1
|
Phan A, Sokolova A, Hilscherova K. An adverse outcome pathway approach linking retinoid signaling disruption to teratogenicity and population-level outcomes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107143. [PMID: 39550998 DOI: 10.1016/j.aquatox.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 11/19/2024]
Abstract
Recent research efforts in endocrine disruption have focused on evaluating non-EATS (estrogen, androgen, thyroid, and steroidogenesis) pathways. Retinoid signaling disruption is noteworthy because of its teratogenic effects and environmental relevance. However, current environmental risk assessments are limited in their ability to evaluate impacts on individuals and populations. This study characterizes an Adverse Outcome Pathway (AOP) network linking retinoid signaling disruption to teratogenicity and survival in zebrafish. We identified Retinoic Acid Receptor (RAR) overactivation as the molecular initiating event leading to key events including craniofacial (CFM) and tail (TM) malformations, posterior swim bladder (SB) non-inflation, impaired swimming performance, and reduced feeding, ultimately resulting in decreased survival. Our study (1) determines critical sensitivity windows for CFM, posterior SB non-inflation, and TM, (2) provides quantitative measurements for CFM and TM, and (3) defines impacts on higher biological levels including food ingestion, swimming, and survival. Results show that all-trans retinoic acid (ATRA) induces strong teratogenic effects with sensitivity windows between 4 and 48 h post fertilization (hpf) for CFM, TM, and posterior SB non-inflation. TM is the most sensitive indicator, with EC50 of 0.2 - 0.26 µg/L across exposure windows 4-48, 4-72, 4-96, and 4-120 hpf. Besides inducing known malformations, ATRA impaired posterior SB inflation with EC50 of 1 - 1.21 µg/L across the same exposure windows. ATRA exposure (1 µg/L) resulted in 50 % food ingestion inhibition at 7 days post fertilization (dpf) and 10 % survival at 14 dpf. This study provides a regulatory-relevant framework linking developmental effects to population outcomes, highlighting ecological risks and needs for improved risk assessments.
Collapse
Affiliation(s)
- Audrey Phan
- RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Aleksandra Sokolova
- RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, 62500, Brno, Czech Republic.
| |
Collapse
|
2
|
Su J, Yang X, Xu H, Pei Y, Liu QS, Zhou Q, Jiang G. Screening (ant)agonistic activities of xenobiotics on the retinoic acid receptor alpha (RARα) using in vitro and in silico analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174717. [PMID: 38997027 DOI: 10.1016/j.scitotenv.2024.174717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Retinoic acid receptors (RARs) are known as crucial endocrine receptors that could mediate a broad diversity of biological processes. However, the data on endocrine disrupting effects of emerging chemicals by targeting RAR (ant)agonism are far from sufficient. Herein, we investigated the RARα agonistic or antagonistic activities for 75 emerging chemicals of concern, and explored their interactions with this receptor. A recombinant two-hybrid yeast assay was used to examine the RARα activities of the test chemicals, wherein 7 showed effects of RARα agonism and 54 exerted potentials of RARα antagonism. The representative chemicals with RARα agonistic activities, i.e. 4-hydroxylphenol (4-HP) and bisphenol AF (BPAF), significantly increased the mRNA levels of CRABP2 and CYP26A1, while 4 select chemicals with RARα antagonistic potentials, including bisphenol A (BPA), tetrabromobisphenol A (TBBPA), 4-tert-octylphenol (4-t-OP), and 4-n-nonylphenol (4-n-NP), conversely decreased the transcriptional levels of the test genes. The in silico molecular docking analysis using 3 different approaches further confirmed the substantial binding between the chemicals with RARα activities and this nuclear receptor protein. This work highlights the promising strategy for screening endocrine-disrupting effects of emerging chemicals of concern by targeting RARα (ant)agonism.
