1
|
Elliott SM, King KA, Krall AL, VanderMeulen DD. Trace organic contaminants in U.S. national park surface waters: Prevalence and ecological context. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:125006. [PMID: 39307338 DOI: 10.1016/j.envpol.2024.125006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/31/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Surface water samples were collected from 264 sites across 46 U.S national parks during the period of 2009-2019. The number of sites within each park ranged from 1 to 31 and the number of samples collected within each park ranged from 1 to 201. Samples were analyzed for up to 340 trace organic contaminants (TrOCs), including pharmaceuticals, personal care products, pesticides, and various contaminants indicative of anthropogenic influence (e.g., fragrances, surfactants, flame retardants). A total of 155 TrOCs was detected in at least one sample with concentrations ranging from the reporting level of 10 ng/L (multiple contaminants) to 11,900 ng/L (p-cresol). Except for bisphenol A, DEET, theobromine, and gabapentin, TrOCs were detected in <20% of samples. Despite the relatively low detection frequencies, when TrOCs were detected, concentrations were similar to those reported from other regional or national studies. We compared detected concentrations to bioactivity concentrations and water quality benchmarks, when available, to identify occurrences of elevated concentrations and to estimate the potential for biological effects to aquatic biota. Elevated concentrations of 27 TrOCs, mostly pesticides, were detected throughout the study. To gain insight regarding potential sources, we related watershed characteristics (e.g., land cover, presence of point sources) to the number of TrOCs detected at each site. We found that the presence of wastewater treatment plants and the proportion of the watershed classified as agricultural land were the most influential variables for describing the number of pharmaceuticals and the number of pesticides present, respectively. This study represents the largest-scale study characterizing the presence and magnitude of TrOCs in U.S. national park surface waters, to date. These data provide a baseline that can be used to inform future monitoring within the parks and to assess changes in water quality.
Collapse
Affiliation(s)
- Sarah M Elliott
- U.S. Geological Survey Upper Midwest Science Center, Mounds View, Minnesota, USA.
| | - Kerensa A King
- U.S. National Park Service Water Resources Division, Fort Collins, CO, USA
| | - Aliesha L Krall
- U.S. Geological Survey Upper Midwest Science Center, Mounds View, Minnesota, USA
| | - David D VanderMeulen
- U.S. National Park Service Great Lakes Inventory & Monitoring Network, Ashland, WI, USA
| |
Collapse
|
2
|
Huang J, Cheng F, He L, Lou X, Li H, You J. Effect driven prioritization of contaminants in wastewater treatment plants across China: A data mining-based toxicity screening approach. WATER RESEARCH 2024; 264:122223. [PMID: 39116614 DOI: 10.1016/j.watres.2024.122223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/08/2024] [Accepted: 08/04/2024] [Indexed: 08/10/2024]
Abstract
A diversity of contaminants of emerging concern (CECs) are present in wastewater effluent, posing potential threats to receiving waters. It is urgent for a holistic assessment of the occurrence and risk of CECs related to wastewater treatment plants (WWTP) on national and regional scales. A data mining-based risk prioritization method was developed to collect the reported contaminants and their respective concentrations in municipal and industrial WWTPs and their receiving waters across China over the past 20 years. A total of 10,781 chemicals were reported in 8336 publications, of which 1037 contaminants were reported with environmental concentrations. While contaminant categories varied across WWTP types (municipal vs. industrial) and regions, pharmaceuticals and cyclic hydrocarbons were the most studied CECs. Contaminant composition in receiving water was closer to that in municipal than industrial WWTPs. Publications on legacy pesticides and polycyclic aromatic hydrocarbons in WWTP decreased recently compared to the past, while pharmaceuticals and perfluorochemicals have received increasing attention, showing a changing concern over time. Detection frequency, concentration, removal efficiency, and toxicity data were integrated for assessing potential risks and prioritizing CECs on national and regional scales using an environmental health prioritization index (EHPi) approach. Among 666 contaminants in municipal WWTP effluent, trichlorfon and perfluorooctanesulfonic acid were with the highest EHPi scores, while 17ɑ-ethinylestradiol and bisphenol A had the highest EHPi scores among 304 contaminants in industrial WWTPs. The prioritized contaminants varied across regions, suggesting a need for tailoring regional measures of wastewater treatment and control.
