1
|
Jin B, Li X, Zhang Q, Zhou W, Liu Y, Dong Z, Chen G, Liu D. Toxicity assessment of microcystin-leucine arginine in planarian Dugesia japonica. Integr Zool 2024; 19:1135-1150. [PMID: 37849408 DOI: 10.1111/1749-4877.12780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Microcystin-leucine arginine (MC-LR), a representative cyanobacterial toxin, poses an increasing and serious threat to aquatic ecosystems. Despite investigating its toxic effects in various organisms and cells, the toxicity to tissue regeneration and stem cells in vivo still needs to be explored. Planarians are ideal regeneration and toxicology research models and have profound implications in ecotoxicology evaluation. This study conducted a systemic toxicity evaluation of MC-LR, including morphological changes, growth, regeneration, and the underlying cellular and molecular changes after MC-LR exposure, which were investigated in planarians. The results showed that exposure to MC-LR led to time- and dose-dependent lethal morphological changes, tissue damage, degrowth, and delayed regeneration in planarians. Furthermore, MC-LR exposure disturbed the activities of antioxidants, including total superoxide dismutase, catalase, glutathione peroxidase, glutathione S-transferase, and total antioxidant capacity, leading to oxidative stress and DNA damage, and then reduced the number of dividing neoblasts and promoted apoptosis. The results demonstrated that oxidative stress and DNA damage induced by MC-LR exposure caused apoptosis. Excessive apoptosis and suppressed neoblast activity led to severe homeostasis imbalance. This study explores the underlying mechanism of MC-LR toxicity in planarians and provides a basis for the toxicity assessment of MC-LR to aquatic organisms and ecological risk evaluation.
Collapse
Affiliation(s)
- Baijie Jin
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Xiangjun Li
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Qingling Zhang
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Wen Zhou
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Yingyu Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Zimei Dong
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Guangwen Chen
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| | - Dezeng Liu
- College of Life Science, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
2
|
Mohammed V, Arockiaraj J. Unveiling the trifecta of cyanobacterial quorum sensing: LuxI, LuxR and LuxS as the intricate machinery for harmful algal bloom formation in freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171644. [PMID: 38471587 DOI: 10.1016/j.scitotenv.2024.171644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 02/22/2024] [Accepted: 03/09/2024] [Indexed: 03/14/2024]
Abstract
Harmful algal blooms (HABs) are causing significant disruptions in freshwater ecosystems, primarily due to the proliferation of cyanobacteria. These blooms have a widespread impact on various lakes globally, leading to profound environmental and health consequences. Cyanobacteria, with their ability to produce diverse toxins, pose a particular concern as they negatively affect the well-being of humans and animals, exacerbating the situation. Notably, cyanobacteria utilize quorum sensing (QS) as a complex communication mechanism that facilitates coordinated growth and toxin production. QS plays a critical role in regulating the dynamics of HABs. However, recent advances in control and mitigation strategies have shown promising results in effectively managing and reducing the occurrence of HABs. This comprehensive review explores the intricate aspects of cyanobacteria development in freshwater ecosystems, explicitly focusing on deciphering the signaling molecules associated with QS and their corresponding genes. Furthermore, a concise overview of diverse measures implemented to efficiently control and mitigate the spread of these bacteria will be provided, shedding light on the ongoing global efforts to address this urgent environmental issue. By deepening our understanding of the mechanisms driving cyanobacteria growth and developing targeted control strategies, we hope to safeguard freshwater ecosystems and protect the health of humans and animals from the detrimental impacts of HABs.
Collapse
Affiliation(s)
- Vajagathali Mohammed
- Department of Forensic Science, Yenepoya Institute of Arts, Science, Commerce, and Management, Yenepoya (Deemed to be University), Mangaluru 575013, Karnataka, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
3
|
Luo Y, Dao G, Zhou G, Wang Z, Xu Z, Lu X, Pan X. Effects of low concentration of gallic acid on the growth and microcystin production of Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:169765. [PMID: 38181948 DOI: 10.1016/j.scitotenv.2023.169765] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/18/2023] [Accepted: 12/28/2023] [Indexed: 01/07/2024]
Abstract
Gallic acid (GA) is an allelochemical that has been utilized in high concentrations for the management of harmful algal blooms (HABs). However, there is limited knowledge regarding its impact on the growth of M. aeruginosa as the GA concentration transitions from high to low during the HABs control process. This study has revealed that as the GA concentration decreases (from 10 mg/L to 0.001 μg/L), a dose-response relationship becomes apparent in the growth of M. aeruginosa and microcystin production, characterized by high-dose inhibition and low-dose stimulation. Notably, at the concentration of 0.1 μg/L GA, the most significant growth-promoting effect on both growth and MCs synthesis was observed. The growth rate and maximum cell density were increased by 1.09 and 1.16 times, respectively, compared to those of the control group. Additionally, the contents of MCs synthesis saw a remarkable increase, up by 1.85 times. Furthermore, lower GA concentrations stimulated the viability of cyanobacterial cells, resulting in substantially higher levels of reactive oxygen species (ROS) and chlorophyll-a (Chl a) compared to other concentrations. Most importantly, the expression of genes governing MCs synthesis was significantly upregulated, which appears to be the primary driver behind the significantly higher MCs levels compared to other conditions. The ecological risk quotient (RQ) value of 0.1 μg/L GA was the highest of all experimental groups, which was approximately 30 times higher than that of the control, indicating moderate risk. Therefore, it is essential to pay attention to the effect of M. aeruginosa growth, metabolism and water ecological risk under the process of reducing GA concentration after dosing during the HABs control process.
Collapse
Affiliation(s)
- Yu Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China; Yunnan Key Laboratory of Pollution Process and Management of Plateau Lake-Watershed, Yunnan Research Academy of Eco-environmental Sciences, Kunming 650034, Yunnan, China
| | - Guohua Dao
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Guoquan Zhou
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Zhuoxuan Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Xinyue Lu
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and technology, Kunming 650500, Yunnan, China.
| |
Collapse
|
4
|
Ren X, Mao M, Feng M, Peng T, Long X, Yang F. Fate, abundance and ecological risks of microcystins in aquatic environment: The implication of microplastics. WATER RESEARCH 2024; 251:121121. [PMID: 38277829 DOI: 10.1016/j.watres.2024.121121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
Microcystins are highly toxic cyanotoxins and have been produced worldwide with the global expansion of harmful cyanobacterial blooms (HABs), posing serious threats to human health and ecosystem safety. Yet little knowledge is available on the underlying process occurring in the aquatic environment with microcystins. Microplastics as vectors for pollutants has received growing attention and are widely found co-existing with microcystins. On the one hand, microplastics could react with microcystins by adsorption, altering their environmental behavior and ecological risks. On the other hand, particular attention should be given to microplastics due to their implications on the outbreak of HABs and the generation and release of microcystins. However, limited reviews have been undertaken to link the co-existing microcystins and microplastics in natural water. This study aims to provide a comprehensive understanding on the environmental relevance of microcystins and microplastics and their potential interactions, with particular emphasis on the adsorption, transport, sources, ecotoxicity and environmental transformation of microcystins affected by microplastics. In addition, current knowledge gaps and future research directions on the microcystins and microplastics are presented. Overall, this review will provide novel insights into the ecological risk of microcystins associated with microplastics in real water environment and lay foundation for the effective management of HABs and microplastic pollution.
