1
|
Yu Y, Wang C, Zhang X, Wang J, Li M, Song T, Liang D, Feng G. The transcription factor TaWHY2-6A acts as a positive regulator in response to drought tolerance in transgenic plants. Biochem Biophys Res Commun 2025; 755:151580. [PMID: 40048758 DOI: 10.1016/j.bbrc.2025.151580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/02/2025] [Accepted: 03/02/2025] [Indexed: 03/17/2025]
Abstract
Drought stress severely affects wheat yield, and Whirly (WHY) transcription factors (TFs) are essential in modulating plant tolerance to abiotic stresses. In this study, we identified six WHY members in the wheat whole-genome database, categorized into Group I and Group II, with three homologous WHY genes in each group. From the four selected drought-responsive candidate genes with upregulated expression, we focused on TaWHY2-6A, which was significantly upregulated under drought stress. Under drought conditions, TaWHY2-6A transgenic Arabidopsis exhibited significantly higher chlorophyll content and better growth status compared to wild-type (WT) plants, indicating that TaWHY2-6A enhances drought resistance in transgenic Arabidopsis. In contrast, wheat lines with silenced-TaWHY2-6A exhibited a more severe wilting phenotype following drought treatment, accompanied by elevated levels of H2O2 and O2.-, and reduced antioxidant enzyme activity. These findings suggest that the wheat TaWHY2-6A gene positively regulates drought resistance under drought stress. This research provides a theoretical basis and valuable genetic resources for drought-resistance breeding in wheat.
Collapse
Affiliation(s)
- Yang Yu
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China; Tianjin Crop Research Institute, The Key Laboratory of Crop Genetics and Breeding, Tianjin, 300192, China; Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China; College of Agronomy, Northwest Agricultural and Forestry University, Xianyang, 712100, China
| | - Conglei Wang
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Xiao Zhang
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Jianhe Wang
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Mengting Li
- Institute of Agro-environmental Protection, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Tianqi Song
- College of Agronomy, Northwest Agricultural and Forestry University, Xianyang, 712100, China
| | - Dan Liang
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China; Tianjin Crop Research Institute, The Key Laboratory of Crop Genetics and Breeding, Tianjin, 300192, China.
| | - Gang Feng
- Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| |
Collapse
|
2
|
Ou C, Dong Z, Zheng X, Cheng W, Chang E, Yao X. Functional Characterization of the PoWHY1 Gene from Platycladus orientalis and Its Role in Abiotic Stress Tolerance in Transgenic Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2025; 14:218. [PMID: 39861571 PMCID: PMC11768397 DOI: 10.3390/plants14020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
The frequent occurrence of extreme weather conditions in the world has brought many unfavorable factors to plant growth, causing the growth and development of plants to be hindered and even leading to plant death, with abiotic stress hindering the growth and metabolism of plants due to severe uncontrollability. The WHY1 transcription factor plays a critical role in regulating gene expression in plants, influencing chlorophyll biosynthesis, plant growth, and development, as well as responses to environmental stresses. The important role of the PoWHY1 gene in regulating plant growth and adaptation to environmental stress has become a hot research topic. However, the mechanism of the PoWHY1 gene in Platycladus orientalis under abiotic stress is still unclear. Here, the PoWHY1 gene was analyzed bioinformatically using P. orientalis as study material, and the role of the gene against abiotic stress conditions in Arabidopsis thaliana was verified using transgenic technology. It was found that overexpression of PoWHY1 increased seed germination, decreased malondialdehyde accumulation, increased proline content, and delayed the senescence process under salt stress. The expression levels of JAZ1, LOX1, ABI1, and ABI2 were decreased, while the expression levels of RAB18, APX1, GSTF6, and DREB2A were increased, indicating that overexpression of PoWHY1 enhanced the salt stress tolerance of A. thaliana. Furthermore, PoWHY1 overexpression also increased drought tolerance in A. thaliana. From the above results, it can be concluded that maintaining high PoWHY1 expression levels in the leaves of P. orientalis can improve their environmental adaptability. The results provide a scientific basis for understanding the gene function of the PoWHY1 gene of P. orientalis under stress conditions and lay the foundation for further research on the function of the PoWHY1 gene.
