1
|
Sizmur T, Frost H, Felipe-Sotelo M, Bond T, Mallory ML, O’Driscoll NJ. Methylmercury sorption to polyethylene terephthalate (PET) fibers and relevance to environmental exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:335-343. [PMID: 39919244 PMCID: PMC11816310 DOI: 10.1093/etojnl/vgae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 02/09/2025]
Abstract
Considerable amounts of polyethylene terephthalate (PET) microplastic fibers are released into the environment by the laundering of polyester clothing. Microplastic fibers can be ingested by organisms in the environment. Therefore, it has been suggested that microplastic fibers act as vectors for adsorbed contaminants, which are subsequently desorbed in the gut of the organism. We undertook sorption isotherm experiments at pH 6, 7, and 8 to quantify the sorption of methylmercury (MeHg) to PET fibers. Sorption isotherms were fit to Langmuir, Freundlich, and Brunauer-Emmett-Teller models. Sorption decreased with increasing pH, which can be explained by physisorption on the negatively charged PET surfaces and the greater presence of neutral or negatively charged MeHg species at higher pH. We used the parameters obtained by the model fits to predict the likely concentration of MeHg on PET microplastic fibers in aquatic ecosystems with environmentally realistic MeHg concentrations. We calculated MeHg concentrations on PET microplastic fibers to be four orders of magnitude lower than previously observed concentrations of MeHg in seston (suspended particles comprising algae and bacteria) at the base of the aquatic food web. The results indicate that the presence of PET microplastic fibers in the environment do not elevate the MeHg exposure to organisms that ingest fibers in the environment.
Collapse
Affiliation(s)
- Tom Sizmur
- Department of Geography and Environmental Science, University of Reading, Reading, United Kingdom
- Earth and Environmental Science Department, Acadia University, Wolfville, NS, Canada
| | - Harrison Frost
- School of Civil Engineering & Surveying, University of Portsmouth, Portsmouth, United Kingdom
- Department of Chemistry, University of Surrey, Guildford, United Kingdom
| | | | - Tom Bond
- School of Sustainability, Civil and Environmental Engineering, University of Surrey, Guildford, United Kingdom
| | - Mark L Mallory
- Biology Department, Acadia University, Wolfville, NS, Canada
| | - Nelson J O’Driscoll
- Earth and Environmental Science Department, Acadia University, Wolfville, NS, Canada
| |
Collapse
|
2
|
Çiftbudak ÖF, Aslan E, Atabay H, Tolun L, Balkıs NÇ, Yeşilot S. Investigation of organic micropollutant pollution in İzmit Bay: a comparative study of passive sampling and instantaneous sampling techniques. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:415. [PMID: 38568381 DOI: 10.1007/s10661-024-12583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
In this study, we used a comprehensive array of sampling techniques to examine the pollution caused by organic micropollutants in İzmit Bay for the first time. Our methodology contains spot seawater sampling, semi-permeable membrane devices (SPMDs) passive samplers for time-weighted average (TWA), and sediment sampling for long-term pollution detection in İzmit Bay, together. Additionally, the analysis results obtained with these three sampling methods were compared in this study. Over the course of two seasons in 2020 and 2021, we deployed SPMDs for 21 days in the first season and for 30 days in the second season. This innovative approach allowed us to gather sea water samples and analyze them for the presence of polycyclic aromatic hydrocarbons (Σ15 PAHs), polychlorinated biphenyls (Σ7 PCBs), and organochlorine pesticides (Σ11 OCPs). Using SPMD-based passive sampling, we measured micropollutant concentrations: PAHs ranged from 1963 to 10342 pg/L in 2020 and 1338 to 6373 pg/L in 2021; PCBs from 17.46 to 61.90 pg/L in 2020 and 8.37 to 78.10 pg/L in 2021; and OCPs from 269.2 to 8868 pg/L in 2020 and 141.7 to 1662 pg/L in 2021. Our findings revealed parallels between the concentrations of PAHs, PCBs, and OCPs in both SPMDs and sediment samples, providing insights into the distribution patterns of these pollutants in the marine ecosystem. However, it is worth noting that due to limited data acquisition, the suitability of spot sampling in comparison to instantaneous sampling remains inconclusive, highlighting the need for further investigation and data collection.