Collapse
Affiliation(s)
- Xiaoya Ren
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Meiyi Mao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Mengqi Feng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Tangjian Peng
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Xizi Long
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiang Ya School of Public Health, Central South University, Changsha 410078, China.
| |
Collapse
|
5
|
Li T, Fan X, Cai M, Jiang Y, Wang Y, He P, Ni J, Mo A, Peng C, Liu J. Advances in investigating microcystin-induced liver toxicity and underlying mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167167. [PMID: 37730048 DOI: 10.1016/j.scitotenv.2023.167167] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/27/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Microcystins (MCs) are a class of biologically active cyclic heptapeptide pollutants produced by the freshwater alga Microcystis aeruginosa. With increased environmental pollution, MCs have become a popular research topic. In recent years, the hepatotoxicity of MCs and associated effects and mechanisms have been studied extensively. Current epidemiological data indicate that long-term human exposure to MCs can lead to severe liver toxicity, acute toxicity, and death. In addition, current toxicological studies on the liver, a vital target organ of MCs, indicate that MC contamination is associated with the development of liver cancer, nonalcoholic fatty liver, and liver fibrosis. MCs produce hepatotoxicity that affects the metabolic homeostasis of the liver, induces apoptosis, and acts as a pro-cancer factor, leading to liver lesions. MCs mainly mediate the activation of signaling pathways, such as the ERK/JNK/p38 MAPK and IL-6-STAT3 pathways, which leads to oxidative damage and even carcinogenesis. Moreover, MCs can act synergistically with other pollutants to produce combined toxicity. However, few systematic reviews have been performed on these new findings. This review systematically summarizes the toxic effects and mechanisms of MCs on the liver and discusses the combined liver toxicity effects of MCs and other pollutants to provide reference for subsequent research. The toxicity of different MC isomers deserves further study. The detection methods and limit standards of MCs in agricultural and aquatic products will represent important research directions in the future. Standard protocols for fish sampling during harmful algal blooms or to evaluate the degree of MC toxicity in nature are lacking. In future, bioinformatics can be applied to offer insights into MC toxicology research and potential drug development for MC poisoning. Further research is essential to understand the molecular mechanisms of liver function damage in combined-exposure toxicology studies to establish treatment for MC-induced liver damage.
Collapse
Affiliation(s)
- Tong Li
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Xinting Fan
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Meihan Cai
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Yuanyuan Jiang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Yaqi Wang
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Peishuang He
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Juan Ni
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Aili Mo
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Cuiying Peng
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China
| | - Jun Liu
- Department of Cell Biology and Genetics, Institute of Cytology and Genetics, School of Basic Medical Sciences, Hengyang Medical School, Key Laboratory of Hengyang City on Biological Toxicology and Ecological Restoration, Key Laboratory of Hengyang City on Ecological Impedance Technology of Heavy Metal Pollution in Cultivated Soil of Nonferrous Metal Mining Area, Key Laboratory of Ecological Environment and Critical Human Diseases Prevention of Hunan Province Department of Education, University of South China, Hengyang, Hunan 421001, China; School of Public Health, Hengyang Medical School, Hunan Key Laboratory of Typical Environmental Pollution and Health Hazards, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
6
|
Wu H, Zhang W, Huang X, Gu P, Li Q, Luo X, Zheng Z. Phosphorus conditions change the cellular responses of Microcystis aeruginosa to perfluorooctanoic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166707. [PMID: 37660808 DOI: 10.1016/j.scitotenv.2023.166707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
Perfluorooctanoic acid (PFOA), a widespread and emerging organic contaminant of aquatic environments, has high bioaccumulation potential and high toxicity. Consequently, major concerns have been raised worldwide regarding the management of this pollutant in aquatic ecosystems. To thoroughly understand PFOA's toxic effects on aquatic organisms, systematic investigations were conducted on the cellular responses of Microcystis aeruginosa to the environmental concentrations of PFOA under various concentrations as well as phosphorus (P) conditions (concentrations and forms). The results showed that P conditions remarkably affected cyanobacterial growth as well as photosynthetic pigment content, triggered oxidative stress to disrupt the function and structure of the cell membrane, and caused changes in the extracellular and intracellular contents of microcystin-LR (MC-LR). Furthermore, PFOA (100 μg/L) was absorbed by cyanobacterial cells through the stimulation of the secretion of extracellular polymeric substances (EPS) by M. aeruginosa. After entering the cyanobacterial cells, PFOA inhibited photosynthesis, reduced P absorption, induced oxidative damage, lead to a loss of cell integrity evident in scanning electron microscope images, and increased mcyA gene expression to promote MC-LR production. Moreover, the limited P concentration and forms conditions led to increased PFOA absorption by cyanobacterial cells, which further upregulated mcyA gene expression and increased the risk of MC-LR diffusion into the aquatic environment. Our present study provided a theoretical basis and new ideas for understanding and addressing safety issues related to the presence of PFOA in aquatic environments with varying nutritional statuses.
Collapse
Affiliation(s)
- Hanqi Wu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Weizheng Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Xuhui Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Xingzhang Luo
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zheng Zheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China.
| |
Collapse
|
7
|
Cen C, Zhang K, Zhang T, Wu J, Mao X. Exploring the ignored role of escaped algae in a pilot-scale DWDS: Disinfectant consumption, DBP yield and risk formation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122599. [PMID: 37739259 DOI: 10.1016/j.envpol.2023.122599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/04/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Insufficient treatments during bloom-forming seasons allow algae to enter the subsequent drinking water distribution system (DWDS). Yet, scarce information is available regarding the role escaped algae to play in the DWDS, and how they interact with the system. Thus, three scenarios were conducted: a pilot DWDS with algae (a), pipe water (b), and pipe water with algae (c). Experimental results showed that, compared to biofilm and bulk water, escaped algae required fewer disinfectants. Competition for disinfectants varied with algal strains (Microcystis aeruginosa, MA; Pseudanabaena sp., PS) and disinfectant types (chlorine, Cl2; chloriamine, NH2Cl). Algae in the MA-Cl2 group showed the highest demand (6.25%-36.02%). However, the low-concentration disinfectants distributed to algae could trigger distinct algal status alternations. Cl2 diffused into intact MA cells and reacted with intracellular compositions. Damaged PS cells reached 100% within 2 h. Typical disinfection byproducts (DBPs), including trihalomethanes (THMs), haloacetic acids and halogenated acetonitriles were examined. Disinfectant types and algal strains affected DBP yield and distribution. Although disinfectants consumed by algae might not promote dissolved DBP formation, especially for THMs. DBP formation of the other components was affected by escaped algae via changing disinfectant assignment (reduced by 45.45% for MA-Cl2) and transformation efficiency (by 34.52%). The cytotoxicity risks were estimated. Dissolved DBP-induced risks were not added when escaped algae occurred, whereas disruption and release of intracellular substances increased risks; the maximum cytotoxicity did not occur at 12 h rather than at the end (24 h). Overall, this study provided an innovative perspective on algal-related water quality issues in water systems.