Collapse
Affiliation(s)
- Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hanqing Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China
| | - Yao Pei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Jia Y, Zhang H, Hu W, Wang L, Kang Q, Liu J, Nakanishi T, Hiromori Y, Kimura T, Tao S, Hu J. Discovery of contaminants with antagonistic activity against retinoic acid receptor in house dust. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127847. [PMID: 34836686 DOI: 10.1016/j.jhazmat.2021.127847] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Retinoic acid receptors (RARs) control reproduction and development in vertebrates, but little attention has been paid to anthropogenic chemicals exhibiting RAR agoniztic/antagonistic activity. Here we applied a His-RARα pull-down assay combined with high-resolution mass spectrometry to identify chemicals with RARα activity in house dust. After screening, a total of 540 peaks were retained as potential RARα ligands. The mass spectra of 14 chemicals matched with those in the database, of which triphenyl phosphate, galaxolidone, di(2-ethylhexyl) phthalate (DEHP), tris(2-ethylhexyl) phosphate (TEHP), and tris(2-butoxyethyl) phosphate were confirmed by their standards. While one chemical in the sample matched with monophenyl phosphate in the MS/MS database, its retention time was much higher than that of monophenyl phosphate standard, suggesting that it may be an in-source fragment. Its parent ion was finally identified to be m/z 399.2663 using a similarity analysis among chromatographic peaks of hundreds of ions at the same retention time in MS1 spectrum, and bis(2-ethylhexyl) phenyl phosphate (BEHPP) was identified. BEHPP, DEHP, and TEHP were for the first time identified to be RARα antagonists with IC50 values of 6556, 6600, and 2538 nM, respectively. This study improved structural annotation and filled the knowledge gap regarding widespread environmental contaminants with RAR antagonistic activity.
Collapse
Affiliation(s)
- Yingting Jia
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Hong Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Wenxin Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Lei Wang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Qiyue Kang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Jiaying Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Tsuyoshi Nakanishi
- Laboratory of Hygienic Chemistry and Molecular Toxicology, Gifu Pharmaceutical University, Japan
| | - Youhei Hiromori
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Japan
| | - Tomoki Kimura
- Department of Life Science, Faculty of Science and Engineering, Setsunan University, Japan
| | - Shu Tao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China
| | - Jianying Hu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, China.
| |
Collapse
|
4
|
Yeung KWY, Zhou GJ, Ruan Y, Lam PKS, Leung KMY. Occurrence of retinoic acids and their metabolites in sewage and their removal efficiencies by chemically enhanced primary treatment and secondary biological treatment. CHEMOSPHERE 2021; 280:130745. [PMID: 33975239 DOI: 10.1016/j.chemosphere.2021.130745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/23/2021] [Accepted: 04/25/2021] [Indexed: 06/12/2023]
Abstract
Sewage treatment plants (STPs) are important in densely populated megacities like Hong Kong to control the release of harmful pollutants from households and industries into the receiving water bodies and maintain water quality for supporting various beneficial uses. This study investigated the occurrence of the teratogenic retinoic acids (RAs) and their oxidative metabolites in sewage and sludge of six selected STPs that treat about 87% of all sewage in Hong Kong annually, and compared the removal efficiencies of these compounds from sewage between two major sewage treatment processes, i.e., chemically enhanced primary treatment (CEPT) and secondary (biological) treatment. The total concentrations of the studied RAs in influent, effluent and sludge from the six selected STPs were found between 21.5 and 33.1 ng/L, 12.0-20.4 ng/L, and 4.33-7.02 ng/g dry weight, respectively. The compounds were dominated by all-trans-RA and 13-cis-RA, together accounting for 46.9-65.6%, 38.4-56.7%, and 62.8-82.8% of the total RAs in influent, effluent and sludge, respectively. The studied RAs could not be satisfactorily removed by both treatment processes with removal efficiencies ranging from 25.4% to 47.4% only, without significant difference in their removal between CEPT and secondary treatment. Based on the calculated hazard quotients of all-trans-RA equivalents (0.248-0.521), the treated effluents from all the six STPs exhibited medium ecological risks to the receiving coastal environment. Therefore, continuous monitoring of these compounds and enhancement of treatment technologies of STPs shall be considered in the future to improve the removal efficiencies of these compounds.
