1
|
Basak F, Kusat T, Kahraman T, Ersan Y. The role of resveratrol in delivering antioxidant, anti-inflammatory, and anti-apoptotic defense against nephrotoxicity generated by titanium dioxide. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03885-7. [PMID: 39992422 DOI: 10.1007/s00210-025-03885-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/04/2025] [Indexed: 02/25/2025]
Abstract
Titanium dioxide is a prevalent food ingredient for human ingestion. We investigated the nephrotoxic effects of titanium dioxide in Wistar albino rats subjected to oral exposure for 14 days. The rats were categorized into four groups (n = 8): (1) control (saline solution), (2) exposure to titanium dioxide (30 mg/kg), (3) exposure to resveratrol (100 mg/kg), and (4) exposure to both titanium dioxide and resveratrol. The investigations revealed that the administration of titanium dioxide resulted in considerable histological abnormalities and a significant prevalence of apoptotic cells marked by caspase-3 in the titanium dioxide group, with a markedly elevated quantity and strong staining of cells reacting with 4-HN across the tissue in the kidney. Blood serum assessments revealed that BUN and creatinine levels were elevated in the titanium group relative to the other three groups, with a reduction in these levels observed in the group receiving both titanium and resveratrol (P < 0.05). The assessment of oxidative stress markers in kidney tissue revealed that GSH-Px and SOD activity considerably decreased in the titanium dioxide group relative to the other experimental groups. In contrast, MDA levels increased markedly (P < 0.05). The activities of GSH-Px and SOD were significantly elevated in the group receiving both titanium dioxide and resveratrol compared to the titanium dioxide-only group (P < 0.05). The analysis of inflammation markers TNF-α and IL-6 revealed a substantial rise in their levels in the titanium dioxide group compared to the other groups (P < 0.05).
Collapse
Affiliation(s)
- Feyza Basak
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Tansu Kusat
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Tahir Kahraman
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Yusuf Ersan
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| |
Collapse
|
2
|
Alkandahri MY, Sadino A, Abriyani E, Hermanto F, Oktoba Z, Sayoeti MFW, Sangging PRA, Wardani D, Hasan N, Sari SW, Safitri NA, Ikhtianingsih W, Safitri S. Evaluation of hepatoprotective and nephroprotective activities of Castanopsis costata extract in rats. Biomed Rep 2025; 22:24. [PMID: 39720299 PMCID: PMC11668127 DOI: 10.3892/br.2024.1902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
The liver and kidneys are important organs for body homeostasis but susceptible to damage or injury caused by different factors. A number of medicinal plants, such as Castanopsis costata have been proven effective in protecting the liver and kidneys from damage. Therefore, the present study aimed to examine the effect of C. costata extract (CcE) on paracetamol-induced hepatotoxicity and gentamicin-induced nephrotoxicity in rat model. Each treatment group was given CcE at doses of 100, 200 and 400 mg/kg for 21 and 8 days for hepatoprotective tests and nephroprotective tests, respectively. To induce liver and kidney damage, rats were given paracetamol 1,000 mg/kg orally for 7 (15-21) and gentamicin 80 mg/kg intraperitoneally for 5 (4-8) days. To assess liver function, the levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin (TB), total cholesterol (TC), total albumin (TA) and total protein (TP) were measured, as well as liver antioxidant enzymes. Meanwhile, to assess kidney function, the levels of serum creatinine (SCr), serum urea (SU) and uric acid (UA) were measured. TNF-α and IFN-γ were also measured with histopathology testing to assess the effects of liver and kidney organ damage in each experiment. The results showed that CcE reduced the levels of AST, ALT, ALP, TB and TC, increased TA, TP and liver antioxidant enzymes, as well as reducing SCr, SU and UA when compared with the pathological group. Additionally, CcE reduced the levels of TNF-α and IFN-γ, as well as improving the structure of liver and kidney tissue as confirmed by histopathology. CcE had hepatoprotective and nephroprotective effects on paracetamol-induced and gentamicin-induced rats, respectively.