Collapse
Affiliation(s)
- Cheng Cen
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Hangzhou, 310058, China
| | - Kejia Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Hangzhou, 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China.
| | - Tuqiao Zhang
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Hangzhou, 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314100, China
| | - Jiajia Wu
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Hangzhou, 310058, China
| | - Xinwei Mao
- College of Civil Engineering and Architecture, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Drinking Water Safety and Distribution Technology, Hangzhou, 310058, China
| |
Collapse
|
8
|
Shartau RB, Turcotte LDM, Bradshaw JC, Ross ARS, Surridge BD, Nemcek N, Johnson SC. Dissolved Algal Toxins along the Southern Coast of British Columbia Canada. Toxins (Basel) 2023; 15:395. [PMID: 37368696 DOI: 10.3390/toxins15060395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
Harmful algal blooms (HABs) in coastal British Columbia (BC), Canada, negatively impact the salmon aquaculture industry. One disease of interest to salmon aquaculture is Net Pen Liver Disease (NPLD), which induces severe liver damage and is believed to be caused by the exposure to microcystins (MCs). To address the lack of information about algal toxins in BC marine environments and the risk they pose, this study investigated the presence of MCs and other toxins at aquaculture sites. Sampling was carried out using discrete water samples and Solid Phase Adsorption Toxin Tracking (SPATT) samplers from 2017-2019. All 283 SPATT samples and all 81 water samples tested positive for MCs. Testing for okadaic acid (OA) and domoic acid (DA) occurred in 66 and 43 samples, respectively, and all samples were positive for the toxin tested. Testing for dinophysistoxin-1 (DTX-1) (20 samples), pectenotoxin-2 (PTX-2) (20 samples), and yessotoxin (YTX) (17 samples) revealed that all samples were positive for the tested toxins. This study revealed the presence of multiple co-occurring toxins in BC's coastal waters and the levels detected in this study were below the regulatory limits for health and recreational use. This study expands our limited knowledge of algal toxins in coastal BC and shows that further studies are needed to understand the risks they pose to marine fisheries and ecosystems.
Collapse
Affiliation(s)
- Ryan B Shartau
- Department of Biology, The University of Texas at Tyler, Tyler, TX 75799, USA
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Lenora D M Turcotte
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Julia C Bradshaw
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| | - Andrew R S Ross
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
| | | | - Nina Nemcek
- Institute of Ocean Sciences, Fisheries and Oceans Canada, Sidney, BC V8L 4B2, Canada
| | - Stewart C Johnson
- Pacific Biological Station, Fisheries and Oceans Canada, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
9
|
Shahmohamadloo RS, Bhavsar SP, Ortiz Almirall X, Marklevitz SAC, Rudman SM, Sibley PK. Cyanotoxins accumulate in Lake St. Clair fish yet their fillets are safe to eat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162381. [PMID: 36870491 DOI: 10.1016/j.scitotenv.2023.162381] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Consuming fish exposed to cyanobacterial harmful algal blooms (HABs) may be a major route of microcystin toxin exposure to humans. However, it remains unknown whether fish can accumulate and retain microcystins temporally in waterbodies with recurring seasonal HABs, particularly before and after a HAB event when fishing is active. We conducted a field study on Largemouth Bass, Northern Pike, Smallmouth Bass, Rock Bass, Walleye, White Bass, and Yellow Perch to assess the human health risks to microcystin toxicity via fish consumption. We collected 124 fish in 2016 and 2018 from Lake St. Clair, a large freshwater ecosystem in the North American Great Lakes that is actively fished pre- and post-HAB periods. Muscles were analyzed using the 2-methyl-3-methoxy-4-phenylbutyric acid (MMPB) Lemieux Oxidation method for total microcystins, which was used to perform a human health risk assessment for comparison against fish consumption advisory benchmarks available for Lake St. Clair. From this collection 35 fish livers were additionally extracted to confirm the presence of microcystins. Microcystins were detected in all livers at widely varying concentrations (1-1500 ng g-1 ww), suggesting HABs are an underappreciated and pervasive stressor to fish populations. Conversely, microcystin levels were consistently low in muscles (0-15 ng g-1 ww) and presented negligible risk, empirically supporting that fillets may be safely consumed before and after HAB events following fish consumption advisories.
Collapse
Affiliation(s)
- René S Shahmohamadloo
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, United States; School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada.
| | - Satyendra P Bhavsar
- Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto, ON M9P 3V6, Canada; Department of Physical & Environmental Sciences, University of Toronto, 1065 Military Trail, Toronto, ON M1C 1A4, Canada
| | - Xavier Ortiz Almirall
- Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto, ON M9P 3V6, Canada; IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390, 08017 Barcelona, Spain
| | - Stephen A C Marklevitz
- Lake Erie Management Unit, Ministry of Natural Resources and Forestry, 320 Milo Road, Wheatley, ON N0P 2P0, Canada
| | - Seth M Rudman
- School of Biological Sciences, Washington State University, 14204 NE Salmon Creek Ave, Vancouver, WA 98686, United States
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, 50 Stone Rd E, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
10
|
Yu J, Zhu H, Wang H, Shutes B, Niu T. Effect of butachlor on Microcystis aeruginosa: Cellular and molecular mechanisms of toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131042. [PMID: 36827725 DOI: 10.1016/j.jhazmat.2023.131042] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The rapid development of agriculture increases the release of butachlor into aquatic environments. As a dominant species causing cyanobacterial blooms, Microcystis aeruginosa (M. aeruginosa) can produce microcystin and poses threats to aquatic ecosystems and human health. However, the impact of butachlor on M. aeruginosa remains unclarified. Therefore, the physiochemical responses of M. aeruginosa to butachlor were investigated, and the relevant underlying molecular mechanism was highlighted. There were no significant changes (P > 0.05) in the growth and physiology of M. aeruginosa at the low concentrations of butachlor (0-0.1 mg/L), which evidenced a high level of butachlor tolerance in Microcystis aeruginosa. For the high concentrations of butachlor (4-30 mg/L), the inhibition of photosynthetic activity, disruption of cell ultrastructure, and oxidative stress were dominant toxic effects on M. aeruginosa. Additionally, the impaired cellular integrity and lipid peroxidation may be attributed to the substantial elevations of extracellular microcystin-LR concentration. Downregulation of genes associated with photosynthesis, energy metabolism, and oxidative stress was inferred to be responsible for the growth suppression of M. aeruginosa in 30 mg/L butachlor treatment. The upregulation of gene sets involved in nitrogen metabolism may illustrate the specific effort to sustain the steady concentration of intracellular microcystin-LR. These findings dissect the response mechanism of M. aeruginosa to butachlor toxicity and provide valuable reference for the evaluation of potential risk caused by butachlor in aquatic environments.