Collapse
Affiliation(s)
- Chun Ou
- Fuyang Normal University—Funan Rural Revitalization Collaborative Technology Service Center, School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; (Z.D.); (X.Z.); (W.C.)
| | - Zhiyu Dong
- Fuyang Normal University—Funan Rural Revitalization Collaborative Technology Service Center, School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; (Z.D.); (X.Z.); (W.C.)
| | - Xudong Zheng
- Fuyang Normal University—Funan Rural Revitalization Collaborative Technology Service Center, School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; (Z.D.); (X.Z.); (W.C.)
| | - Wenhui Cheng
- Fuyang Normal University—Funan Rural Revitalization Collaborative Technology Service Center, School of Biology and Food Engineering, Fuyang Normal University, Fuyang 236037, China; (Z.D.); (X.Z.); (W.C.)
| | - Ermei Chang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiamei Yao
- School of Architecture and Urban Planning, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
3
|
Nguyen LT, Moutesidi P, Ziegler J, Glasneck A, Khosravi S, Abel S, Hensel G, Krupinska K, Humbeck K. WHIRLY1 regulates aliphatic glucosinolate biosynthesis in early seedling development of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17181. [PMID: 39625871 PMCID: PMC11712025 DOI: 10.1111/tpj.17181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/07/2024] [Accepted: 11/18/2024] [Indexed: 01/11/2025]
Abstract
WHIRLY1 belongs to a family of plant-specific transcription factors capable of binding DNA or RNA in all three plant cell compartments that contain genetic materials. In Arabidopsis thaliana, WHIRLY1 has been studied at the later stages of plant development, including flowering and leaf senescence, as well as in biotic and abiotic stress responses. In this study, WHIRLY1 knockout mutants of A. thaliana were prepared by CRISPR/Cas9-mediated genome editing to investigate the role of WHIRLY1 during early seedling development. The loss-of-function of WHIRLY1 in 5-day-old seedlings did not cause differences in the phenotype and the photosynthetic performance of the emerging cotyledons compared with the wild type. Nevertheless, comparative RNA sequencing analysis revealed that the knockout of WHIRLY1 affected the expression of a small but specific set of genes during this critical phase of development. About 110 genes were found to be significantly deregulated in the knockout mutant, wherein several genes involved in the early steps of aliphatic glucosinolate (GSL) biosynthesis were suppressed compared with wild-type plants. The downregulation of these genes in WHIRLY1 knockout lines led to decreased GSL contents in seedlings and in seeds. Since GSL catabolism mediated by myrosinases was not altered during seed-to-seedling transition, the results suggest that AtWHIRLY1 plays a major role in modulation of aliphatic GSL biosynthesis during early seedling development. In addition, phylogenetic analysis revealed a coincidence between the evolution of methionine-derived aliphatic GSLs and the addition of a new WHIRLY in core families of the plant order Brassicales.
Collapse
Affiliation(s)
- Linh Thuy Nguyen
- Institute of BiologyMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| | - Pinelopi Moutesidi
- Department of Molecular Signal ProcessingLeibniz Institute of Plant Biochemistry (IPB)06120Halle (Saale)Germany
| | - Jörg Ziegler
- Program Center for Plant Metabolomics and Computational BiochemistryLeibniz Institute of Plant Biochemistry (IPB)06120Halle (Saale)Germany
| | - Anike Glasneck
- Institute of BotanyChristian‐Albrechts‐University (CAU)24098KielGermany
| | - Solmaz Khosravi
- Department of Breeding ResearchLeibniz Institute of Plant Genetics and Crop Plant Research (IPK)Gatersleben06466SeelandGermany
| | - Steffen Abel
- Department of Molecular Signal ProcessingLeibniz Institute of Plant Biochemistry (IPB)06120Halle (Saale)Germany
| | - Götz Hensel
- Centre for Plant Genome Engineering, Institute of Plant BiochemistryHeinrich‐Heine‐University Duesseldorf40225DuesseldorfGermany
| | - Karin Krupinska
- Institute of BotanyChristian‐Albrechts‐University (CAU)24098KielGermany
| | - Klaus Humbeck
- Institute of BiologyMartin‐Luther‐University Halle‐Wittenberg06120Halle (Saale)Germany
| |
Collapse
|
4
|
Samant SB, Yadav N, Swain J, Joseph J, Kumari A, Praveen A, Sahoo RK, Manjunatha G, Seth CS, Singla-Pareek SL, Foyer CH, Pareek A, Gupta KJ. Nitric oxide, energy, and redox-dependent responses to hypoxia. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4573-4588. [PMID: 38557811 DOI: 10.1093/jxb/erae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/30/2024] [Indexed: 04/04/2024]