Collapse
Affiliation(s)
- Maulana Yusuf Alkandahri
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Asman Sadino
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Garut, Garut, West Java 44151, Indonesia
| | - Ermi Abriyani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Faizal Hermanto
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Jenderal Achmad Yani, Cimahi, West Java 40525, Indonesia
| | - Zulpakor Oktoba
- Department of Pharmacy, Faculty of Medicine, Universitas Lampung, Bandar Lampung 35141, Indonesia
| | | | | | - Diah Wardani
- Diploma Program of Pharmacy, Karsa Husada Garut College of Health Sciences, Garut, West Java 44151, Indonesia
| | - Nahrul Hasan
- Department of Pharmacy, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto, Central Java 53122, Indonesia
| | - Suci Wulan Sari
- Department of Pharmacy, Faculty of Health Sciences, Universitas Jenderal Soedirman, Purwokerto, Central Java 53122, Indonesia
| | - Nurul Aeni Safitri
- Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Windi Ikhtianingsih
- Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| | - Safitri Safitri
- Faculty of Pharmacy, Universitas Buana Perjuangan Karawang, Karawang, West Java 41361, Indonesia
| |
Collapse
|
3
|
Jana S, Mitra P, Panchali T, Khatun A, Das TK, Ghosh K, Pradhan S, Chakrabarti S, Roy S. Evaluating anti-inflammatory and anti-oxidative potentialities of the chloroform fraction of Asparagus racemosus roots against cisplatin induced acute kidney injury. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119084. [PMID: 39566865 DOI: 10.1016/j.jep.2024.119084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute kidney injury (AKI), a global public health concern that increases the risk of death, end-stage renal disease, and prolonged hospital admissions. As of this point, supportive measures like fluid resuscitation and replacement therapy for renal failure are the only treatments available for treating AKI. Asparagus racemosus (AR) also known as Shatavari, belongs to family Liliaceae and is considered exceptional in Ayurvedic medicine due to its versatility in treating and preventing a variety of illnesses. AIM OF THE STUDY The purpose of this study is to determine the effectiveness of chloroform fraction of Asparagus racemosus (CFAR) against cisplatin (CP) induced AKI. MATERIALS AND METHODS HPLC was used to analyze the presence of bioactive phytocompounds in CFAR using standard quercetin. Further LC-MS study indicated the existence of different bioactive compounds. Normal Rat Kidney (NRK-52E) cells were used to study the nephroprotective effect of CFAR. Cells were untreated, treated or cotreated with CP (20 μM) and CFAR (5, 25, 50, 100, 200 and 400μg/mL) for 24 h. After 24 h of treatment, cell viability assay and assay of apoptosis parameters were performed. The CFAR at the dose of 50 mg, 100 mg and 200 mg/kg/day was administered orally for 15 days and acute kidney injury was induced in rats by intraperitoneal injection of CP (10 mg/kg body weight) at the 10th day of experimentation. Biochemical studies were performed to evaluate kidney function; protein expression by Western blot and mRNA expression of related gene were studied from the kidney tissues to evaluate the effects of CFAR. Histopathological analysis was done to investigate the structural abnormalities and fibrosis of renal tissues. RESULT Our result reported that CFAR contain many bioactive phytomolecules having many pharmacological properties. Cell viability assay and assay of apoptosis reported that different doses of CFAR could reduced CP-induced cell death and cell apoptosis. The levels of kidney injury markers (BUN, sCr and eGFR), inflammatory markers (Interleukin-18, KIM-1, Cys-C, NF-kB and NGAL), and antioxidant markers (SOD, GSH, CAT, Nrf2 and Bcl2) and lipid peroxidation (MDA) were settled to a normal level by the oral administration of high doses (100 and 200 mg/kg body weight) of CFAR after intraperitoneal injection of CP as suggested by biochemical, histopathological, protein and gene expression studies. CONCLUSION In conclusion, CFAR at the high doses (100 and 200 mg/kg body weight) could able to protect the kidneys from CP induced oxidative stress and inflammation due to presence of bioactive phytomolecules that prevent the activation of oxidative stress induced signalling cascades leading to kidney damage.