Collapse
Affiliation(s)
- Jiehui Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Fei Cheng
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Liwei He
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xiaohan Lou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
3
|
Baldwin AK, Corsi SR, Alvarez DA, Villeneuve DL, Ankley GT, Blackwell BR, Mills MA, Lenaker PL, Nott MA. Potential Hazards of Polycyclic Aromatic Hydrocarbons in Great Lakes Tributaries Using Water Column and Porewater Passive Samplers and Sediment Equilibrium Partitioning. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1509-1523. [PMID: 38860662 DOI: 10.1002/etc.5896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 06/12/2024]
Abstract
The potential for polycyclic aromatic hydrocarbon (PAH)-related effects in benthic organisms is commonly estimated from organic carbon-normalized sediment concentrations based on equilibrium partitioning (EqP). Although this approach is useful for screening purposes, it may overestimate PAH bioavailability by orders of magnitude in some sediments, leading to inflated exposure estimates and potentially unnecessary remediation costs. Recently, passive samplers have been shown to provide an accurate assessment of the freely dissolved concentrations of PAHs, and thus their bioavailability and possible biological effects, in sediment porewater and overlying surface water. We used polyethylene passive sampling devices (PEDs) to measure freely dissolved porewater and water column PAH concentrations at 55 Great Lakes (USA/Canada) tributary locations. The potential for PAH-related biological effects using PED concentrations were estimated with multiple approaches by applying EqP, water quality guidelines, and pathway-based biological activity based on in vitro bioassay results from ToxCast. Results based on the PED-based exposure estimates were compared with EqP-derived exposure estimates for concurrently collected sediment samples. The results indicate a potential overestimation of bioavailable PAH concentrations by up to 960-fold using the EqP-based method compared with measurements using PEDs. Even so, PED-based exposure estimates indicate a high potential for PAH-related biological effects at 14 locations. Our findings provide an updated, weight-of-evidence-based site prioritization to help guide possible future monitoring and mitigation efforts. Environ Toxicol Chem 2024;43:1509-1523. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Austin K Baldwin
- Idaho Water Science Center, U.S. Geological Survey, Boise, Idaho
| | - Steven R Corsi
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin
| | - David A Alvarez
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, Missouri
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota
| | - Gerald T Ankley
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota
| | - Brett R Blackwell
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota
| | - Marc A Mills
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio
| | - Peter L Lenaker
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin
| | - Michelle A Nott
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin
| |
Collapse
|
4
|
Lenaker PL, Pronschinske MA, Corsi SR, Stokdyk JP, Olds HT, Dila DK, McLellan SL. A multi-marker assessment of sewage contamination in streams using human-associated indicator bacteria, human-specific viruses, and pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172505. [PMID: 38636851 DOI: 10.1016/j.scitotenv.2024.172505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Human sewage contaminates waterways, delivering excess nutrients, pathogens, chemicals, and other toxic contaminants. Contaminants and various sewage indicators are measured to monitor and assess water quality, but these analytes vary in their representation of sewage contamination and the inferences about water quality they support. We measured the occurrence and concentration of multiple microbiological (n = 21) and chemical (n = 106) markers at two urban stream locations in Milwaukee, Wisconsin, USA over two years. Five-day composite water samples (n = 98) were collected biweekly, and sewage influent samples (n = 25) were collected monthly at a Milwaukee, WI water reclamation facility. We found the vast majority of markers were not sensitive enough to detect sewage contamination. To compare analytes for monitoring applications, five consistently detected human sewage indicators were used to evaluate temporal patterns of sewage contamination, including microbiological (pepper mild mottle virus, human Bacteroides, human Lachnospiraceae) and chemical (acetaminophen, metformin) markers. The proportion of human sewage in each stream was estimated using the mean influent concentration from the water reclamation facility and the mean concentration of all stream samples for each sewage indicator marker. Estimates of instream sewage pollution varied by marker, differing by up to two orders of magnitude, but four of the five sewage markers characterized Underwood Creek (mean proportions of human sewage ranged 0.0025 % - 0.075 %) as less polluted than Menomonee River (proportions ranged 0.013 % - 0.14 %) by an order of magnitude more. Chemical markers correlated with each other and yielded higher estimates of sewage pollution than microbial markers, which exhibited greater temporal variability. Transport, attenuation, and degradation processes can influence chemical and microbial markers differently and cause variation in human sewage estimates. Given the range of potential human and ecological health effects of human sewage contamination, robust characterization of sewage contamination that uses multiple lines of evidence supports monitoring and research applications.