Abstract
Hypoxia occurs when oxygen levels fall below the levels required for mitochondria to support respiration. Regulated hypoxia is associated with quiescence, particularly in storage organs (seeds) and stem cell niches. In contrast, environmentally induced hypoxia poses significant challenges for metabolically active cells that are adapted to aerobic respiration. The perception of oxygen availability through cysteine oxidases, which function as oxygen-sensing enzymes in plants that control the N-degron pathway, and the regulation of hypoxia-responsive genes and processes is essential to survival. Functioning together with reactive oxygen species (ROS), particularly hydrogen peroxide (H2O2) and reactive nitrogen species (RNS), such as nitric oxide (·NO), nitrogen dioxide (·NO2), S-nitrosothiols (SNOs), and peroxynitrite (ONOO-), hypoxia signaling pathways trigger anatomical adaptations such as formation of aerenchyma, mobilization of sugar reserves for anaerobic germination, formation of aerial adventitious roots, and the hyponastic response. NO and H2O2 participate in local and systemic signaling pathways that facilitate acclimation to changing energetic requirements, controlling glycolytic fermentation, the γ-aminobutyric acid (GABA) shunt, and amino acid synthesis. NO enhances antioxidant capacity and contributes to the recycling of redox equivalents in energy metabolism through the phytoglobin (Pgb)-NO cycle. Here, we summarize current knowledge of the central role of NO and redox regulation in adaptive responses that prevent hypoxia-induced death in challenging conditions such as flooding.
Collapse
Affiliation(s)
- Sanjib Bal Samant
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Nidhi Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Jagannath Swain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Josepheena Joseph
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Aprajita Kumari
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Afsana Praveen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ranjan Kumar Sahoo
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | | | | | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, Punjab, 140306, India
| | | |
Collapse
|
5
|
Wang L, Hou Q, Qiao G. Genome-Wide Identification and Expression Analysis of the Sweet Cherry Whirly Gene Family. Curr Issues Mol Biol 2024; 46:8015-8030. [PMID: 39194691 DOI: 10.3390/cimb46080474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Sweet cherry (Prunus avium) is one of the economically valuable horticultural fruit trees and it is widely cultivated throughout the world. Whirly (WHY) genes are a unique gene family with few members and have important biological functions in plant growth, development, and response to abiotic stress. This study utilized whole-genome identification to conduct a comprehensive analysis of the WHY genes in sweet cherry and examined their transcription levels in different tissues and under abiotic stress to explore their functions. Two WHY genes were identified in the sweet cherry genome and named PavWHY1 and PavWHY2, respectively, based on their homology with those in Arabidopsis thaliana. Both genes have theoretical isoelectric points greater than seven and are hydrophilic proteins, suggesting that they may be localized in plastids. The two genes are evolutionarily classified into two categories, with large differences in gene structure, and highly similar protein tertiary structures, and both have conserved domains of WHY. PavWHY1 and PavWHY2 are collinear with AtWHY1 and AtWHY2, respectively. The promoter sequence contains cis-acting elements related to hormones and abiotic stress, which are differentially expressed during flower bud differentiation, fruit development, and cold accumulation. qRT-PCR showed that PavWHY1 and PavWHY2 were differentially expressed in flower and fruit development and responded to low temperature and exogenous ABA treatment. The recombinant plasmid pGreenII-0800-Luc with the promoters of these two genes can activate luciferase expression in tobacco. Protein interaction predictions indicate that these gene products may interact with other proteins. This study reveals the molecular features, evolutionary relationships, and expression patterns of sweet cherry WHY genes, and investigates the activities of their promoters, which lays the foundation for further exploration of their biological functions and provides new insights into the WHY gene family in Rosaceae.
