and is extremely toxic to aquatic organisms. Although the exact molecular mechanisms of its toxic effect are well understood, the multigenerational reproduction and multigenerational - gene expression changes caused by NP still remain unclear. The following work investigated the effect of NP on four consecutive generations of zebrafish by examining their growth and several reproductive parameters, the degree of gonad damage, and the expression of related reproduction related genes. The results showed that high concentrations (20 and 200 μg·L-1) of NP could decrease growth and induce gonad damage in zebrafish. In addition, gnrh2 and gnrh3 genes were up-regulated, and fshβ and lhβ genes were downregulated in the hypothalamus in male zebrafish; while in female fish, the fshβ and lhβ were upregulated in P and F1 generations, and then down-regulated in the F2 generation. Meanwhile, the cyp19a1a gene was downregulated in the gonad of male fish, while the genes of fshr, lhr and esr showed a downward trend in females. Compared to P generation, F2 generation was more tolerant to higher NP concentrations (20 and 200 μg·L-1), as was also more sensitive to lower concentrations of NP (2 μg·L-1). Consequently, stress and damage caused by environmentally-relevant concentrations of aquatic pollutants in a vertebrate model were measured and predicted. Prevention and control measures can be actively and effectively proposed, which might be transversal to other exposed organisms, including humans. After several generations, typical transgenerational genetic phenomena might occur, which should be addressed by further studies.
Collapse
Affiliation(s)
- Dong Sun
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China; Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Qi Chen
- Department of Ecology, Jinan University, Guangzhou 510632, China
| | - Bo Zhu
- School of Life Science and Engineering, State Defense Key Laboratory of the Nuclear Waste and Environmental Security, Southwest University of Science and Technology, Mianyang 621010, China
| | - Hui Zhao
- College of Chemistry and Environment, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Shunshan Duan
- Department of Ecology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
43
|
Guo D, Liu W, Yao T, Ma M, Wang Q, Qiu J, Qian Y. Combined endocrine disruptive toxicity of malathion and cypermethrin to gene transcription and hormones of the HPG axis of male zebrafish (Danio rerio). CHEMOSPHERE 2021; 267:128864. [PMID: 33340882 DOI: 10.1016/j.chemosphere.2020.128864] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Cypermethrin (CYP) and malathion (MAT) have been widely used and are frequently detected in surface waters. The purpose of the present study was to investigate the endocrine disrupting toxicity of CYP, MAT, and CYP + MAT to 5-month-old male zebrafish (Danio rerio). After exposure, the hepatosomatic index (HSI) and gonadosomatic index (GSI) did not change significantly. Following exposure to the combination of 0.1 μg/L CYP +25 μg/L MAT, the E2 and VTG levels of male zebrafish were significantly increased compared to those after individual pesticide treatments. The molecular level of the hypothalamic-pituitary-gonadal (HPG) axis in zebrafish was studied; it was found that the expression of the estrogen-related genes, especially the vtg1 gene, was significantly altered in 0.1 μg/L CYP + 25 μg/L MAT. Overall, our observation indicated that CYP or MAT could disturb the hormonal balance, and their combination of 0.1 μg/L CYP +25 μg/L MAT could significantly enhance the estrogenic effect.