Collapse
Affiliation(s)
- Katie Wan Yee Yeung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guang-Jie Zhou
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Paul Kwan Sing Lam
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| | - Kenneth Mei Yee Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
5
|
Yeung KWY, Zhou GJ, Hilscherová K, Giesy JP, Leung KMY. Current understanding of potential ecological risks of retinoic acids and their metabolites in aquatic environments. ENVIRONMENT INTERNATIONAL 2020; 136:105464. [PMID: 31926435 DOI: 10.1016/j.envint.2020.105464] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/13/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
In animals, retinoic acids (RAs), one of the main derivatives of vitamin A, are crucial for a variety of physiological processes. RAs, including all-trans-RA, 9-cis-RA, 13-cis-RA, and their corresponding metabolites (i.e., all-trans-4-oxo-RA, 9-cis-4-oxo-RA and 13-cis-4-oxo-RA) can be excreted through urination from humans and animals. Sewage treatment plants (STPs) are a significant source of RAs and 4-oxo-RAs into aquatic environments. RAs and 4-oxo-RAs can be identified and quantified by use of liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). RAs and 4-oxo-RAs have been reported in various environmental matrices including rivers, lakes, reservoirs and coastal marine environments as well as in sewage effluents discharged from STPs. Greater concentrations of RAs and 4-oxo-RAs have been observed during blooms of cyanobacteria and microalgae, suggesting that cyanobacteria and microalgae are natural sources of RAs and 4-oxo-RAs in aquatic environments. These potential sources of RAs and 4-oxo-RAs raise concerns about their concentrations and risks in aquatic environments because excessive intake of these chemicals can result in abnormal morphological development in animals. Teratogenic effects were observed in amphibians, fish embryos, gastropods, mammals and birds when exposed to RAs. This review summarizes sources, concentrations, adverse effects and ecological risks of RAs and 4-oxo-RAs in aquatic environments. An interim, predicted no-effect concentration (PNEC) of RAs (in terms of at-RA) for freshwater environments was determined to be 3.93 ng/L at-RA equivalents. Based on limited data on concentrations of RAs in freshwater ecosystems, their hazard quotients were found to range from zero to 16.41, depending on the environmental conditions of receiving waters. Ecological risks of RAs in marine environments are yet to be explored due to the paucity of data related to both their concentrations in marine environment and toxic potencies to marine species. This review updates current knowledge of RAs and 4-oxo-RAs in aquatic environments and calls for more studies on their concentrations and fate in aquatic environments, especially estuarine and coastal marine environments with a view to enabling a comprehensive assessment of their ecological risks around the globe.
Collapse
Affiliation(s)
- Katie Wan Yee Yeung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Guang-Jie Zhou
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Klára Hilscherová
- RECETOX, Faculty of Science, Masaryk University, Kamenice 753/5, Pavilion A29, 625 00 Brno, Czech Republic
| | - John P Giesy
- Department of Veterinary Biomedical Sciences and Toxicology Centre, University of Saskatchewan, Saskatoon, SK, Canada; Department of Environmental Science, Baylor University, Waco, TX, United States
| | - Kenneth Mei Yee Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution (City University of Hong Kong), Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
6
|
Völker J, Stapf M, Miehe U, Wagner M. Systematic Review of Toxicity Removal by Advanced Wastewater Treatment Technologies via Ozonation and Activated Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7215-7233. [PMID: 31120742 DOI: 10.1021/acs.est.9b00570] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Upgrading wastewater treatment plants (WWTPs) with advanced technologies is one key strategy to reduce micropollutant emissions. Given the complex chemical composition of wastewater, toxicity removal is an integral parameter to assess the performance of WWTPs. Thus, the goal of this systematic review is to evaluate how effectively ozonation and activated carbon remove in vitro and in vivo toxicity. Out of 2464 publications, we extracted 46 relevant studies conducted at 22 pilot or full-scale WWTPs. We performed a quantitative and qualitative evaluation of in vitro (100 assays) and in vivo data (20 species), respectively. Data is more abundant on ozonation (573 data points) than on an activated carbon treatment (162 data points), and certain in vitro end points (especially estrogenicity) and in vivo models (e.g., daphnids) dominate. The literature shows that while a conventional treatment effectively reduces toxicity, residual effects in the effluents may represent a risk to the receiving ecosystem on the basis of effect-based trigger values. In general, an upgrade to ozonation or activated carbon treatment will significantly increase toxicity removal with similar performance. Nevertheless, ozonation generates toxic transformation products that can be removed by a post-treatment. By assessing the growing body of effect-based studies, we identify sensitive and underrepresented end points and species and provide guidance for future research.