Collapse
Affiliation(s)
- Sahadeb Jana
- Biodiversity and Environmental Studies Research Centre affiliated to Vidyasagar University, Midnapore City College, Bhadutala, Paschim Medinipur, 721129, West Bengal, India; Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Palash Mitra
- Biodiversity and Environmental Studies Research Centre affiliated to Vidyasagar University, Midnapore City College, Bhadutala, Paschim Medinipur, 721129, West Bengal, India; Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Titli Panchali
- Biodiversity and Environmental Studies Research Centre affiliated to Vidyasagar University, Midnapore City College, Bhadutala, Paschim Medinipur, 721129, West Bengal, India; Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Amina Khatun
- Biodiversity and Environmental Studies Research Centre affiliated to Vidyasagar University, Midnapore City College, Bhadutala, Paschim Medinipur, 721129, West Bengal, India; Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Tridip Kumar Das
- Biodiversity and Environmental Studies Research Centre affiliated to Vidyasagar University, Midnapore City College, Bhadutala, Paschim Medinipur, 721129, West Bengal, India; Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Kuntal Ghosh
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Shrabani Pradhan
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Sudipta Chakrabarti
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| | - Suchismita Roy
- Department of Paramedical and Allied Health Sciences, Midnapore City College, Kuturiya, Bhadutala, Midnapore, 721129, India.
| |
Collapse
|
4
|
Alkandahri MY, Sadino A, Pamungkas BT, Oktoba Z, Arfania M, Yuniarsih N, Wahyuningsih ES, Dewi Y, Winarti SA, Dinita ST. Potential Nephroprotective Effect of Kaempferol: Biosynthesis, Mechanisms of Action, and Clinical Prospects. Adv Pharmacol Pharm Sci 2024; 2024:8907717. [PMID: 39377015 PMCID: PMC11458287 DOI: 10.1155/2024/8907717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Kidney is an essential organ that is highly susceptible to cellular injury caused by various toxic substances in the blood. Several studies have shown that untreated injuries to this organ can cause glomerulosclerosis, tubulointerstitial fibrosis, and tubular cell apoptosis, leading to kidney failure. Despite significant advancements in modern treatment, there is no fully effective drug for repairing its function, providing complete protection, and assisting in cell regeneration. Furthermore, some available medications have been reported to exacerbate injuries, showing the need to explore alternative treatments. Natural drugs are currently being explored as a new therapeutic strategy for managing kidney diseases. Kaempferol, a polyphenol found in plants, including vegetables, legumes, and fruits, has been extensively studied in various nephrotoxicity protocols. The compound has been reported to have potential as a nephroprotective agent with beneficial effects on various physiological pathways, such as CPL-induced kidney injury, DOX, LPO, ROS, RCC, and diabetic nephropathy. Therefore, this study aims to provide a brief overview of the current nephroprotective effects of kaempferol, as well as its molecular mechanisms of action, biosynthesis pathways, and clinical prospects.
Collapse
Affiliation(s)
- Maulana Yusuf Alkandahri
- Department of Pharmacology and Clinical PharmacyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Asman Sadino
- Department of PharmacyFaculty of Mathematics and Natural ScienceUniversitas Garut, Garut, West Java, Indonesia
| | - Barolym Tri Pamungkas
- Department of Pharmaceutical BiologyFaculty of PharmacyUniversitas Mulawarman, Samarinda, East Kalimantan, Indonesia
| | - Zulpakor Oktoba
- Department of PharmacyFaculty of MedicineUniversitas Lampung, Bandar Lampung, Indonesia
| | - Maya Arfania
- Department of Pharmacology and Clinical PharmacyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Nia Yuniarsih
- Department of Pharmaceutical TechnologyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Eko Sri Wahyuningsih
- Department of Pharmaceutical BiologyFaculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Yuliani Dewi
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Sri Ayu Winarti
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| | - Sri Tantia Dinita
- Faculty of PharmacyUniversitas Buana Perjuangan Karawang, Karawang, West Java, Indonesia
| |
Collapse
|
5
|