Collapse
Affiliation(s)
- Dongmei Guo
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Wenping Liu
- Crop Germplasm Resources Institute, Jilin Academy of Agricultural Sciences, Changchun, 136100, China
| | - Tingshan Yao
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Mengmeng Ma
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiang Wang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, Zhejiang, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Yongzhong Qian
- Key Laboratory of Agro-Product Quality and Safety of Ministry of Agriculture, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
44
|
Abstract
Purpose of Review Flame retardant (FR) compounds can adversely impact neurodevelopment. This updated literature review summarizes epidemiological studies of FRs and neurotoxicity published since 2015, covering historical (polybrominated biphenyls [PBBs], polychlorinated biphenyls [PCBs]), contemporary (polybrominated diphenyl ethers [PBDEs], hexabromocyclododecane [HBCD], and tetrabromobisphenol A [TBBPA]), and current-use organophosphate FRs (OPFRs) and brominated FRs (2-ethylhexyl 2,3,4,5-tetrabromobezoate [EH-TBB] TBB), bis(2-ethylhexyl) tetrabromophthalate [BEH-TEBP]), focusing on prenatal and postnatal periods of exposure. Recent Findings Continuing studies on PCBs still reveal adverse associations on child cognition and behavior. Recent studies indicate PBDEs are neurotoxic, particularly for gestational exposures with decreased cognition and increased externalizing behaviors. Findings were suggestive for PBDEs and other behavioral domains and neuroimaging. OPFR studies provide suggestive evidence of reduced cognition and more behavioral problems. Summary Despite a lack of studies of PBBs, TBBPA, EH-TBB, and BEH-TEBP, and only two studies of HBCD, recent literature of PCBs, PBDEs, and OPFRs are suggestive of developmental neurotoxicity, calling for more studies of OPFRs.
Collapse
|
45
|
Molecularly imprinted polymers immobilized on graphene oxide film for monolithic fiber solid phase microextraction and ultrasensitive determination of triphenyl phosphate. Anal Chim Acta 2020; 1133:1-10. [DOI: 10.1016/j.aca.2020.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/08/2020] [Accepted: 08/02/2020] [Indexed: 12/11/2022]
|
46
|
Liu X, Zhao X, Wang Y, Hong J, Shi M, Pfaff D, Guo L, Tang H. Triphenyl phosphate permeates the blood brain barrier and induces neurotoxicity in mouse brain. CHEMOSPHERE 2020; 252:126470. [PMID: 32443258 DOI: 10.1016/j.chemosphere.2020.126470] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Concerns have been raised over the neurotoxicity of triphenyl phosphate (TPP), but there have been few studies of the neurotoxic effects of TPP on mammals and the underlying mechanisms. In this study, weaned male mice (C57/BL6) were used and exposed to 0, 50, or 150 mg/kg TPP daily by oral gavage for 30 days. The blood brain barrier (BBB) permeability of TPP and its metabolite diphenyl phosphate (DPP) in the brain, and TPP induced metabolomic and transcriptomic changes of the brain were investigated. The results showed that TPP and DPP can cross the BBB of mice. Histopathological examination of the brain revealed abnormalities in the hippocampus, cortex and thalamus, and mice treated with high doses showed a potential inflammation in the thalamus and hippocampus. Untargeted metabolomic results revealed that the changed level of glutamic acid, N-acetyl CoA metabolites, and organic acid in the brain of treated mice, suggest that amino acid and lipid metabolism was interfered. RNA-seq data indicated that neuronal transcription processes and cell apoptosis pathway (forkhead box (FOXO), and mitogen-activated protein kinase (MAPK) signaling pathways) were significantly affected by TPP exposure. RT-PCR showed proinflammation cytokine tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6)) levels were increased, while antioxidant genes including nuclear factor-E2-related factor 2 (Nrf2), heme oxygenase1 (HO-1) and superoxide dismutase (SOD1) decreased. These results suggest that TPP could cause a degree of neurotoxicity by inducing neuroinflammation and neuronal apoptosis, which are related to oxidative stress. The potential implications for neurophysiology and behavioral regulation cannot be ignored.