Collapse
Affiliation(s)
- Jing Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Heli Wang
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London NW4 4BT, UK
| | - Tingting Niu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
11
|
Zhao Y, Huang Y, Hu S, Xu T, Fang Y, Liu H, Xi Y, Qu R. Combined effects of fluoroquinolone antibiotics and organophosphate flame retardants on Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53050-53062. [PMID: 36853534 DOI: 10.1007/s11356-023-25974-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
As freshwater harmful algal blooms continue to rise in frequency and severity, increasing focus is made on the effects of mixed pollutants and the dominant cyanobacterial species Microcystis aeruginosa (M. aeruginosa). However, few studies have investigated whether M. aeruginosa has a synergistic relationship with two common pollutants, namely, organophosphate flame retardants (OPFRs) and fluoroquinolone antibiotics (FQs). In this paper, three FQs and three OPFRs commonly detected in freshwaters were selected to construct a ternary mixture of FQs, a ternary mixture of OPFRs, and a six-component mixture of OPFRs and FQs. The effects of single substance and mixture on the growth of M. aeruginosa were determined at 24, 48, 72, and 96 h, and the toxicities of the mixture were evaluated by concentration addition model and independent action model. The results showed that the mixture of FQs and the mixture of OPFRs do not show toxicological interaction. However, partial mixtures of OPFRs and FQs showed antagonism or synergism at different concentrations and times. This indicated that combined toxicities of OPFRs and FQs on M. aeruginosa were mixture ratio dependent, concentration dependent and time dependent. This study improves our understanding of the role of OPFRs and FQs in cyanobacterial outbreaks of Microcystis.
Collapse
Affiliation(s)
- Yang Zhao
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Shuang Hu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Tao Xu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Yanfen Fang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- College of Biology & Pharmacy, China Three Gorges University, Yichang, 443002, Hubei, China
| | - Huigang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Ying Xi
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China
| | - Rui Qu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China.
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, Ministry of Education, China Three Gorges University, Yichang, 443002, Hubei, People's Republic of China.
| |
Collapse
|
12
|
Zhang J, Yu M, Zhang Z, Zhang M, Gao Y, Dong J, Zhou C, Li X. Integrating regular and transcriptomic analyses reveal resistance mechanisms in Corbicula fluminea (Müller, 1774) in response to toxic Microcystis aeruginosa exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114553. [PMID: 36680989 DOI: 10.1016/j.ecoenv.2023.114553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
The frequent occurrence of cyanobacterial blooms (CYBs) caused by toxic Microcystis aeruginosa poses a great threat to aquatic organisms. Although freshwater benthic bivalves have proven to be capable of uptake high levels of microcystins (MCs) due to their filter-feeding habits, there is a paucity of information concerning their systemic resistance mechanisms to MCs. In this study, the resistance mechanisms in Corbicula fluminea (O. F. Müller, 1774) in response to the exposure of toxic M. aeruginosa were explored through transcriptional analysis combined with histopathological and biochemical phenotypic analysis. Toxic M. aeruginosa exposure caused dose-dependent histological damage in the hepatopancreas. The conjugation reaction catalyzed by glutathione S-transferases was vulnerable to being activated by high concentrations of M. aeruginosa (10 ×105 cells mL-1). Additionally, reactive oxygen species scavenging processes mediated by superoxide dismutase and catalase were active in the initial stage of toxic M. aeruginosa exposure. The results of the integrated biomarker response index suggested that the biotransformation and antioxidant defense system in C. fluminea could be continuously activated after acute exposure to the high concentration of toxic M. aeruginosa. The eggNOG and GO analysis of the differentially expressed genes (DEGs) indicated that DEGs were significantly enriched in transporter activity, oxidant detoxification and response to oxidative stress categories, which were consistent with the alterations of biochemical indices. Besides, DEGs were significantly annotated in a few KEGG pathways involved in biotransformation (oxidation, cooxidation and conjugation) and immunoreaction (lysosome and phagosome responses), which could be responsible for the tolerance of C. fluminea to toxic M. aeruginosa. These findings improve our understanding of potential resistance mechanisms of freshwater bivalves to MCs.
Collapse
Affiliation(s)
- Jingxiao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| | - Miao Yu
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Zehao Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Man Zhang
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Yunni Gao
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Jing Dong
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China
| | - Chuanjiang Zhou
- College of Life Sciences, Henan Normal University, Xinxiang 453007, China
| | - Xuejun Li
- Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, College of Fisheries, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
13
|
Hataley EK, Shahmohamadloo RS, Almirall XO, Harrison AL, Rochman CM, Zou S, Orihel DM. Experimental Evidence from the Field that Naturally Weathered Microplastics Accumulate Cyanobacterial Toxins in Eutrophic Lakes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:3017-3028. [PMID: 36148929 DOI: 10.1002/etc.5485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/11/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Freshwater ecosystems with recurring harmful algal blooms can also be polluted with plastics. Thus the two environmental problems may interact. To test whether microplastics influence the partitioning of microcystins in freshwater lakes, we examined the sorption of four microcystin congeners to different polymers of commercially available plastics (low-density polyethylene, polyethylene terephthalate, polyvinyl chloride, and polypropylene). We conducted three experiments: a batch sorption experiment in the laboratory with pristine microplastics of four different polymers, a second batch sorption experiment in the laboratory to compare pristine and naturally weathered microplastics of a single polymer, and a 2-month sorption experiment in the field with three different polymers experiencing natural weathering in a eutrophic lake. This series of experiments led to a surprising result: microcystins sorbed poorly to all polymers tested under laboratory conditions (<0.01% of the initial amount added), irrespective of weathering, yet in the field experiment, all polymers accumulated microcystins under ambient conditions in a eutrophic lake (range: 0-84.1 ng/g). Furthermore, we found that the sorption capacity for microcystins differed among polymers in the laboratory experiment yet were largely the same in the field. We also found that the affinity for plastic varied among microcystin congeners, namely, more polar congeners demonstrated a greater affinity for plastic than less polar congeners. Our study improves our understanding of the role of polymer and congener type in microplastic-microcystin sorption and provides novel evidence from the field, showing that naturally weathered microplastics in freshwater lakes can accumulate microcystins. Consequently, we caution that microplastics may alter the persistence, transport, and bioavailability of microcystins in freshwaters, which could have implications for human and wildlife health. Environ Toxicol Chem 2022;41:3017-3028. © 2022 SETAC.