Collapse
Affiliation(s)
- Ömer Faruk Çiftbudak
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey
- TÜBİTAK, Marmara Research Center, Climate Change and Sustainability Vice Presidencies, 41470, Gebze, Kocaeli, Turkey
| | - Ertuğrul Aslan
- TÜBİTAK, Marmara Research Center, Climate Change and Sustainability Vice Presidencies, 41470, Gebze, Kocaeli, Turkey
| | - Hakan Atabay
- TÜBİTAK, Marmara Research Center, Climate Change and Sustainability Vice Presidencies, 41470, Gebze, Kocaeli, Turkey
| | - Leyla Tolun
- TÜBİTAK, Marmara Research Center, Climate Change and Sustainability Vice Presidencies, 41470, Gebze, Kocaeli, Turkey
| | - Nuray Çağlar Balkıs
- Institute of Marine Science and Management, Department of Chemical Oceanography, Istanbul University, Istanbul, Turkey.
| | - Serkan Yeşilot
- Department of Chemistry, Gebze Technical University, Gebze, 41400, Kocaeli, Turkey.
| |
Collapse
|
3
|
Macías M, Jiménez JA, Rodríguez de San Miguel E, Moreira-Santos M. Appraisal on the role of passive sampling for more integrative frameworks on the environmental risk assessment of contaminants. CHEMOSPHERE 2023; 324:138352. [PMID: 36898436 DOI: 10.1016/j.chemosphere.2023.138352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Over time multiple lines of research have been integrated as important components of evidence for assessing the ecological quality status of water bodies within the framework of Environmental Risk Assessment (ERA) approaches. One of the most used integrative approaches is the triad which combines, based on the weight-of-evidence, three lines of research, the chemical (to identify what is causing the effect), the ecological (to identify the effects at the ecosystem level) and the ecotoxicological (to ascertain the causes of ecological damage), with the agreement between the different lines of risk evidence increasing the confidence in the management decisions. Although the triad approach has proven greatly strategic in ERA processes, new assessment (and monitoring) integrative and effective tools are most welcome. In this regard, the present study is an appraisal on the boost that passive sampling, by allowing to increase information reliability, can give within each of the triad lines of evidence, for more integrative ERA frameworks. In parallel to this appraisal, examples of works that used passive samplers within the triad are presented providing support for the use of these devices in a complementary form to generate holistic information for ERA and ease the process of decision-making.
Collapse
Affiliation(s)
- Mariana Macías
- Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria, 04510, Cd.Mx., Mexico
| | - Jesús A Jiménez
- Departamento de Química Analítica, Facultad de Química, UNAM, Ciudad Universitaria, 04510, Cd.Mx., Mexico
| | | | - Matilde Moreira-Santos
- CFE-Centre for Functional Ecology - Science for People and the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
4
|
Washburn SJ, Damond J, Sanders JP, Gilmour CC, Ghosh U. Uptake Mechanisms of a Novel, Activated Carbon-Based Equilibrium Passive Sampler for Estimating Porewater Methylmercury. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2052-2064. [PMID: 35698924 PMCID: PMC9420783 DOI: 10.1002/etc.5406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
We describe the validation of a novel polymeric equilibrium passive sampler comprised of agarose gel with embedded activated carbon particles (ag+AC), to estimate aqueous monomethylmercury (MeHg) concentrations. Sampler behavior was tested using a combination of idealized media and realistic sediment microcosms. Isotherm bottle experiments with ag+AC polymers were conducted to constrain partitioning to these materials by various environmentally relevant species of MeHg bound to dissolved organic matter (MeHgDOM) across a range of sizes and character. Log of partitioning coefficients for passive samplers (Kps ) ranged from 1.98 ± 0.09 for MeHg bound to Suwannee River humic acid to 3.15 ± 0.05 for MeHg complexed with Upper Mississippi River natural organic matter. Reversible equilibrium exchange of environmentally relevant MeHg species was demonstrated through a series of dual isotope-labeled exchange experiments. Isotopically labeled MeHgDOM species approached equilibrium in the samplers over 14 days, while mass balance was maintained, providing strong evidence that the ag+AC polymer material is capable of equilibrium measurements of environmentally relevant MeHg species within a reasonable deployment time frame. Samplers deployed across the sediment-water interface of sediment microcosms estimated both overlying water and porewater MeHg concentrations within a factor of 2 to 4 of measured values, based on the average measured Kps values for species of MeHg bound to natural organic matter in the isotherm experiments. Taken together, our results indicate that ag+AC polymers, used as equilibrium samplers, can provide accurate MeHg estimations across many site chemistries, with a simple back-calculation based on a standardized Kps. Environ Toxicol Chem 2022;41:2052-2064. © 2022 SETAC.