Collapse
Affiliation(s)
- Peter L Lenaker
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA.
| | - Matthew A Pronschinske
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Steven R Corsi
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Joel P Stokdyk
- U.S. Geological Survey, Laboratory for Infectious Disease and the Environment, 2615 Yellowstone Dr., Marshfield, WI 54449, USA
| | - Hayley T Olds
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Deborah K Dila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, USA
| |
Collapse
|
5
|
Wroński M, Trawiński J, Skibiński R. Antifungal drugs in the aquatic environment: A review on sources, occurrence, toxicity, health effects, removal strategies and future challenges. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133167. [PMID: 38064946 DOI: 10.1016/j.jhazmat.2023.133167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 02/08/2024]
Abstract
Fungal infections pose a significant global health burden, resulting in millions of severe cases and deaths annually. The escalating demand for effective antifungal treatments has led to a rise in the wholesale distribution of antifungal drugs, which consequently has led to their release into the environment, posing a threat to ecosystems and human health. This article aims to provide a comprehensive review of the presence and distribution of antifungal drugs in the environment, evaluate their potential ecological and health risks, and assess current methods for their removal. Reviewed studies from 2010 to 2023 period have revealed the widespread occurrence of 19 various antifungals in natural waters and other matrices at alarmingly high concentrations. Due to the inefficiency of conventional water treatment in removing these compounds, advanced oxidation processes, membrane filtration, and adsorption techniques have been developed as promising decontamination methods.In conclusion, this review emphasizes the urgent need for a comprehensive understanding of the presence, fate, and removal of antifungal drugs in the environment. By addressing the current knowledge gaps and exploring future prospects, this study contributes to the development of strategies for mitigating the environmental impact of antifungal drugs and protecting ecosystems and human health.
Collapse
Affiliation(s)
- Michał Wroński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Jakub Trawiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland
| | - Robert Skibiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland.
| |
Collapse
|
6
|
M A E, K K, N F, E D, M R, A F, S R, A L, K, H B, A J, E J. An assessment and characterization of pharmaceuticals and personal care products (PPCPs) within the Great Lakes Basin: Mussel Watch Program (2013-2018). ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:345. [PMID: 38438687 PMCID: PMC10912168 DOI: 10.1007/s10661-023-12119-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/08/2023] [Indexed: 03/06/2024]
Abstract
Defining the environmental occurrence and distribution of chemicals of emerging concern (CECs), including pharmaceuticals and personal care products (PPCPs) in coastal aquatic systems, is often difficult and complex. In this study, 70 compounds representing several classes of pharmaceuticals, including antibiotics, anti-inflammatories, insect repellant, antibacterial, antidepressants, chemotherapy drugs, and X-ray contrast media compounds, were found in dreissenid mussel (zebra/quagga; Dreissena spp.) tissue samples. Overall concentration and detection frequencies varied significantly among sampling locations, site land-use categories, and sites sampled proximate and downstream of point source discharge. Verapamil, triclocarban, etoposide, citalopram, diphenhydramine, sertraline, amitriptyline, and DEET (N,N-diethyl-meta-toluamide) comprised the most ubiquitous PPCPs (> 50%) detected in dreissenid mussels. Among those compounds quantified in mussel tissue, sertraline, metformin, methylprednisolone, hydrocortisone, 1,7-dimethylxanthine, theophylline, zidovudine, prednisone, clonidine, 2-hydroxy-ibuprofen, iopamidol, and melphalan were detected at concentrations up to 475 ng/g (wet weight). Antihypertensives, antibiotics, and antidepressants accounted for the majority of the compounds quantified in mussel tissue. The results showed that PPCPs quantified in dreissenid mussels are occurring as complex mixtures, with 4 to 28 compounds detected at one or more sampling locations. The magnitude and composition of PPCPs detected were highest for sites not influenced by either WWTP or CSO discharge (i.e., non-WWTPs), strongly supporting non-point sources as important drivers and pathways for PPCPs detected in this study. As these compounds are detected at inshore and offshore locations, the findings of this study indicate that their persistence and potential risks are largely unknown, thus warranting further assessment and prioritization of these emerging contaminants in the Great Lakes Basin.