Collapse
Affiliation(s)
- Lili Wang
- Guizhou Academy of Agricultural Sciences, Guiyang 550025, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Muti RM, Barrett CF, Sinn BT. Evolution of Whirly1 in the angiosperms: sequence, splicing, and expression in a clade of early transitional mycoheterotrophic orchids. FRONTIERS IN PLANT SCIENCE 2024; 15:1241515. [PMID: 39006962 PMCID: PMC11239579 DOI: 10.3389/fpls.2024.1241515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/07/2024] [Indexed: 07/16/2024]
Abstract
The plastid-targeted transcription factor Whirly1 (WHY1) has been implicated in chloroplast biogenesis, plastid genome stability, and fungal defense response, which together represent characteristics of interest for the study of autotrophic losses across the angiosperms. While gene loss in the plastid and nuclear genomes has been well studied in mycoheterotrophic plants, the evolution of the molecular mechanisms impacting genome stability is completely unknown. Here, we characterize the evolution of WHY1 in four early transitional mycoheterotrophic orchid species in the genus Corallorhiza by synthesizing the results of phylogenetic, transcriptomic, and comparative genomic analyses with WHY1 genomic sequences sampled from 21 orders of angiosperms. We found an increased number of non-canonical WHY1 isoforms assembled from all but the greenest Corallorhiza species, including intron retention in some isoforms. Within Corallorhiza, phylotranscriptomic analyses revealed the presence of tissue-specific differential expression of WHY1 in only the most photosynthetically capable species and a coincident increase in the number of non-canonical WHY1 isoforms assembled from fully mycoheterotrophic species. Gene- and codon-level tests of WHY1 selective regimes did not infer significant signal of either relaxed selection or episodic diversifying selection in Corallorhiza but did so for relaxed selection in the late-stage full mycoheterotrophic orchids Epipogium aphyllum and Gastrodia elata. Additionally, nucleotide substitutions that most likely impact the function of WHY1, such as nonsense mutations, were only observed in late-stage mycoheterotrophs. We propose that our findings suggest that splicing and expression changes may precede the selective shifts we inferred for late-stage mycoheterotrophic species, which therefore does not support a primary role for WHY1 in the transition to mycoheterotrophy in the Orchidaceae. Taken together, this study provides the most comprehensive view of WHY1 evolution across the angiosperms to date.
Collapse
Affiliation(s)
- Rachel M. Muti
- Department of Biology and Earth Science, Otterbein University, Westerville, OH, United States
- Department of Hematology and Medical Oncology, Emory University, Atlanta, GA, United States
| | - Craig F. Barrett
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Brandon T. Sinn
- Department of Biology and Earth Science, Otterbein University, Westerville, OH, United States
- Faculty of Biology, University of Latvia, Riga, Latvia
| |
Collapse
|
7
|
Li Z, Zhai X, Zhang L, Yang Y, Zhu H, Lü H, Xiong E, Chu S, Zhang X, Zhang D, Hu D. Genome-Wide Identification of the Whirly Gene Family and Its Potential Function in Low Phosphate Stress in Soybean ( Glycine max). Genes (Basel) 2024; 15:833. [PMID: 39062612 PMCID: PMC11275625 DOI: 10.3390/genes15070833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The Whirly (WHY) gene family, functioning as transcription factors, plays an essential role in the regulation of plant metabolic responses, which has been demonstrated across multiple species. However, the WHY gene family and its functions in soybean remains unclear. In this paper, we conducted genome-wide screening and identification to characterize the WHY gene family. Seven WHY members were identified and randomly distributed across six chromosomes. The phylogenetic evolutionary tree of WHY genes in soybean and other species was divided into five clades. An in-depth analysis revealed that segmental duplications significantly contributed to the expansion of GmWHYs, and the GmWHY gene members may have experienced evolutionary pressure for purifying selection in soybeans. The analysis of promoter Cis-elements in GmWHYs suggested their potential significance in addressing diverse stress conditions. The expression patterns of GmWHYs exhibited tissue-specific variations throughout the different stages of soybean development. Additionally, six GmWHY genes exhibited different responses to low phosphate stress. These findings will provide a theoretical basis and valuable reference for the future exploration of WHY gene function.
Collapse
Affiliation(s)
- Zhimin Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Xuhao Zhai
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Lina Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Yifei Yang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Hongqing Zhu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Haiyan Lü
- College of Information and Management Science, Henan Agricultural University, Zhengzhou 450046, China;
| | - Erhui Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Xingguo Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| | - Dandan Hu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; (Z.L.); (X.Z.); (L.Z.); (Y.Y.); (H.Z.); (E.X.); (S.C.); (X.Z.); (D.Z.)