Collapse
Affiliation(s)
- Johannes Völker
- Department of Biology , Norwegian University of Science and Technology (NTNU) , Trondheim 7491 , Norway
| | - Michael Stapf
- Berlin Centre of Competence for Water (KWB) , Berlin 10709 , Germany
| | - Ulf Miehe
- Berlin Centre of Competence for Water (KWB) , Berlin 10709 , Germany
| | - Martin Wagner
- Department of Biology , Norwegian University of Science and Technology (NTNU) , Trondheim 7491 , Norway
| |
Collapse
|
7
|
Zhou GJ, Li XY, Leung KMY. Retinoids and oestrogenic endocrine disrupting chemicals in saline sewage treatment plants: Removal efficiencies and ecological risks to marine organisms. ENVIRONMENT INTERNATIONAL 2019; 127:103-113. [PMID: 30909093 DOI: 10.1016/j.envint.2019.03.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
Discharge of partially treated effluent from sewage treatment plants (STPs) is a significant source of chemical contaminants, such as retinoids and oestrogenic endocrine disrupting chemicals (EDCs), which are continuously input into the marine environments of densely populated and urbanized coastal cities. In this study, we successfully developed three analytical methods to detect and qualify retinoic acids (at-RA, 13c-RA & 9c-RA), their metabolites (at-4-oxo-RA, 13c-4-oxo-RA & 9c-4-oxo-RA), and oestrogenic EDCs using high pressure liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Using these methods, we found that the total concentrations of retinoids in the influents and effluents of three saline STPs in Hong Kong were 7.1-29 ng/L and 3.7-9.1 ng/L, respectively, and those of EDCs were 3107-5829 ng/L and 1225-2638 ng/L, respectively. Retinoids were dominated by at-4-oxo-RA or 13c-4-oxo-RA in wastewater, whereas at-RA and 13c-RA were the most abundant in sludge. Alkylphenols and bisphenol A were the dominant EDCs in wastewater, whilst alkylphenols, triclosan, and triclocarban were dominant in sludge. Overall, the sewage treatment processes in the STPs of Hong Kong were not highly efficient in the removal of retinoids and EDCs from wastewater influents, with removal efficiencies in the aqueous phase of 41-82% and 31-79%, respectively. The removals were attributed mainly to sorption and degradation. Due to such limited removal, the effluents from STPs and the adjacent seawaters (i.e., receiving water bodies) still exhibited relatively high concentrations of retinoids (2.0-4.3 ng/L in seawaters) and EDCs (71-260 ng/L in seawaters), which posed medium ecological risks to the coastal marine ecosystem of Hong Kong (i.e., hazard quotients: 0.1-1).
Collapse
Affiliation(s)
- Guang-Jie Zhou
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Kenneth Mei Yee Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China; State Key Laboratory of Marine Pollution (City University of Hong Kong), Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
8
|
Retinoic acid signaling in ovarian folliculogenesis and steroidogenesis. Reprod Toxicol 2019; 87:32-41. [PMID: 31059772 DOI: 10.1016/j.reprotox.2019.04.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 04/13/2019] [Accepted: 04/30/2019] [Indexed: 12/31/2022]
Abstract
Retinoids are essential for reproduction. Most research has focused on the role of retinoic acid signaling in the regulation of meiosis during early fetal germ cell development. However, less attention has been paid to the possible effects of retinoic acid signaling in adult female gonads. Retinoic acid, its receptors, and the key enzymes required for retinoic acid synthesis are expressed in the ovaries and they are involved in the regulation of folliculogenesis and steroidogenesis. Exposure to compounds that can interfere with normal retinoic acid signaling is associated with adverse ovarian outcomes, including altered steroidogenesis and reduction in indicators of ovarian reserve in women and laboratory animal models. These observations call for more attention to retinoids as regulators of adult ovarian physiology and as possible targets of endocrine disruption by environmental chemicals. In this review, we summarize the current knowledge of retinoids in folliculogenesis and steroidogenesis in post-pubertal mammalian ovaries.