Collapse
Affiliation(s)
- Edwards M A
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA.
| | - Kimbrough K
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Fuller N
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Davenport E
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Rider M
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Freitag A
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Regan S
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | | | - K
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| | - Burkart H
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Jacob A
- CSS-Inc., Under NOAA National Centers for Coastal Ocean Science Contract No, EA133C17BA0062 & EA133C17BA0049, Fairfax, VA, USA
| | - Johnson E
- Monitoring and Assessment Branch, NOAA/NOS/NCCOS, 1305 East/West Highway, Silver Spring, MD, 20910, USA
| |
Collapse
|
7
|
Ankley GT, Berninger JP, Maloney EM, Olker JH, Schaupp CM, Villeneuve DL, LaLone CA. Linking Mechanistic Effects of Pharmaceuticals and Personal Care Products to Ecologically Relevant Outcomes: A Decade of Progress. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:537-548. [PMID: 35735070 PMCID: PMC11036122 DOI: 10.1002/etc.5416] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
There are insufficient toxicity data to assess the ecological risks of many pharmaceuticals and personal care products (PPCPs). While data limitations are not uncommon for contaminants of environmental concern, PPCPs are somewhat unique in that an a priori understanding of their biological activities in conjunction with measurements of molecular, biochemical, or histological responses could provide a foundation for understanding mode(s) of action and predicting potential adverse apical effects. Over the past decade significant progress has been made in the development of new approach methodologies (NAMs) to efficiently quantify these types of endpoints using computational models and pathway-based in vitro and in vivo assays. The availability of open-access knowledgebases to curate biological response (including NAM) data and sophisticated bioinformatics tools to help interpret the information also has significantly increased. Finally, advances in the development and implementation of the adverse outcome pathway framework provide the critical conceptual underpinnings needed to translate NAM data into predictions of the ecologically relevant outcomes required by risk assessors and managers. The evolution and convergence of these various data streams, tools, and concepts provides the basis for a fundamental change in how ecological risks of PPCPs can be pragmatically assessed. Environ Toxicol Chem 2024;43:537-548. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Gerald T Ankley
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Jason P Berninger
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Erin M Maloney
- University of Minnesota-Duluth, Integrated Biological Sciences Program, Duluth, Minnesota, USA
| | - Jennifer H Olker
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | | | - Daniel L Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - Carlie A LaLone
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| |
Collapse
|
8
|
Ankley GT, Corsi SR, Custer CM, Ekman DR, Hummel SL, Kimbrough KL, Schoenfuss HL, Villeneuve DL. Assessing Contaminants of Emerging Concern in the Great Lakes Ecosystem: A Decade of Method Development and Practical Application. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2506-2518. [PMID: 37642300 PMCID: PMC10935577 DOI: 10.1002/etc.5740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/24/2023] [Accepted: 08/27/2023] [Indexed: 08/31/2023]
Abstract
Assessing the ecological risk of contaminants in the field typically involves consideration of a complex mixture of compounds which may or may not be detected via instrumental analyses. Further, there are insufficient data to predict the potential biological effects of many detected compounds, leading to their being characterized as contaminants of emerging concern (CECs). Over the past several years, advances in chemistry, toxicology, and bioinformatics have resulted in a variety of concepts and tools that can enhance the pragmatic assessment of the ecological risk of CECs. The present Focus article describes a 10+- year multiagency effort supported through the U.S. Great Lakes Restoration Initiative to assess the occurrence and implications of CECs in the North American Great Lakes. State-of-the-science methods and models were used to evaluate more than 700 sites in about approximately 200 tributaries across lakes Ontario, Erie, Huron, Michigan, and Superior, sometimes on multiple occasions. Studies featured measurement of up to 500 different target analytes in different environmental matrices, coupled with evaluation of biological effects in resident species, animals from in situ and laboratory exposures, and in vitro systems. Experimental taxa included birds, fish, and a variety of invertebrates, and measured endpoints ranged from molecular to apical responses. Data were integrated and evaluated using a diversity of curated knowledgebases and models with the goal of producing actionable insights for risk assessors and managers charged with evaluating and mitigating the effects of CECs in the Great Lakes. This overview is based on research and data captured in approximately about 90 peer-reviewed journal articles and reports, including approximately about 30 appearing in a virtual issue comprised of highlighted papers published in Environmental Toxicology and Chemistry or Integrated Environmental Assessment and Management. Environ Toxicol Chem 2023;42:2506-2518. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Gerald T Ankley
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Steven R Corsi