| |
Collapse
|
8
|
K. Raval P, MacLeod AI, Gould SB. A molecular atlas of plastid and mitochondrial proteins reveals organellar remodeling during plant evolutionary transitions from algae to angiosperms. PLoS Biol 2024; 22:e3002608. [PMID: 38713727 PMCID: PMC11135702 DOI: 10.1371/journal.pbio.3002608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 05/29/2024] [Accepted: 03/28/2024] [Indexed: 05/09/2024] Open
Abstract
Algae and plants carry 2 organelles of endosymbiotic origin that have been co-evolving in their host cells for more than a billion years. The biology of plastids and mitochondria can differ significantly across major lineages and organelle changes likely accompanied the adaptation to new ecological niches such as the terrestrial habitat. Based on organelle proteome data and the genomes of 168 phototrophic (Archaeplastida) versus a broad range of 518 non-phototrophic eukaryotes, we screened for changes in plastid and mitochondrial biology across 1 billion years of evolution. Taking into account 331,571 protein families (or orthogroups), we identify 31,625 protein families that are unique to primary plastid-bearing eukaryotes. The 1,906 and 825 protein families are predicted to operate in plastids and mitochondria, respectively. Tracing the evolutionary history of these protein families through evolutionary time uncovers the significant remodeling the organelles experienced from algae to land plants. The analyses of gained orthogroups identifies molecular changes of organelle biology that connect to the diversification of major lineages and facilitated major transitions from chlorophytes en route to the global greening and origin of angiosperms.
Collapse
Affiliation(s)
- Parth K. Raval
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Alexander I. MacLeod
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sven B. Gould
- Institute for Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
9
|
Liu H, Wang X, Yang W, Liu W, Wang Y, Wang Q, Zhao Y. Identification of Whirly transcription factors in Triticeae species and functional analysis of TaWHY1-7D in response to osmotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1297228. [PMID: 38116153 PMCID: PMC10728677 DOI: 10.3389/fpls.2023.1297228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Osmotic stress poses a threat to the production and quality of crops. Whirly transcription factors have been investigated to enhance stress tolerance. In this study, a total of 18 Whirly genes were identified from six Triticeae species, which were classified into Whirly1 and Whirly2. The exon-intron structure, conserved motif, chromosomal location, collinearity, and regulatory network of Whirly genes were also analyzed. Real-time PCR results indicated that TaWHY1 genes exhibited higher expression levels in leaf sheaths and leaves during the seedling stage, while TaWHY2 genes were predominantly expressed in roots. Under PEG stress, the expression levels of TaWHY1-7A, TaWHY2-6A, TaWHY2-6B, and TaWHY2-6D were increased, TaWHY1-7D was reduced, and TaWHY1-4A had no significant change. All TaWHY genes were significantly up-regulated in response to NaCl stress treatment. In addition, TaWHY1-7A and TaWHY1-7D mainly enhanced the tolerance to oxidative stress in yeast cells. TaWHY2s mainly improved NaCl stress tolerance and were sensitive to oxidative stress in yeast cells. All TaWHYs slightly improved the yeast tolerance to d-sorbitol stress. The heterologous expression of TaWHY1-7D greatly improved drought and salt tolerance in transgenic Arabidopsis. In conclusion, these results provide the foundation for further functional study of Whirly genes aimed at improving osmotic stress tolerance in wheat.