Sharma R, Ansari MM, Alam M, Fareed M, Ali N, Ahmad A, Sultana S, Khan R. Sophorin mitigates flutamide-induced hepatotoxicity in wistar rats. Toxicon 2024; 243:107722. [PMID: 38653393 DOI: 10.1016/j.toxicon.2024.107722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/06/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Flutamide is frequently used in the management of prostate cancer, hirsutism, and acne. It is a non-steroidal anti-androgenic drug and causes hepatotoxicity. The current study's objective is to evaluate sophorin's hepatoprotective effectiveness against flutamide-induced hepatotoxicity in Wistar rats. Sophorin is a citrus flavonoid glycoside, also known as rutin, which is a low molecular weight polyphenolic compound with natural antioxidant properties and reported to have promising hepatoprotective efficacy. In this study, sophorin was used at a dose of 100 mg/kg body weight in purified water via oral route for 4 week daily whereas, flutamide was used at a dose of 100 mg kg/b.wt for 4 weeks daily in 0.5% carboxy methyl cellulose (CMC) through the oral route for the induction of hepatotoxicity. Flutamide administration leads to enhanced reactive oxygen species (ROS) generation, an imbalance in redox homeostasis and peroxidation of lipid resulted in reduced natural antioxidant level in liver tissue. Our result demonstrated that sophorin significantly abrogate flutamide induced lipid peroxidation, protein carbonyl (PC), and also significantly increasesed in enzymatic activity/level of tissue natural antioxidant such as reduced glutathione(GSH), glutathione reductase(GR), catalase, and superoxide dismutase(SOD). Additionally, sophorin reduced the activity of cytochrome P450 3A1 in liver tissue which was elevated due to flutamide treatment. Furthermore, sophorin treatment significantly decreased the pro-inflammatory cytokines (TNF-α and IL-6) level. Immunohistochemical analysis for the expression of inflammatory proteins (iNOS and COX-2) in hepatic tissue was decreased after sophorin treatment against flutamide-induced hepatotoxicity. Moreover, sophorin suppressed the infiltration of mast cells in liver tissue which further showed anti-inflammatory potential of sophorin. Our histological investigation further demonstrated sophorin's hepatoprotective function by restoring the typical histology of the liver. Based on the aforementioned information, we are able to come to the conclusion that sophorin supplementation might benefit wistar rats with flutamide-induced hepatic damage by reducing oxidative stress and hepatocellular inflammation.
Collapse
Affiliation(s)
- Rishi Sharma
- Molecular Carcinogenesis and Chemoprevention Division, Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Md Meraj Ansari
- Heavy Metal and Clinical Toxicology Laboratory, Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Manzar Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Fareed
- Department of Environmental Health and Clinical Epidemiology, Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Sarwat Sultana
- Molecular Carcinogenesis and Chemoprevention Division, Department of Toxicology, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology, Knowledge City, Sector-81, Mohali, 140306, Punjab, India.
| |
Collapse
|
6
|
Mohammad Rahimi H, Hesari Z, Mirsamadi ES, Nemati S, Mirjalali H. Anti- Toxoplasma gondii activity of rose hip oil-solid lipid nanoparticles. Food Sci Nutr 2024; 12:3725-3734. [PMID: 38726453 PMCID: PMC11077205 DOI: 10.1002/fsn3.4043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/23/2024] [Accepted: 02/04/2024] [Indexed: 05/12/2024] Open
Abstract
Toxoplasma gondii is a highly prevalent pathogen, reported from almost all geographical regions of the world. Current anti-T. gondii drugs are not effective enough in immunocompromised patients, encephalitis, chorioretinitis, and congenital toxoplasmosis. Therefore, the prescription of these drugs has been limited. Rose hip oil (RhO) is a natural plant compound, which shows antibacterial, anticancer, and anti-inflammatory activities. In the current study, the anti-T. gondii and cell toxicity effects of solid lipid nanoparticles (SLNs) loaded by RhO (RhO-SLNs) were evaluated. Emulsification sonicated-homogenization method was used to prepare SLNs. RhO-SLNs were characterized, and their anti-T. gondii and cell toxicity effects were evaluated using in vitro analyses. The particle size and the zeta potential of the nanoparticles were 152.09 nm and -15.3 mV nm, respectively. The entrapment efficiency percentage was 79.1%. In the present study, the inhibitory concentration (IC)50 against T. gondii was >1 μg/mL (p-value <.0001). The cell toxicity assay showed cytotoxicity concentration (CC)50 >10 mg/mL (p-value = .017). In addition, at least 75% of T. gondii-infected Vero cells remained alive at concentrations >10 mg/mL. The concentration of 1 mg/mL showed highest anti-Toxoplasma activity and lowest cell toxicity against the Vero cell. Our findings suggest that carrying natural plant compounds with SLNs could be considered an effective option for treatment strategies against T. gondii infections.