Collapse
|
9
|
Abbas A, Schneider I, Bollmann A, Funke J, Oehlmann J, Prasse C, Schulte-Oehlmann U, Seitz W, Ternes T, Weber M, Wesely H, Wagner M. What you extract is what you see: Optimising the preparation of water and wastewater samples for in vitro bioassays. WATER RESEARCH 2019; 152:47-60. [PMID: 30660097 DOI: 10.1016/j.watres.2018.12.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 12/19/2018] [Accepted: 12/21/2018] [Indexed: 05/25/2023]
Abstract
The assessment of water quality is crucial for safeguarding drinking water resources and ecosystem integrity. To this end, sample preparation and extraction is critically important, especially when investigating emerging contaminants and the toxicity of water samples. As extraction methods are rarely optimised for bioassays but rather adopted from chemical analysis, this may result in a misrepresentation of the actual toxicity. In this study, surface water, groundwater, hospital and municipal wastewater were used to characterise the impacts of common sample preparation techniques (acidification, filtration and solid phase extraction (SPE)) on the outcomes of eleven in vitro bioassays. The latter covered endocrine activity (reporter gene assays for estrogen, androgen, aryl-hydrocarbon, retinoic acid, retinoid X, vitamin D, thyroid receptor), mutagenicity (Ames fluctuation test), genotoxicity (umu test) and cytotoxicity. Water samples extracted using different SPE sorbents (Oasis HLB, Supelco ENVI-Carb+, Telos C18/ENV) at acidic and neutral pH were compared for their performance in recovering biological effects. Acidification, commonly used for stabilisation, significantly altered the endocrine activity and toxicity of most (waste)water samples. Sample filtration did not affect the majority of endpoints but in certain cases affected the (anti-)estrogenic and dioxin-like activities. SPE extracts (10.4 × final concentration), including WWTP effluents, induced significant endocrine effects that were not detected in aqueous samples (0.63 × final concentration), such as estrogenic, (anti-)androgenic and dioxin-like activities. When ranking the SPE methods using multivariate Pareto optimisation an extraction with Telos C18/ENV at pH 7 was most effective in recovering toxicity. At the same time, these extracts were highly cytotoxic masking the endpoint under investigation. Compared to that, extraction at pH 2.5 enriched less cytotoxicity. In summary, our study demonstrates that sample preparation and extraction critically affect the outcome of bioassays when assessing the toxicity of water samples. Depending on the water matrix and the bioassay, these methods need to be optimised to accurately assess water quality.
Collapse
Affiliation(s)
- Aennes Abbas
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, D-60438, Frankfurt, Germany.
| | - Ilona Schneider
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, D-60438, Frankfurt, Germany.
| | - Anna Bollmann
- Zweckverband Landeswasserversorgung, Am Spitzigen Berg 1, D-89129, Langenau, Germany
| | - Jan Funke
- IWW Rheinisch-Westfälisches Institut für Wasser Beratungs- und Entwicklungsgesellschaft mbH, Moritzstraße 26, D-45476, Muelheim an der Ruhr, Germany
| | - Jörg Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, D-60438, Frankfurt, Germany
| | - Carsten Prasse
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Ulrike Schulte-Oehlmann
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, D-60438, Frankfurt, Germany
| | - Wolfram Seitz
- Zweckverband Landeswasserversorgung, Am Spitzigen Berg 1, D-89129, Langenau, Germany
| | - Thomas Ternes
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, D-56068, Koblenz, Germany
| | - Marcus Weber
- Department of Numerical Analysis and Modelling, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB), Takustraße 7, D-14195, Berlin, Germany
| | - Henning Wesely
- Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, D-56068, Koblenz, Germany
| | - Martin Wagner
- Department Aquatic Ecotoxicology, Goethe University Frankfurt am Main, Max-von-Laue-Str. 13, D-60438, Frankfurt, Germany; Department of Biology, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| |
Collapse
|
10
|
Perkins EJ, Habib T, Escalon BL, Cavallin JE, Thomas L, Weberg M, Hughes MN, Jensen KM, Kahl MD, Villeneuve DL, Ankley GT, Garcia-Reyero N. Prioritization of Contaminants of Emerging Concern in Wastewater Treatment Plant Discharges Using Chemical:Gene Interactions in Caged Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51. [PMID: 28651047 PMCID: PMC6126926 DOI: 10.1021/acs.est.7b01567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We examined whether contaminants present in surface waters could be prioritized for further assessment by linking the presence of specific chemicals to gene expression changes in exposed fish. Fathead minnows were deployed in cages for 2, 4, or 8 days at three locations near two different wastewater treatment plant discharge sites in the Saint Louis Bay, Duluth, MN and one upstream reference site. The biological impact of 51 chemicals detected in the surface water of 133 targeted chemicals was determined using biochemical endpoints, exposure activity ratios for biological and estrogenic responses, known chemical:gene interactions from biological pathways and knowledge bases, and analysis of the covariance of ovary gene expression with surface water chemistry. Thirty-two chemicals were significantly linked by covariance with expressed genes. No estrogenic impact on biochemical endpoints was observed in male or female minnows. However, bisphenol A (BPA) was identified by chemical:gene covariation as the most impactful estrogenic chemical across all exposure sites. This was consistent with identification of estrogenic effects on gene expression, high BPA exposure activity ratios across all test sites, and historical analysis of the study area. Gene expression analysis also indicated the presence of nontargeted chemicals including chemotherapeutics consistent with a local hospital waste stream. Overall impacts on gene expression appeared to be related to changes in treatment plant function during rain events. This approach appears useful in examining the impacts of complex mixtures on fish and offers a potential route in linking chemical exposure to adverse outcomes that may reduce population sustainability.