Collapse
Affiliation(s)
- Spencer J. Washburn
- Smithsonian Environmental Research Center, 647 Contees
Wharf Road, Edgewater, Maryland 21037, United States
| | - Jada Damond
- Department of Chemical, Biochemical, and Environmental
Engineering University of Maryland Baltimore County, 5200 Westland Blvd., Baltimore,
Maryland 21250, United States
| | - James P. Sanders
- US Environmental Protection Agency, Office of Pollution
Prevention and Toxics, Washington, DC 20460, United States
| | - Cynthia C. Gilmour
- Smithsonian Environmental Research Center, 647 Contees
Wharf Road, Edgewater, Maryland 21037, United States
| | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental
Engineering University of Maryland Baltimore County, 5200 Westland Blvd., Baltimore,
Maryland 21250, United States
| |
Collapse
|
5
|
McDermett KS, Guelfo J, Anderson TA, Reible D, Jackson AW. The development of diffusive equilibrium, high-resolution passive samplers to measure perfluoroalkyl substances (PFAS) in groundwater. CHEMOSPHERE 2022; 303:134686. [PMID: 35489449 DOI: 10.1016/j.chemosphere.2022.134686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a group of anthropogenic, highly recalcitrant organic compounds consisting of thousands of individual species that are of increasing importance as groundwater contaminants. In-situ measurements of PFAS would be useful to better understand vertical profiles and mobility, contamination in partially saturated media, and to reduce sampling artifacts associated with groundwater collection and analysis. Diffusive equilibrium, high-resolution passive samplers (HRPPs) can be directly driven (>10 m) in sediments or groundwater. The samplers equilibrate with porewater through diffusion across the sampler membrane, providing high spatial resolution (sample every 20 cm) porewater concentrations of dissolved species. The objective of this study was to develop an HRPP to measure PFAS in contaminated groundwater and saturated media. To achieve this objective, a screening study was conducted to demonstrate quantitative measurement of selected PFAS as well as the kinetics of uptake into a sampler using both nylon and stainless steel membranes. Utilizing the results of the screening study, a prototype sampler was demonstrated in a laboratory flow box. Over a deployment period of 28 days, concentrations of several perfluoroalkyl carboxylic acids (PFCAs), a perfluoroalkyl sulfonate (PFSA), and a precursor PFAS reached equilibrium with porewater (sampler concentration >90 percent of porewater concentration). Application of these samplers could provide improved understanding of the behavior of PFAS in saturated or partially saturated groundwater systems and allow better assessment of fate and transport in the subsurface. Reliable subsurface site characterization will yield robust site assessments, conceptual models, and improve remediation designs as well as increase confidence in post remedial assessments at PFAS-impacted locations.
Collapse
Affiliation(s)
- Kaylin S McDermett
- (Primary Author) Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jennifer Guelfo
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Todd A Anderson
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79416, USA
| | - Danny Reible
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Andrew W Jackson
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, 911 Boston Ave., Lubbock, TX, 79409, USA.
| |
Collapse
|
6
|
Liu Y, Xie S, Sun Y, Ma L, Lin Z, Grathwohl P, Lohmann R. In-situ and ex-situ measurement of hydrophobic organic contaminants in soil air based on passive sampling: PAH exchange kinetics, non-equilibrium correction and comparison with traditional estimations. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124646. [PMID: 33250309 DOI: 10.1016/j.jhazmat.2020.124646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/14/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
It is a great challenge to accurately estimate chemical activity of hydrophobic organic contaminants in field soils. Ex-situ and in-situ determinations were developed for this purpose based on low-density polyethylene (LDPE) passive sampling and non-equilibrium correction by release of performance reference compounds (PRCs) previously spiked to the samplers. This work investigated kinetic processes of target contaminants' uptake into and PRCs' release from the sampler in an ex-situ soil suspension incubated for 100 days. A close agreement of kinetic parameters for pyrene's (target) uptake into and deuterated pyrene's (PRC) release from LDPE indicated their similar exchange kinetics. Three kinetic models were developed to correct uptake of target compounds in non-equilibrium conditions via release processes of PRCs. The second-order kinetic model was recommended for ex-situ measurements. The PRC-based non-equilibrium corrections were further applied to in-situ static passive sampling from several weeks to months in a PAH-contaminated field site. Two-weeks' deployments were sufficient for quantifying lighter PAHs (logKOA < 8.0), but not recommended to accurately estimate heavier PAHs (logKOA > 9.0), even if over four months. Concentration estimates from the in-situ and ex-situ passive samplings were comparable in order of magnitude with traditional estimation from equilibrium partitioning models considering both organic and black carbon fractions.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; China Meteorological Administration Key Laboratory of Cities' Mitigation and Adaptation to Climate Change (Shanghai Meteorological Bureau), IESD, Tongji University, Shanghai 200092, China.