Collapse
Affiliation(s)
- Eden K Hataley
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - René S Shahmohamadloo
- School of Biological Sciences, Washington State University, Vancouver, Washington, USA
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - Xavier Ortiz Almirall
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
- Ontario Ministry of the Environment, Conservation and Parks, Etobicoke, Ontario, Canada
- Department of Chemical Engineering and Material Sciences, IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Anna L Harrison
- Géosciences Environnement Toulouse, UMR 5563, Centre National de la Recherche Scientifique, Toulouse, France
| | - Chelsea M Rochman
- Department of Ecology and Evolutionary Biology, St. George Campus, University of Toronto, Toronto, Ontario, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council Canada, Ottawa, Ontario, Canada
| | - Diane M Orihel
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
14
|
Zhang Y, Gao Q, Liu SS, Tang L, Li XG, Sun H. Hormetic dose-response of halogenated organic pollutants on Microcystis aeruginosa: Joint toxic action and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 829:154581. [PMID: 35304143 DOI: 10.1016/j.scitotenv.2022.154581] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Quinolones (QNs), dechloranes (DECs), and chlorinated paraffins (CPs) are three kinds of new halogenated organic pollutants (HOPs), which originate from the use of flame retardants, lubricants and pesticides. Since QNs, DECs, and CPs are frequently detected in waters and sediments, it is necessary to investigate the toxic effects of these HOPs with dwelling phytoplankton, especially for cyanobacteria, to explore their potential hormetic effects and contributions to algal blooms. In the present study, we investigate single and joint toxicity of QNs, DECs and CPs on Microcystis aeruginosa (M. aeruginosa), a cyanobacterium that is frequently implicated with algal blooms. The results indicate single QNs and DECs induce marked hormetic effects on the proliferation of M. aeruginosa but CPs do not. The stimulatory effect of hormesis is linked with accelerated replication of DNA, which is considered to stem from the moderate rise in intracellular reactive oxygen species (ROS). Joint toxicity tests reveal that both QNs & CPs mixtures and DECs & CPs mixtures show hormetic effects on M. aeruginosa, but QNs & DECs mixtures show no hormetic effect. QNs & DECs mixtures exhibit synergistic toxic actions, which may be caused by a sharp rise in intracellular ROS simultaneously produced by the agents. Joint toxic actions of both QNs & CPs, and DECs & CPs shift from addition to antagonism as concentration increases, and this shift may mainly depend on the influence of CPs on cell membrane hydrophobicity of M. aeruginosa. This study provides data and toxic mechanisms for the hormetic phenomenon of single and joint HOPs on M. aeruginosa. The hormetic effects of HOPs may benefit the proliferation of M. aeruginosa in the aquatic environment, aggravating the formation of algal blooms. This study also reflects the important role of hormesis in environmental risk assessment of pollutants.
Collapse
Affiliation(s)
- Yueheng Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qing Gao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shu-Shen Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Liang Tang
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xin-Gui Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Haoyu Sun
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
15
|
Sun Y, Yu X, Yao W, Wu Z. Research progress in relationships between freshwater bivalves and algae. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113665. [PMID: 35617904 DOI: 10.1016/j.ecoenv.2022.113665] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Eutrophication in freshwater has become increasingly severe around the world, resulting in phytoplankton overgrowth and benthic algae reduction. Bivalves can change the density, dominant species and community structure of phytoplankton, increase available light levels, and provide physical habitats and growth conditions for benthic algae. The nutritional composition, density, community structure, and toxin of algae affect the growth, feeding, digestion, metabolism, immunity of bivalves in return. Interactions of bivalves and algae and effects of environmental factors on these interactions need a synthesis of studies, when using bivalves as a biomanipulation tool to control eutrophication. Whether bivalves can effectively suppress phytoplankton and promote benthic algae is related to the collective filtration and excretion capacity determined by size, species, population densities of bivalves, the quantity and quality of algae, and environmental factors such as temperature, dissolved oxygen, pH, and hydrodynamic. Small scale bivalve biomanipulation experiments are mostly conducted in lakes, urban ponds, and reservoirs with some success, applying in the whole ecosystem should consider more questions such as natural conditions, selection and death or reproduction of bivalves, and ecological disturbances. This review provides new considerations for technical issues such as the sustainable cultivation of bivalves and the implementation of biomanipulation in eutrophic waters.
Collapse
Affiliation(s)
- Yu Sun
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xiaobo Yu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Weizhi Yao
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhengli Wu
- College of Fisheries, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), and Research Center of Fishery Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
16
|
Straquadine NRW, Kudela RM, Gobler CJ. Hepatotoxic shellfish poisoning: Accumulation of microcystins in Eastern oysters (Crassostrea virginica) and Asian clams (Corbicula fluminea) exposed to wild and cultured populations of the harmful cyanobacteria, Microcystis. HARMFUL ALGAE 2022; 115:102236. [PMID: 35623692 DOI: 10.1016/j.hal.2022.102236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 06/15/2023]
Abstract
The Asian clam (Corbicula fluminea) and eastern oyster (Crassostrea virginica) are important resource bivalves found in and downstream of waterways afflicted with cyanobacterial harmful algae blooms (CHABs), respectively. This study examined the potential for C. fluminea and C. virginica to become vectors of the hepatotoxin, microcystin, from the CHAB Microcystis. Laboratory experiments were performed to quantify clearance rates, particle selection, and accumulation of the hepatotoxin, microcystin, using a microcystin-producing Microcystis culture isolated from Lake Erie (strain LE-3) and field experiments were performed with water from Microcystis blooms in Lake Agawam, NY, USA. Clearance rates of Microcystis were faster (p<0.05) than those of Raphidocelis for C. fluminea, while C. virginica cleared Microcystis and Tisochrysis at similar rates. For both bivalves, clearance rates of bloom water were slower than cultures and clams displayed significantly greater electivity for green algae compared to wild populations of cyanobacteria in field experiments while oysters did not. In experiments with cultured Microcystis comprised of single and double cells, both bivalves accumulated >3 µg microcystins g - 1 (wet weight) in 24 - 72 h, several orders of magnitude beyond California guidance value (10 ng g - 1) but accumulated only up to 2 ng microcystins g - 1 when fed bloom water dominated by large Microcystis colonies for four days. For Asian clams, clearance rates and tissue microcystin content decreased when exposed to toxic Microcystis for 3 - 4 days. In contrast, eastern oysters did not depurate microcystin over 3 - 4-day exposures and accumulated an order of magnitude more microcystin than clams. This contrast suggests Asian clams are likely to accumulate minor amounts of microcystin by reducing clearance rates during blooms of Microcystis, selectively feeding on green algae, and depurating microcystin whereas oysters are more likely to accumulate microcystins and thus are more likely to be a vector for hepatotoxic shellfish poisoning in estuaries downstream of Microcystis blooms.