Collapse
Affiliation(s)
- Hanieh Mohammad Rahimi
- Foodborne and Waterborne Diseases Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Zahra Hesari
- Department of PharmaceuticsSchool of Pharmacy, Guilan University of Medical SciencesRashtIran
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of MedicineTehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Sara Nemati
- Foodborne and Waterborne Diseases Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research CenterResearch Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical SciencesTehranIran
| |
Collapse
|
7
|
Tahir R, Samra, Afzal F, Liang J, Yang S. Novel protective aspects of dietary polyphenols against pesticidal toxicity and its prospective application in rice-fish mode: A Review. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109418. [PMID: 38301811 DOI: 10.1016/j.fsi.2024.109418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/03/2024]
Abstract
The rice fish system represents an innovative and sustainable approach to integrated farming, combining rice cultivation with fish rearing in the same ecosystem. However, one of the major challenges in this system is the pesticidal pollution resulting from various sources, which poses risks to fish health and overall ecosystem balance. In recent years, dietary polyphenols have emerged as promising bioactive compounds with potential chemo-preventive and therapeutic properties. These polyphenols, derived from various plant sources, have shown great potential in reducing the toxicity of pesticides and improving the health of fish within the rice fish system. This review aims to explore the novel aspects of using dietary polyphenols to mitigate pesticidal toxicity and enhance fish health in the rice fish system. It provides comprehensive insights into the mechanisms of action of dietary polyphenols and their beneficial effects on fish health, including antioxidant, anti-inflammatory, and detoxification properties. Furthermore, the review discusses the potential application methods of dietary polyphenols, such as direct supplementation in fish diets or through incorporation into the rice fields. By understanding the interplay between dietary polyphenols and pesticides in the rice fish system, researchers can develop innovative and sustainable strategies to promote fish health, minimize pesticide impacts, and ensure the long-term viability of this integrated farming approach. The information presented in this review will be valuable for scientists, aqua-culturists, and policymakers aiming to implement eco-friendly and health-enhancing practices in the rice fish system.
Collapse
Affiliation(s)
- Rabia Tahir
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China; Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Samra
- School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Fozia Afzal
- Department of Zoology, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Ji Liang
- School of Humanities, Universiti Sains Malaysia, Minden, Penang, 11800, Malaysia
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
8
|
Wei Q, Gao F, Gao L, Gao H, Zhang J, Bao R, Zhang H, Wang J, Shen Q, Gu M. Construction of chrysophanol loaded nanoparticles with N-octyl-O-sulfate chitosan for enhanced nephroprotective effect. Eur J Pharm Sci 2024; 193:106685. [PMID: 38154506 DOI: 10.1016/j.ejps.2023.106685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 12/30/2023]
Abstract
Natural occurring anthraquinone like chrysophanol has been studied because of its anti-diabetic, anti-tumor, anti-inflammatory, hepatoprotective and neuroprotective properties. Nonetheless, its poor water solubility and unstable nature are big concerns in achieving efficient delivery and associated pharmacokinetic and pharmacodynamic effects. Herein, this study sought to solve the above-mentioned problem through development of chrysophanol-loaded nanoparticles to enhance the bioavailability of chrysophanol and to evaluate its anti-renal fibrosis effect in rats. After synthesis of a safe N-octyl-O-sulfate chitosan, we used it to prepare chrysophanol-loaded nanoparticles through dialysis technique before we performed and physical characterization. Also, we tested the stability of the nanoparticles for 21 days at 4 °C and room temperature (25 °C) and evaluated their pharmacokinetics and anti-renal fibrosis effect in rat model of chronic kidney disease (CKD). In terms of results, the nano-preparation demonstrated an acceptable narrow size distribution, wherein the encapsulation rate, size, polydispersed index (PDI) and electrokinetic potential at room temperature were respectively 83.41±0.89 %, 364.88±13.62 nm, 0.192±0.015 and 23.78±1.39 mV. During 21 days of storage, we observed that size of particles and electrokinetic potential altered slightly but the difference was statistically insignificant (p > 0.05). Also, in vitro release studies showed that the formulation reached 84.74 % at 24 h. Chrysophanol nanoparticles showed a 2.57-fold increase in bioavailability compared to unformulated chrysophanol. More importantly, chrysophanol nanoparticles demonstrated certain renal internalization properties and anti-renal fibrosis effects, which could ultimately result in reduced blood-urea nitrogen (BUN), kidney-injury molecule-1 (KIM-1) and serum creatinine (SCr) levels in model rats. In conclusion, the prepared chrysophanol-loaded nanoparticles potentially increased bioavailability and enhanced nephroprotective effects of chrysophanol.