| | - Shuya Xie
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; Center for Applied Geoscience, University of Tübingen, Hölderlinstrasse 12, Tübingen 72074, Germany
| | - Yajie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhifen Lin
- Shanghai Key Lab of Chemical Assessment and Sustainability, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Peter Grathwohl
- Center for Applied Geoscience, University of Tübingen, Hölderlinstrasse 12, Tübingen 72074, Germany
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882-1197, United States
| |
Collapse
|
7
|
Eckley CS, Gilmour CC, Janssen S, Luxton TP, Randall PM, Whalin L, Austin C. The assessment and remediation of mercury contaminated sites: A review of current approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136031. [PMID: 31869604 PMCID: PMC6980986 DOI: 10.1016/j.scitotenv.2019.136031] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/07/2019] [Accepted: 12/07/2019] [Indexed: 04/13/2023]
Abstract
Remediation of mercury (Hg) contaminated sites has long relied on traditional approaches, such as removal and containment/capping. Here we review contemporary practices in the assessment and remediation of industrial-scale Hg contaminated sites and discuss recent advances. Significant improvements have been made in site assessment, including the use of XRF to rapidly identify the spatial extent of contamination, Hg stable isotope fractionation to identify sources and transformation processes, and solid-phase characterization (XAFS) to evaluate Hg forms. The understanding of Hg bioavailability for methylation has been improved by methods such as sequential chemical extractions and porewater measurements, including the use of diffuse gradient in thin-film (DGT) samplers. These approaches have shown varying success in identifying bioavailable Hg fractions and further study and field applications are needed. The downstream accumulation of methylmercury (MeHg) in biota is a concern at many contaminated sites. Identifying the variables limiting/controlling MeHg production-such as bioavailable inorganic Hg, organic carbon, and/or terminal electron acceptors (e.g. sulfate, iron) is critical. Mercury can be released from contaminated sites to the air and water, both of which are influenced by meteorological and hydrological conditions. Mercury mobilized from contaminated sites is predominantly bound to particles, highly correlated with total sediment solids (TSS), and elevated during stormflow. Remediation techniques to address Hg contamination can include the removal or containment of Hg contaminated materials, the application of amendments to reduce mobility and bioavailability, landscape/waterbody manipulations to reduce MeHg production, and food web manipulations through stocking or extirpation to reduce MeHg accumulated in desired species. These approaches often rely on knowledge of the Hg forms/speciation at the site, and utilize physical, chemical, thermal and biological methods to achieve remediation goals. Overall, the complexity of Hg cycling allows many different opportunities to reduce/mitigate impacts, which creates flexibility in determining suitable and logistically feasible remedies.
Collapse
Affiliation(s)
- Chris S Eckley
- U.S. Environmental Protection Agency, Region-10, 1200 6th Ave, Seattle, WA 98101, USA.
| | - Cynthia C Gilmour
- Smithsonian Environmental Research Center, 647 Contees Wharf Rd., Edgewater, MD 21037-0028, USA.
| | - Sarah Janssen
- USGS Upper Midwest Water Science Center, 8505 Research Way, Middleton, WI 53562, USA.
| | - Todd P Luxton
- US Environmental Protection Agency, Office of Research and Development, National Risk Management Research Laboratory, 26 West Martin Luther King Drive, Cincinnati, OH 45268, USA.
| | - Paul M Randall
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.
| | - Lindsay Whalin
- San Francisco Bay Water Board, 1515 Clay St., Ste. 1400, Oakland, CA 94612, USA.
| | - Carrie Austin
- San Francisco Bay Water Board, 1515 Clay St., Ste. 1400, Oakland, CA 94612, USA.
| |
Collapse
|