Collapse
Affiliation(s)
- Xiaoshan Liu
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Xiaolei Zhao
- Institute for Medical System Biology, Dongguan Scientific Research Center, Guangdong Medical University, Guangdong, 523-808, China
| | - Yao Wang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Jiabin Hong
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Ming Shi
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China
| | - Donald Pfaff
- Laboratory of Neurobiology and Behavior, Rockefeller University, New York, NY, USA
| | - Lianxian Guo
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China.
| | - Huanwen Tang
- School of Public Health, Dongguan Key Laboratory of Environmental Medicine, Guangdong Medical University, Guangdong, 523-808, China.
| |
Collapse
|
47
|
Wei P, Zhao F, Zhang X, Ru S. Long-term exposure of zebrafish to bisphenol S impairs stress function of hypothalamic-pituitary-interrenal axis and causes anxiety-like behavioral responses to novelty. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 716:137092. [PMID: 32044495 DOI: 10.1016/j.scitotenv.2020.137092] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/21/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
Bisphenol S (BPS), a main substitute of bisphenol A, has been reported to induce multiple endocrine disrupting effects on animals, however, whether it can interfere with the corticosteroid-endocrine system still remains unknown. Furthermore, previous studies mainly investigated the influences of environmental pollutants on corticosteroid levels and gene expressions of hypothalamic-pituitary-interrenal/adrenal (HPI/A) axis, while the downstream toxic effects caused thereafter have not yet been fully elucidated. Considering the key role of cortisol, a primary corticosteroid hormone in teleost, in mediating stress adaptation and the highly positive correlation between cortisol level and anxious phenotype in the novel environment, we hypothesized that an imbalanced cortisol homeostasis due to environmental pollutant exposure may further affect the behavioral responses to novelty stress. In the present study, zebrafish, a valuable model in studying human stress physiology and anxiety behavior, were exposed to BPS from embryos to adults (120 days) at environmentally relevant concentrations (1 and 10 μg/L) and 100 μg/L. Results found that long-term exposure to BPS increased whole-body cortisol levels and caused abnormal expressions of HPI axis genes. Moreover, the excessive cortisol levels may be due to the inhibition of cortisol catabolism and excretion, as evidenced by the down-regulated expressions of hydroxysteroid 11-beta dehydrogenase 2 and hydroxysteroid 20-beta dehydrogenase 2 genes. More importantly, as we speculated, excessive cortisol levels may be responsible for the occurrence of anxiety-like behavioral responses indicated by longer latency, fewer time spent in the upper half, and more erratic movements in a 6-min novel tank test. Overall, our study provides basic data for the comprehensive understanding of BPS toxicity, and emphasizes environmental health risks of BPS in inducing anxiety syndrome at environmentally realistic concentrations.
Collapse
Affiliation(s)
- Penghao Wei
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong province, China
| | - Fei Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, 11 Fushun Road, Qingdao 266033, Shandong province, China
| | - Xiaona Zhang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong province, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, Shandong province, China.
| |
Collapse
|
48
|
Organophosphate Esters: Are These Flame Retardants and Plasticizers Affecting Children's Health? Curr Environ Health Rep 2020; 6:201-213. [PMID: 31755035 DOI: 10.1007/s40572-019-00258-0] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Organophosphate esters (OPEs) are applied to a variety of consumer products, primarily as flame retardants and plasticizers. OPEs can leach out of products over time and are consequently prevalent in the environment and frequently detected in human biomonitoring studies. Exposure during pregnancy is of particular concern as OPEs have recently been detected in placental tissues, suggesting they may be transferred to the developing infant. Also, studies have now shown that children typically experience higher exposure to several OPEs compared with adults, indicating they may be disproportionately impacted by these compounds. This review summarizes the current literature on reproductive and child health outcomes of OPE exposures and highlights areas for future research. RECENT FINDINGS Experimental animal studies demonstrate potential for OPEs to adversely impact health, and a limited number of epidemiologic studies conducted in adult cohorts suggest that OPEs may interfere with the endocrine system. Neurodevelopment is perhaps the most well studied of children's health endpoints, and several studies indicate that prenatal and early life OPE exposures impact both cognitive and behavioral development. Associations have also been reported with reproductive outcomes (e.g., fertilization and pregnancy loss) and with the timing of parturition and preterm birth. Cross-sectional studies also demonstrate associations between OPEs and respiratory health outcomes, allergic disease, and measures of adiposity. An expanding body of research demonstrates that OPEs are associated with adverse reproductive health and birth outcomes, asthma and allergic disease, early growth and adiposity, and neurodevelopment. Still, additional research is urgently needed to elucidate the full impact of OPEs on children's health.