Collapse
Affiliation(s)
- Nora R W Straquadine
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk HWY, Southampton, NY 11968, USA
| | - Raphael M Kudela
- University of California Santa Cruz, 1156 High Street Santa Cruz, CA 95064, USA
| | - Christopher J Gobler
- School of Marine and Atmospheric Sciences, Stony Brook University, 239 Montauk HWY, Southampton, NY 11968, USA.
| |
Collapse
|
17
|
Rodrigues NB, Pitol DL, Tocchini de Figueiredo FA, Tenfen das Chagas Lima AC, Burdick Henry T, Mardegan Issa JP, de Aragão Umbuzeiro G, Pereira BF. Microcystin-LR at sublethal concentrations induce rapid morphology of liver and muscle tissues in the fish species Astyanax altiparanae (Lambari). Toxicon 2022; 211:70-78. [DOI: 10.1016/j.toxicon.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/13/2022] [Accepted: 03/13/2022] [Indexed: 11/25/2022]
|
18
|
Shahmohamadloo RS, Ortiz Almirall X, Simmons DBD, Poirier DG, Bhavsar SP, Sibley PK. Fish tissue accumulation and proteomic response to microcystins is species-dependent. CHEMOSPHERE 2022; 287:132028. [PMID: 34474382 DOI: 10.1016/j.chemosphere.2021.132028] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Cyanotoxins including microcystins are increasing globally, escalating health risks to humans and wildlife. Freshwater fish can accumulate and retain microcystins in tissues; however, uptake and depuration studies thus far have not exposed fish to microcystins in its intracellular state (i.e., cell-bound or conserved within cyanobacteria), which is a primary route of exposure in the field, nor have they investigated sublethal molecular-level effects in tissues, limiting our knowledge of proteins responsible for microcystin toxicity pathways in pre-to-postsenescent stages of a harmful algal bloom. We address these gaps with a 2-wk study (1 wk of 'uptake' exposure to intracellular microcystins (0-40 μg L-1) produced by Microcystis aeruginosa followed by 1 wk of 'depuration' in clean water) using Rainbow Trout (Oncorhynchus mykiss) and Lake Trout (Salvelinus namaycush). Liver and muscle samples were collected throughout uptake and depuration phases for targeted microcystin quantification and nontargeted proteomics. For both species, microcystins accumulated at a higher concentration in the liver than muscle, and activated cellular responses related to oxidative stress, apoptosis, DNA repair, and carcinogenicity. However, intraspecific proteomic effects between Rainbow Trout and Lake Trout differed, and interspecific accumulation and retention of microcystins in tissues within each species also differed. We demonstrate that fish do not respond the same to cyanobacterial toxicity within and among species despite being reared in the same environment and diet.
Collapse
Affiliation(s)
- René S Shahmohamadloo
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada; Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Xavier Ortiz Almirall
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | | | - David G Poirier
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Satyendra P Bhavsar
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
19
|
Gao L, Cui AQ, Wang J, Chen J, Zhang XY, Lin ZJ, Chen YH, Zhang C, Wang H, Xu DX. Paternal exposure to microcystin-LR induces fetal growth restriction partially through inhibiting cell proliferation and vascular development in placental labyrinth. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60032-60040. [PMID: 34155591 DOI: 10.1007/s11356-021-14725-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
Microcystin-leucine arginine (MC-LR) has reproductive and developmental toxicities. Previous studies indicated that gestational exposure to MC-LR induced fetal growth restriction in mice. The aim of this study was to further evaluate the effect of paternal MC-LR exposure before mating on fetal development. Male mice were intraperitoneally injected with either normal saline or MC-LR (10 μg/kg) daily for 35 days. Male mouse was then mated with female mice with 1:1 ratio. There was no significant difference on the rates of mating and pregnancy between MC-LR-exposed male mice and controls. Body weight and crown-rump length were reduced in fetuses whose fathers were exposed to MC-LR. Despite no difference on relative thickness of labyrinthine layer, cell proliferation, as measured by Ki67 immunostaining, was reduced in labyrinth layer of MC-LR-exposed mice. Moreover, blood sinusoid area in labyrinth layer was decreased in the fetus whose father was exposed to MC-LR before mating. Correspondingly, cross-sectional area of CD34-positive blood vessel in labyrinth layer was lower in fetuses whose fathers were exposed to MC-LR than in controls. These results provide evidence that paternal MC-LR exposure before mating induces fetal growth restriction partially through inhibiting cell proliferation and vascular development in labyrinth layer.
Collapse
Affiliation(s)
- Lan Gao
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - An-Qi Cui
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Jing Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Jing Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Xiao-Yi Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Zhi-Jing Lin
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Yuan-Hua Chen
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Cheng Zhang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China
| | - Hua Wang
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| | - De-Xiang Xu
- Department of Toxicology & Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
20
|
Shahmohamadloo RS, Ortiz Almirall X, Simmons DBD, Lumsden JS, Bhavsar SP, Watson-Leung T, Eyken AV, Hankins G, Hubbs K, Konopelko P, Sarnacki M, Strong D, Sibley PK. Cyanotoxins within and Outside of Microcystis aeruginosa Cause Adverse Effects in Rainbow Trout ( Oncorhynchus mykiss). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10422-10431. [PMID: 34264629 DOI: 10.1021/acs.est.1c01501] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The global expansion of toxic Microcystis blooms, and production of cyanotoxins including microcystins, are an increasing risk to freshwater fish. Differentiating intracellular and extracellular microcystin toxicity pathways (i.e., within and outside of cyanobacterial cells) in fish is necessary to assess the severity of risks to populations that encounter harmful algal blooms in pre-to-postsenescent stages. To address this, adult and juvenile Rainbow Trout (Oncorhynchus mykiss) were, respectively, exposed for 96 h to intracellular and extracellular microcystins (0, 20, and 100 μg L-1) produced by Microcystis aeruginosa. Fish were dissected at 24 h intervals for histopathology, targeted microcystin quantification, and nontargeted proteomics. Rainbow Trout accumulated intracellular and extracellular microcystins in all tissues within 24 h, with greater accumulation in the extracellular state. Proteomics revealed intracellular and extracellular microcystins caused sublethal toxicity by significantly dysregulating proteins linked to the cytoskeletal structure, stress responses, and DNA repair in all tissues. Pyruvate metabolism in livers, anion binding in kidneys, and myopathy in muscles were also significantly impacted. Histopathology corroborated these findings with evidence of necrosis, apoptosis, and hemorrhage at similar severity in both microcystin treatments. We demonstrate that sublethal concentrations of intracellular and extracellular microcystins cause adverse effects in Rainbow Trout after short-term exposure.