Collapse
Affiliation(s)
- Hao Liu
- College of Agriculture, Ludong University, Yantai, China
| | - Xiaoyu Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao, China
| | - Wenbo Yang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenyan Liu
- College of Agriculture, Ludong University, Yantai, China
| | - Yanfang Wang
- College of Life Science, Ludong University, Yantai, China
| | - Qin Wang
- Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, China
| | - Yanhong Zhao
- College of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
10
|
Saeid Nia M, Scholz L, Garibay-Hernández A, Mock HP, Repnik U, Selinski J, Krupinska K, Bilger W. How do barley plants with impaired photosynthetic light acclimation survive under high-light stress? PLANTA 2023; 258:71. [PMID: 37632541 PMCID: PMC10460368 DOI: 10.1007/s00425-023-04227-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/13/2023] [Indexed: 08/28/2023]
Abstract
MAIN CONCLUSION WHIRLY1 deficient barley plants surviving growth at high irradiance displayed increased non-radiative energy dissipation, enhanced contents of zeaxanthin and the flavonoid lutonarin, but no changes in α-tocopherol nor glutathione. Plants are able to acclimate to environmental conditions to optimize their functions. With the exception of obligate shade plants, they can adjust their photosynthetic apparatus and the morphology and anatomy of their leaves to irradiance. Barley (Hordeum vulgare L., cv. Golden Promise) plants with reduced abundance of the protein WHIRLY1 were recently shown to be unable to acclimatise important components of the photosynthetic apparatus to high light. Nevertheless, these plants did not show symptoms of photoinhibition. High-light (HL) grown WHIRLY1 knockdown plants showed clear signs of exposure to excessive irradiance such as a low epoxidation state of the violaxanthin cycle pigments and an early light saturation of electron transport. These responses were underlined by a very large xanthophyll cycle pool size and by an increased number of plastoglobules. Whereas zeaxanthin increased with HL stress, α-tocopherol, which is another lipophilic antioxidant, showed no response to excessive light. Also the content of the hydrophilic antioxidant glutathione showed no increase in W1 plants as compared to the wild type, whereas the flavone lutonarin was induced in W1 plants. HPLC analysis of removed epidermal tissue indicated that the largest part of lutonarin was presumably located in the mesophyll. Since lutonarin is a better antioxidant than saponarin, the major flavone present in barley leaves, it is concluded that lutonarin accumulated as a response to oxidative stress. It is also concluded that zeaxanthin and lutonarin may have served as antioxidants in the WHIRLY1 knockdown plants, contributing to their survival in HL despite their restricted HL acclimation.
Collapse
Affiliation(s)
| | - Louis Scholz
- Institute of Botany, Christian-Albrechts-University, Kiel, Germany
| | - Adriana Garibay-Hernández
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Paul-Ehrlich Straße 23, 67663, Kaiserslautern, Germany
| | - Hans-Peter Mock
- Leibniz Institute for Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Urska Repnik
- Central Microscopy, Department of Biology, Christian-Albrechts-University, Kiel, Germany
| | | | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University, Kiel, Germany
| | - Wolfgang Bilger
- Institute of Botany, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
11
|
Taylor RE, Waterworth W, West CE, Foyer CH. WHIRLY proteins maintain seed longevity by effects on seed oxygen signalling during imbibition. Biochem J 2023; 480:941-956. [PMID: 37351567 PMCID: PMC10422932 DOI: 10.1042/bcj20230008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 06/24/2023]
Abstract
The WHIRLY (WHY) family of DNA/RNA binding proteins fulfil multiple but poorly characterised functions in plants. We analysed WHY protein functions in the Arabidopsis Atwhy1, Atwhy3, Atwhy1why3 single and double mutants and wild type controls. The Atwhy3 and Atwhy1why3 double mutants showed a significant delay in flowering, having more siliques per plant but with fewer seeds per silique than the wild type. While germination was similar in the unaged high-quality seeds of all lines, significant decreases in vigour and viability were observed in the aged mutant seeds compared with the wild type. Imbibition of unaged high-quality seeds was characterised by large increases in transcripts that encode proteins involved in oxygen sensing and responses to hypoxia. Seed aging resulted in a disruption of the imbibition-induced transcriptome profile such that transcripts encoding RNA metabolism and processing became the most abundant components of the imbibition signature. The imbibition-related profile of the Atwhy1why3 mutant seeds, was characterised by decreased expression of hypoxia-related and oxygen metabolism genes even in the absence of aging. Seed aging further decreased the abundance of hypoxia-related and oxygen metabolism transcripts relative to the wild type. These findings suggest that the WHY1 and WHY3 proteins regulate the imbibition-induced responses to oxygen availability and hypoxia. Loss of WHY1 and WHY3 functions decreases the ability of Arabidopsis seeds to resist the adverse effects of seed aging.