Collapse
|
49
|
Zhang Q, Yu C, Fu L, Gu S, Wang C. New Insights in the Endocrine Disrupting Effects of Three Primary Metabolites of Organophosphate Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4465-4474. [PMID: 32150676 DOI: 10.1021/acs.est.9b07874] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Despite the ubiquity of organophosphate flame retardants (OPFRs) metabolites in the biota, the endocrine disrupting potency has not been well examined. Herein, we chose three primary metabolites of OPFRs (BCIPP, BDCIPP, and DPHP) to investigate their potential endocrine disrupting effects by in vitro, in vivo, and in silico assays. Three metabolites were agonistic to rat estrogenic receptor alpha (ERα) and antagonists to human mineralocorticoid receptor (MR). BCIPP exerted endocrine disrupting effect contrasting to the negative response of its parental compound. It also poses the strongest binding capacity to ERα among the tested compounds. Both BCIPP and BDCIPP upregulated the genes encoded for estrogenic synthesis enzymes in H295R cells, including 17βHSD and CYP19. All three compounds stimulated the transcription of CYP11B1, whereas BCIPP and DPHP also triggered CYP11B2, encoding for corticoid production. BDCIPP inhibits genes for progesterone synthesis including CYP11A1, STAR, and 3-βHSD. The induction of mortality and low hatchability of zebrafish embryo were ranked as BCIPP ≥ BDCIPP > DPHP. All compounds lead to malformation of zebrafish larvae. Both of the hypothalamic-pituitary-adrenocortical and hypothalamic-pituitary-gonadal axes were disrupted, with the highest impact by BCIPP. Altogether, the data clarified OPFRs metabolites may produce comparable or even higher endocrine disrupting effects than OPFRs.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Chang Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Lili Fu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
50
|
Luo D, Liu W, Tao Y, Wang L, Yu M, Hu L, Zhou A, Covaci A, Xia W, Li Y, Xu S, Mei S. Prenatal Exposure to Organophosphate Flame Retardants and the Risk of Low Birth Weight: A Nested Case-Control Study in China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3375-3385. [PMID: 32106667 DOI: 10.1021/acs.est.9b06026] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Organophosphate flame retardants (OPFRs), used as flame retardants and plasticizers, have been suggested to impair fetal growth and development in toxicological studies, but epidemiological data are extremely limited. This study was designed to explore whether prenatal exposure to OPFRs was associated with an increased risk of low birth weight (LBW) using a nested case-control design based on the ongoing prospective birth cohort in Wuhan, China. A total of 113 cases and 226 matched controls recruited from this cohort project in 2014-2016 were included. OPFR metabolite concentrations in maternal urine samples collected in the third trimester were determined, and birth outcomes were extracted from medical records. Compared with the lowest tertile of diphenyl phosphate (DPHP) concentrations, pregnant women with the highest tertile of DPHP had a 4.62-fold (95% confidence interval (CI): 1.72, 12.40) significantly increased risk for giving birth to LBW infants, with a significant dose-response relationship (p-trend < 0.01). After stratification by newborn sex, the significant positive association of DPHP levels with LBW risk was merely observed among female newborns. Our results suggest a positive association between maternal urinary DPHP concentrations and LBW risk for the first time, and the effect appears be sex-specific.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Wenyu Liu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510632, China
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510632, China
| | - Yun Tao
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Limei Wang
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Meng Yu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Liqin Hu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aifen Zhou
- Wuhan Maternal and Child Healthcare Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Wei Xia
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Li
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Surong Mei
- Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environment Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|