Collapse
Affiliation(s)
- René S Shahmohamadloo
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Xavier Ortiz Almirall
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario M9P 3V6, Canada
- School of Environmental Studies, Queen's University, Kingston, Ontario K7L 3N6, Canada
| | - Denina B D Simmons
- Faculty of Science, Ontario Tech University, Oshawa, Ontario L1G 0C5, Canada
| | - John S Lumsden
- Department of Pathobiology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Satyendra P Bhavsar
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario M9P 3V6, Canada
- Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario M1C 1A4, Canada
| | - Trudy Watson-Leung
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario M9P 3V6, Canada
| | - Angela Vander Eyken
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Gabrielle Hankins
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Kate Hubbs
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Polina Konopelko
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Michael Sarnacki
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Damon Strong
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
21
|
Zuo S, Yang H, Jiang X, Ma Y. Magnetic Fe 3O 4 nanoparticles enhance cyanobactericidal effect of allelopathic p-hydroxybenzoic acid on Microcystis aeruginosa by enhancing hydroxyl radical production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145201. [PMID: 33515889 DOI: 10.1016/j.scitotenv.2021.145201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/28/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Recently, considerable progress has been made in the environmental application of nanotechnology. However, little is known about how nanomaterials might affect the cyanobacterial suppression potential of allelochemicals. In this study, a microcosm was employed to simulate and verify the effect of magnetic Fe3O4 nanoparticles (MFN) on the inhibitory influence of allelopathic hydroxybenzoic acid (p-Ha) on bloom-forming Microcystis aeruginosa. MFN had a hormetic effect on cyanobacterial growth. At a neutral concentration of 182 mg/L, MFN enhanced the algal suppression by p-Ha and decreased the IC50 by half, which was significantly and positively associated with the amount of OH. Furthermore, adding MFN induced a stronger physiological response than treatment with only p-Ha. The cellular integrity was severely disrupted for the cyanobacterium M. aeruginosa. The total protein content decreased rapidly to inactivate the algae by limiting the amounts of extracellular microcystin and polysaccharide released. The modification of the effect of p-Ha by MFN was reflected by the intracellular NO content of M. aeruginosa. In addition, the typical radical scavengers ascorbic acid and 5,5-dimethyl-1-pyrroline N-oxide decreased OH production to weaken algal suppression under the combined treatment with p-Ha and MFN. By contrast, the addition of Fe3+ and increasing the light intensity triggered the generation of OH and strong cyanobacterial suppression. Thus, MFN could enhance the cyanobacterial control efficiency of p-Ha and decrease the input of allelochemicals in the field. These findings suggest a novel mode of allelochemical modification by nanomaterials as a promising cyanobactericide for harmful algal bloom management.
Collapse
Affiliation(s)
- Shengpeng Zuo
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu 241003, PR China.
| | - Hao Yang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu 241003, PR China
| | - Xiaofeng Jiang
- Collaborative Innovation Center of Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded by Anhui Province and Ministry of Education, Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu 241003, PR China
| | - Yongqing Ma
- Institute of Soil and Water Conservation, Northwest A&F University, Chinese Academy of Sciences, Ministry of Water Resources, Yangling 712100, PR China
| |
Collapse
|
22
|
Wan L, Wu Y, Zhang B, Yang W, Ding H, Zhang W. Effects of moxifloxacin and gatifloxacin stress on growth, photosynthesis, antioxidant responses, and microcystin release in Microcystis aeruginosa. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124518. [PMID: 33191018 DOI: 10.1016/j.jhazmat.2020.124518] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Moxifloxacin (MOX) and gatifloxacin (GAT) are fourth-generation fluoroquinolone antibiotics that are frequently detected in surface water environments and pose a threat to aquatic organisms. However, research into their toxicity to Microcystis aeruginosa, a cyanobacterium, has thus far been limited. In the present study, we investigated the effects of these antibiotics on M. aeruginosa growth, photosynthesis, oxidative stress, and microcystin (MC) release. The results of the 96 h EC50 values of MOX and GAT were 60.34 and 25.30 μg/L, respectively, and the risk quotients calculated indicated that these antibiotics could pose considerable ecological risks at actual environmental concentrations. Photosynthetic fluorescence intensity was shown to decline markedly, and Fv/Fm significantly decreased without any evidence of recovery, suggesting that the organism's photosystems were irreversibly damaged. Chlorophyll a and carotenoid content decreased, whereas the ratio of carotenoids to chlorophyll a increased, indicating that carotenoids were less susceptible to damage than chlorophyll a. The reactive oxygen species and malondialdehyde content significantly increased, as well as the superoxide dismutase and catalase activities, indicating that exposure caused serious oxidative stress. Additionally, MC release increased. These results demonstrate that the environmental risks posed by MOX and GAT should be given serious consideration, particularly as their use is increasing.
Collapse
Affiliation(s)
- Liang Wan
- School of Resource and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Yixiao Wu
- School of Resource and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Benhao Zhang
- School of Resource and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Wenfeng Yang
- School of Resource and Environmental Science, Wuhan University, Wuhan 430079, PR China
| | - Huijun Ding
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Provincial Institute of Water Sciences, Nanchang 330029, PR China
| | - Weihao Zhang
- School of Resource and Environmental Science, Wuhan University, Wuhan 430079, PR China; Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, School of Resource and Environmental Science, Wuhan University, Wuhan 430079, PR China.
| |
Collapse
|
23
|
Anaraki MT, Shahmohamadloo RS, Sibley PK, MacPherson K, Bhavsar SP, Simpson AJ, Ortiz Almirall X. Optimization of an MMPB Lemieux Oxidation method for the quantitative analysis of microcystins in fish tissue by LC-QTOF MS. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:140209. [PMID: 32783840 DOI: 10.1016/j.scitotenv.2020.140209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Microcystins are toxic heptapeptides produced by cyanobacteria in marine and freshwater environments. In biological samples such as fish, microcystins can be found in the free form or covalently bound to protein phosphatases type I and II. Total microcystins in fish have been quantified in the past using the Lemieux Oxidation approach, where all toxins are oxidated to a common fragment (2-methyl-3-methoxy-4-phenylbutyric acid, MMPB) regardless of their initial amino acid configuration or form (free or protein bound). These studies have been carried out using different experimental conditions and employed different quantification strategies. The present study has further investigated the oxidation step using a systematic approach, to identify the most important factors leading to a higher, more robust MMPB generation yield from fish tissue in order to reduce the method detection limit. Field samples were quantified using an in-situ generated MMPB matrix matched calibration curve by isotope dilution with d3-MMPB via liquid chromatography coupled to time-of-flight mass spectrometry (LC-QTOF MS). This approach improves method's accuracy by taking into account of potential matrix effects that could affect the derivatization, sample prepation and instrumental analysis steps. The validated method showed 16.7% precision (RSD) and +6.7% accuracy (bias), with calculated method detection limits of 7.28 ng g-1 Performance of the method was assessed with the analysis of laboratory exposed Rainbow Trout (Oncorhynchus mykiss) to cyanobacteria as a positive control, where no microcystins were detected in the pre-exposure fish liver and fillet, low levels in the exposed fillet (65.0 ng g-1) and higher levels in the exposed liver (696 ng g-1). Finally, the method was employed for the analysis of 26 fillets (muscle) and livers of Walleye (Sander vitreus) and Yellow Perch (Perca flavescens) from Lake Erie, showing very low concentrations of microcystins in the fillet and higher concentrations in liver, up to 3720 ng g-1.