- Upper Midwest Water Science Center, US Geological Survey, Madison, Wisconsin
| | - Christine M Custer
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - Drew R Ekman
- Ecosystem Processes Division, US Environmental Protection Agency, Athens, Georgia
| | - Stephanie L Hummel
- Great Lakes Regional Office, US Fish and Wildlife Service, Bloomington, Minnesota
| | - Kimani L Kimbrough
- National Oceanic and Atmospheric Administration, Silver Spring, Maryland, USA
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, St. Cloud State University, St. Cloud, Minnesota, USA
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| |
Collapse
|
9
|
Hawkins C, Foster G, Glaberman S. Chemical prioritization of pharmaceuticals and personal care products in an urban tributary of the Potomac River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163514. [PMID: 37068687 DOI: 10.1016/j.scitotenv.2023.163514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are incredibly diverse in terms of chemical structures, physicochemical properties, and modes of action, making their environmental impacts challenging to assess. New chemical prioritization methodologies have emerged that compare contaminant monitoring concentrations to multiple toxicity data sources, including whole organism and high-throughput data, to develop a list of "high priority" chemicals requiring further study. We applied such an approach to assess PPCPs in Hunting Creek, an urban tributary of the Potomac River near Washington, DC, which has experienced extensive human population growth. We estimated potential risks of 99 PPCPs from surface water and sediment collected upstream and downstream of a major wastewater treatment plant (WWTP), nearby combined sewer overflows (CSO), and in the adjacent Potomac River. The greatest potential risks to the aquatic ecosystem occurred near WWTP and CSO outfalls, but risk levels rapidly dropped below thresholds of concern - established by previous chemical prioritization studies - in the Potomac mainstem. These results suggest that urban tributaries, rather than larger rivers, are important to monitor because their lower or intermittent flow may not adequately dilute contaminants of concern. Common psychotropics, such as fluoxetine and venlafaxine, presented the highest potential risks, with toxicity quotients often > 10 in surface water and > 1000 in sediment, indicating the need for further field studies. Several ubiquitous chemicals such as caffeine and carbamazepine also exceeded thresholds of concern throughout our study area and point to specific neurotoxic and endocrine modes of action that warrant further investigation. Since many "high priority" chemicals in our analysis have also triggered concerns in other areas around the world, better coordination is needed among environmental monitoring programs to improve global chemical prioritization efforts.
Collapse
Affiliation(s)
- Cheyenne Hawkins
- George Mason University, Department of Environmental Science and Policy, Fairfax, VA, USA
| | - Gregory Foster
- George Mason University, Department of Chemistry and Biochemistry, Fairfax, VA, USA
| | - Scott Glaberman
- George Mason University, Department of Environmental Science and Policy, Fairfax, VA, USA.
| |
Collapse
|
10
|
Pronschinske MA, Corsi SR, Hockings C. Evaluating pharmaceuticals and other organic contaminants in the Lac du Flambeau Chain of Lakes using risk-based screening techniques. PLoS One 2023; 18:e0286571. [PMID: 37267346 DOI: 10.1371/journal.pone.0286571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
In an investigation of pharmaceutical contamination in the Lac du Flambeau Chain of Lakes (hereafter referred to as "the Chain"), few contaminants were detected; only eight pharmaceuticals and one pesticide were identified among the 110 pharmaceuticals and other organic contaminants monitored in surface water samples. This study, conducted in cooperation with the Lac du Flambeau Tribe's Water Resource Program, investigated these organic contaminants and potential biological effects in channels connecting lakes throughout the Chain, including the Moss Lake Outlet site, adjacent to the wastewater treatment plant lagoon. Of the 6 sites monitored and 24 samples analyzed, sample concentrations and contaminant detection frequencies were greatest at the Moss Lake Outlet site; however, the concentrations and detection frequencies of this study were comparable to other pharmaceutical investigations in basins with similar characteristics. Because established water-quality benchmarks do not exist for the pharmaceuticals detected in this study, alternative screening-level water-quality benchmarks, developed using two U.S. Environmental Protection Agency toxicological resources (ToxCast database and ECOTOX knowledgebase), were used to estimate potential biological effects associated with the observed contaminant concentrations. Two contaminants (caffeine and thiabendazole) exceeded the prioritization threshold according to ToxCast alternative benchmarks, and four contaminants (acetaminophen, atrazine, caffeine, and carbamazepine) exceeded the prioritization threshold according to ECOTOX alternative benchmarks. Atrazine, an herbicide, was the most frequently detected contaminant (79% of samples), and it exhibited the strongest potential for biological effects due to its high estimated potency. Insufficient toxicological information within ToxCast and ECOTOX for gabapentin and methocarbamol (which had the two greatest concentrations in this study) precluded alternative benchmark development. This data gap presents unknown potential environmental impacts. Future research examining the biological effects elicited by these two contaminants as well as the others detected in this study would further elucidate the ecological relevance of the water chemistry results generated though this investigation.