Collapse
Affiliation(s)
- Rachel E. Taylor
- The Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Wanda Waterworth
- The Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Christopher E West
- The Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, U.K
| |
Collapse
|
12
|
Manh MB, Ost C, Peiter E, Hause B, Krupinska K, Humbeck K. WHIRLY1 Acts Upstream of ABA-Related Reprogramming of Drought-Induced Gene Expression in Barley and Affects Stress-Related Histone Modifications. Int J Mol Sci 2023; 24:6326. [PMID: 37047301 PMCID: PMC10094662 DOI: 10.3390/ijms24076326] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/30/2023] Open
Abstract
WHIRLY1, a small plant-specific ssDNA-binding protein, dually located in chloroplasts and the nucleus, is discussed to act as a retrograde signal transmitting a stress signal from the chloroplast to the nucleus and triggering there a stress-related gene expression. In this work, we investigated the function of WHIRLY1 in the drought stress response of barley, employing two overexpression lines (oeW1-2 and oeW1-15). The overexpression of WHIRLY1 delayed the drought-stress-related onset of senescence in primary leaves. Two abscisic acid (ABA)-dependent marker genes of drought stress, HvNCED1 and HvS40, whose expression in the wild type was induced during drought treatment, were not induced in overexpression lines. In addition, a drought-related increase in ABA concentration in the leaves was suppressed in WHIRLY1 overexpression lines. To analyze the impact of the gain-of-function of WHIRLY1 on the drought-related reprogramming of nuclear gene expression, RNAseq was performed comparing the wild type and an overexpression line. Cluster analyses revealed a set of genes highly up-regulated in response to drought in the wild type but not in the WHIRLY1 overexpression lines. Among these genes were many stress- and abscisic acid (ABA)-related ones. Another cluster comprised genes up-regulated in the oeW1 lines compared to the wild type. These were related to primary metabolism, chloroplast function and growth. Our results indicate that WHIRLY1 acts as a hub, balancing trade-off between stress-related and developmental pathways. To test whether the gain-of-function of WHIRLY1 affects the epigenetic control of stress-related gene expression, we analyzed drought-related histone modifications in different regions of the promoter and at the transcriptional start sites of HvNCED1 and HvS40. Interestingly, the level of euchromatic marks (H3K4me3 and H3K9ac) was clearly decreased in both genes in a WHIRLY1 overexpression line. Our results indicate that WHIRLY1, which is discussed to act as a retrograde signal, affects the ABA-related reprogramming of nuclear gene expression during drought via differential histone modifications.
Collapse
Affiliation(s)
- Minh Bui Manh
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| | - Charlotte Ost
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| | - Edgar Peiter
- Plant Nutrition Laboratory, Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Karin Krupinska
- Institute of Botany, Christian-Albrechts-University (CAU), 24098 Kiel, Germany
| | - Klaus Humbeck
- Institute of Biology, Martin Luther University Halle-Wittenberg, Weinbergweg 10, 06120 Halle, Germany
| |
Collapse
|
13
|
Maksoud SA, Gad KI, Hamed EYM. The potentiality of biostimulant (Lawsonia inermis L.) on some morpho-physiological, biochemical traits, productivity and grain quality of Triticum aestivum L. BMC PLANT BIOLOGY 2023; 23:95. [PMID: 36782121 PMCID: PMC9926747 DOI: 10.1186/s12870-023-04083-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND In conformity with the international trend to substitute the artificial agro-chemicals by natural products to improve growth and productivity of crops, there is a necessity to focus on the environment sustainable and eco-friendly resources to increase crops productivity per unit area. One of these resources is the use of biostimulants. The aim of this study is to allow the vertical expansion of wheat crop by improving its growth and productivity per unit area as well as enhancing its grain quality using henna leaf extract as a biostimulant. RESULTS Field study was conducted to evaluate the potentiality of different doses of henna leaf extract (HLE) for improving the performance of wheat plants (Triticum aestivum L.) at three development stages. Results revealed that the response was dose dependent hence both 0.5 and 1.0 g/L doses significantly enhanced the growth of shoot and root systems, biochemical traits, yield and yield related components with being 1.0 g/L the most effective one. Furthermore, 1.0 g/L HLE markedly enhanced the quality of the yielded grains as revealed by increasing the content of soluble sugars (23%), starch (19%), gluten (50%), soluble proteins (37%), amylase activity (27%), total phenolics, flavonoids and tannins (67, 87 and 23%, respectively) as well as some elements including Ca (184%), Na and Fe (10%). Also, HPLC analysis of grains revealed that 1.0 g/L dose significantly increased the level of different phytohormones, soluble sugars and flavonoids (quercetin, resveratrol and catechin). CONCLUSION Application of Henna (Lawsonia inermis) leaf extract at 1.0 g/L dose as a combination of seed priming and foliar spray can be recommended as a nonpolluting, inexpensive promising biostimulant, it can effectively enhance wheat growth, biochemical traits and productivity as well as improving the quality of the yielded grains.
Collapse
Affiliation(s)
- Salwa A Maksoud
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - Khaled I Gad
- Wheat Department, Agricultural Research Center, Giza, Egypt
| | - Eman Y M Hamed
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| |
Collapse
|