Collapse
Affiliation(s)
- Maryam Tabatabaei Anaraki
- Department of Physical and Environment Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | | | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, ON, Canada
| | - Karen MacPherson
- Ontario Ministry of the Environment, Conservation, and Parks, Toronto, ON, Canada
| | - Satyendra P Bhavsar
- Department of Physical and Environment Sciences, University of Toronto Scarborough, Toronto, ON, Canada; Ontario Ministry of the Environment, Conservation, and Parks, Toronto, ON, Canada
| | - André J Simpson
- Department of Physical and Environment Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Xavier Ortiz Almirall
- Ontario Ministry of the Environment, Conservation, and Parks, Toronto, ON, Canada; School of Environmental Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
24
|
Metcalf JS, Dunlop RA, Banack SA, Souza NR, Cox PA. Cyanotoxin Analysis and Amino Acid Profiles of Cyanobacterial Food Items from Chad. Neurotox Res 2020; 39:72-80. [PMID: 32654083 PMCID: PMC7904724 DOI: 10.1007/s12640-020-00240-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/28/2020] [Accepted: 06/10/2020] [Indexed: 11/12/2022]
Abstract
In some parts of the world, cyanobacteria are used as a food in the human diet, due to their ready availability. Lake Chad, has long been a traditional site for the collection of Arthrospira fusiformis which is dried and processed at the lake into thin wafers called Dihé for later consumption or is transported to market for sale. However, Dihé purchased from markets in Chad has not been analyzed for known cyanobacterial toxins or assessed for total amino acid content. Since BMAA in traditional foodstuffs of the indigenous Chamorro people of Guam causes neurodegenerative illness, it is important that Dihé from Chad be analyzed for this neurotoxin. BMAA and its isomer AEG were not detected in our analyses, but a further isomer DAB was detected as both a free and bound amino acid, with an increase in the free concentration after acid hydrolysis of this fraction. Microcystins were present in 6 samples at up to 20 μg/g according to UPLC-PDA, although their presence could not be confirmed using PCR for known microcystin synthetic genes. Amino acid analysis of the cyanobacterial material from Chad showed the presence of large amounts of canonical amino acids, suggesting that this may supplement indigenous people on low protein diets, although regular monitoring of the foodstuffs for the presence of cyanotoxins should be performed.
Collapse
Affiliation(s)
- J S Metcalf
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA.
| | - R A Dunlop
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA
| | - S A Banack
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA
| | - N R Souza
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA
| | - P A Cox
- Brain Chemistry Labs, Box 3464, Jackson, WY, 83001, USA
| |
Collapse
|
25
|
Shotgun proteomics analysis reveals sub-lethal effects in Daphnia magna exposed to cell-bound microcystins produced by Microcystis aeruginosa. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 33:100656. [DOI: 10.1016/j.cbd.2020.100656] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 01/12/2023]
|
26
|
Shahmohamadloo RS, Poirier DG, Ortiz Almirall X, Bhavsar SP, Sibley PK. Assessing the toxicity of cell-bound microcystins on freshwater pelagic and benthic invertebrates. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 188:109945. [PMID: 31753309 DOI: 10.1016/j.ecoenv.2019.109945] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/04/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
Cyanobacterial harmful algal blooms dominated by Microcystis frequently produce microcystins, a family of toxins capable of inflicting harm to pelagic and benthic freshwater invertebrates. Research on the effect of microcystins on invertebrates is inconclusive; from one perspective, studies suggest invertebrates can coexist in toxic blooms; however, studies have also measured negative food-associated effects from microcystins. To test the latter perspective, we examined the reproduction, growth, and survival of laboratory-cultured Ceriodaphnia dubia, Daphnia magna, and Hexagenia spp. exposed to cell-bound microcystins through a series of life-cycle bioassays. Test organisms were exposed to a concentration gradient ranging from 0.5 μg L-1 to 300 μg L-1 microcystins, which corresponds to values typically found in freshwaters during bloom season. Lethal concentrations in C. dubia (LC50 = 5.53 μg L-1) and D. magna (LC50 = 85.72 μg L-1) exposed to microcystins were among the lowest recorded to date, and reproductive effects were observed at concentrations as low as 2.5 μg L-1. Length of D. magna was significantly impacted in microcystin treatments great than 2.5 μg L-1. No lethality or growth impairments were observed in Hexagenia. This information will improve our understanding of the risks posed by microcystins to food webs in freshwaters.
Collapse
Affiliation(s)
| | - David G Poirier
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Xavier Ortiz Almirall
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Satyendra P Bhavsar
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada; Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
27
|
Shahmohamadloo RS, Ortiz Almirall X, Holeton C, Chong-Kit R, Poirier DG, Bhavsar SP, Sibley PK. An efficient and affordable laboratory method to produce and sustain high concentrations of microcystins by Microcystis aeruginosa. MethodsX 2019; 6:2521-2535. [PMID: 31763185 PMCID: PMC6861626 DOI: 10.1016/j.mex.2019.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022] Open
Abstract
Microcystis aeruginosa is a cosmopolitan cyanobacteria that continues to jeopardize freshwater ecosystem services by releasing the hepatotoxin microcystin, which can, in some cases, cause death to aquatic fauna and even humans. Currently, our abilities to understand the mechanisms of microcystin toxicology are limited by the lack of a method for producing high concentrations, which are central to large-scale and long-term research in natural systems. Here we present an efficient and affordable laboratory method to produce high concentrations of microcystins by a toxigenic strain of M. aeruginosa. Through batch culture studies, we yielded microcystins at concentrations that are environmentally relevant to freshwaters around the world (1–300 μg L−1), maintained these concentrations without resupplying fresh medium (further reducing costs), and utilized rate equations to model the relationship between the environmental conditions in the cultures and changes occurring within the M. aeruginosa cells. Our assessment suggests that steady production of microcystins depends on the availability of carbon throughout the experiment. Hence, we recommend the use of tissue culture treated flasks with a vented cap to ensure the production of microcystins is uninterrupted. This method demonstrates that microcystins can be produced in the laboratory at concentrations relevant to freshwater ecosystems. The method demonstrates M. aeruginosa CPCC 300 is a reliable strain of freshwater cyanobacteria that can yield microcystins at environmentally relevant concentrations. Validation showed M. aeruginosa CPCC 300 is resilient in carbon-limited situations and may respond to stress by shifting the ratio of microcystin congeners. Cell culture flasks with vented caps —filled no more than 50 % of the flask volume to allow for sufficient air exchange— are an excellent and cost-effective approach to maintaining cell growth and producing microcystins at a range between 300 to 1200 μg L−1.
Collapse
Affiliation(s)
| | - Xavier Ortiz Almirall
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada.,School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Claire Holeton
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Richard Chong-Kit
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - David G Poirier
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada
| | - Satyendra P Bhavsar
- Ministry of the Environment, Conservation and Parks, Toronto, Ontario, Canada.,Department of Physical & Environmental Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Paul K Sibley
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|