Collapse
Affiliation(s)
- Edward J. Perkins
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, USA
- Corresponding author: ; ERDC, 3909 Halls Ferry Rd,Vicksburg, MS 39180; phone: +1-601-634-2872
| | - Tanwir Habib
- Badger Technical Services, 3909 Halls Ferry Road, Vicksburg, MS, USA
| | - Barbara L. Escalon
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, USA
| | - Jenna E. Cavallin
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Linnea Thomas
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Matthew Weberg
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Megan N. Hughes
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Kathleen M. Jensen
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Michael D. Kahl
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Daniel L. Villeneuve
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Gerald T. Ankley
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN, USA
| | - Natàlia Garcia-Reyero
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, 3909 Halls Ferry Road, Vicksburg, MS, USA
| |
Collapse
|
11
|
Endocrine Disruption and In Vitro Ecotoxicology: Recent Advances and Approaches. IN VITRO ENVIRONMENTAL TOXICOLOGY - CONCEPTS, APPLICATION AND ASSESSMENT 2017; 157:1-58. [DOI: 10.1007/10_2016_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Inoue D, Sawada K, Sei K, Ike M. Detection of retinoic acid receptor antagonist contamination in the aquatic environment of the Kinki region of Japan. WATER RESEARCH 2016; 103:58-65. [PMID: 27434814 DOI: 10.1016/j.watres.2016.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/15/2016] [Accepted: 07/09/2016] [Indexed: 06/06/2023]
Abstract
Retinoic acid receptor (RAR) antagonists are potential toxic compounds that can cause teratogenesis in vertebrates. This study was conducted to evaluate the occurrence of RAR antagonist contamination in aquatic environments and identify its potential sources in detail. To accomplish this, the RAR antagonistic activities of surface waters of two rivers (the Yodo River and the Ina River) and influents and effluents of municipal wastewater treatment plants (WWTPs) in the Kinki region of Japan were investigated using a yeast two-hybrid assay. In the investigated rivers, remarkable RAR antagonistic activities were detected relatively consistently in specific regions, although the levels varied with time, and tended to increase downstream of municipal WWTPs. Investigations of WWTPs also revealed that RAR antagonists were present at remarkably high levels in municipal wastewater, and that RAR antagonist contamination remained in effluent after activated sludge treatments. Comparison of the concentration factors that reduced 50% of the RAR agonistic activity of 10(-7) M all-trans retinoic acid (IC50) for selected river water and WWTP effluent samples revealed that the contamination levels were greater in effluent (IC50: concentration factors of 92-313) than river water (IC50: concentration factors of 10.2-68.9). These results indicate that municipal WWTPs could be an important source of RAR antagonist contamination in the receiving rivers. Fractionations with high-performance liquid chromatography directed by the bioassay indicated that there were multiple RAR antagonists in municipal wastewater. Although a trial to identify the causative compounds in municipal wastewater was not completed, multiple bioactive peaks that should be studied further were isolated. This study clarified the occurrence of novel endocrine disrupting chemicals (i.e., RAR antagonists) in the aquatic environment at the watershed level and identified their possible source for the first time, which suggests the need of further studies to identify the causative compounds and to assess possible ecological risks associated with the contamination.
Collapse
Affiliation(s)
- Daisuke Inoue
- Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan; Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Kazuko Sawada
- Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan; Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazunari Sei
- Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan; Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|