Collapse
Affiliation(s)
- Matthew A Pronschinske
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin, United States of America
| | - Steven R Corsi
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin, United States of America
| | - Celeste Hockings
- Water Resource Program, Lac du Flambeau Band of Lake Superior Chippewa Indians, Lac du Flambeau, Wisconsin, United States of America
| |
Collapse
|
11
|
Loken LC, Corsi SR, Alvarez DA, Ankley GT, Baldwin AK, Blackwell BR, De Cicco LA, Nott MA, Oliver SK, Villeneuve DL. Prioritizing Pesticides of Potential Concern and Identifying Potential Mixture Effects in Great Lakes Tributaries Using Passive Samplers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:340-366. [PMID: 36165576 PMCID: PMC10107608 DOI: 10.1002/etc.5491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/06/2022] [Accepted: 09/22/2022] [Indexed: 05/24/2023]
Abstract
To help meet the objectives of the Great Lakes Restoration Initiative with regard to increasing knowledge about toxic substances, 223 pesticides and pesticide transformation products were monitored in 15 Great Lakes tributaries using polar organic chemical integrative samplers. A screening-level assessment of their potential for biological effects was conducted by computing toxicity quotients (TQs) for chemicals with available US Environmental Protection Agency (USEPA) Aquatic Life Benchmark values. In addition, exposure activity ratios (EAR) were calculated using information from the USEPA ToxCast database. Between 16 and 81 chemicals were detected per site, with 97 unique compounds detected overall, for which 64 could be assessed using TQs or EARs. Ten chemicals exceeded TQ or EAR levels of concern at two or more sites. Chemicals exceeding thresholds included seven herbicides (2,4-dichlorophenoxyacetic acid, diuron, metolachlor, acetochlor, atrazine, simazine, and sulfentrazone), a transformation product (deisopropylatrazine), and two insecticides (fipronil and imidacloprid). Watersheds draining agricultural and urban areas had more detections and higher concentrations of pesticides compared with other land uses. Chemical mixtures analysis for ToxCast assays associated with common modes of action defined by gene targets and adverse outcome pathways (AOP) indicated potential activity on biological pathways related to a range of cellular processes, including xenobiotic metabolism, extracellular signaling, endocrine function, and protection against oxidative stress. Use of gene ontology databases and the AOP knowledgebase within the R-package ToxMixtures highlighted the utility of ToxCast data for identifying and evaluating potential biological effects and adverse outcomes of chemicals and mixtures. Results have provided a list of high-priority chemicals for future monitoring and potential biological effects warranting further evaluation in laboratory and field environments. Environ Toxicol Chem 2023;42:340-366. Published 2022. This article is a U.S. Government work and is in the public domain in the USA. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Luke C. Loken
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Steven R. Corsi
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - David A. Alvarez
- US Geological SurveyColumbia Environmental Research CenterColombiaMissouriUSA
| | - Gerald T. Ankley
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | | | - Brett R. Blackwell
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| | - Laura A. De Cicco
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Michele A. Nott
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Samantha K. Oliver
- US Geological SurveyUpper Midwest Water Science CenterMadisonWisconsinUSA
| | - Daniel L. Villeneuve
- US Environmental Protection Agency, Center for Computational Toxicology and ExposureGreat Lakes Toxicology and Ecology DivisionDuluthMinnesotaUSA
| |
Collapse
|