Collapse
Affiliation(s)
- Qingxue Wei
- Department of Nephrology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China
| | - Fuping Gao
- Department of Pathology, Gaochun People's Hospital, Nanjing, Jiangsu 211300, China
| | - Leiping Gao
- Department of Nephrology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China
| | - Hong Gao
- PharmaMax Pharmaceuticals, Ltd., No.1 Nanbatang Road, China Medical City, Taizhou, Jiangsu 225300, China
| | - Jian Zhang
- Department of Orthopedics, Taicang Affiliated Hospital of Soochow University, No.58 Changsheng South Road, Taicang, Jiangsu 215499, China
| | - Rui Bao
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hang Zhang
- Department of Nephrology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China
| | - Jiapeng Wang
- Department of Pharmaceutics, School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Qiusheng Shen
- Department of Cardiology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China.
| | - Mingjia Gu
- Department of Nephrology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China.
| |
Collapse
|
9
|
Khan MU, Basist P, Gaurav, Zahiruddin S, Penumallu NR, Ahmad S. Ameliorative effect of traditional polyherbal formulation on TNF-α, IL-1β and Caspase-3 expression in kidneys of wistar rats against sodium fluoride induced oxidative stress. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116900. [PMID: 37442489 DOI: 10.1016/j.jep.2023.116900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sharbat-e-bazoori Motadil (SBM) is a polyherbal formulation that have been used for centuries as a part of the Unani system of medicine for renal disease. AIM OF THE STUDY The objective of this study was to explore and validate the nephroprotective potential of sugar-free SBM (SF-SBM) and its mechanisms of action against sodium fluoride (NaF)-induced nephrotoxicity in HEK-293 cells. Additionally, the study aimed to assess the quality control of SF-SBM and investigate its effects using an in vivo rat model with pattern recognition following oral administration of SF-SBM. MATERIALS AND METHODS The nephroprotective effect of SF-SBM was investigated using both an HEK-293 cell line and Wistar rats. Nephrotoxicity was induced in these models by administering NaF at a concentration of 600 ppm (parts per million) for a duration of seven days. The SF-SBM formulation was standardized using high-performance thin-layer chromatography (HPTLC) to assess the presence of marker compounds, namely gallic acid, quercetin, and ferulic acid. Metabolite characterization of SF-SBM was carried out using ultra-high-performance liquid chromatography mass spectrometry (UPLC-MS) with a monolithic capillary silica-based C18 column. This analytical technique allowed for the identification of bioactive substances and verification of the identified markers. Acute toxicity of SF-SBM was evaluated in Wistar rats by administering a single oral dose of 2000 mg/kg of SF-SBM. The nephroprotective efficacy of SF-SBM was further assessed at low (LD), medium (MD) and high (HD) doses of 32.1, 64.2, and 128.4 mg/kg, respectively, administered orally. Nephrotoxicity was induced in Wistar rats by adding NaF to their drinking water for seven days. Biochemical and urine markers were analyzed to evaluate the antioxidant, inflammatory, and apoptotic potential of SF-SBM. Additionally, histopathological analysis and immunohistochemical alterations in the expression of caspase-3 and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-4 (NOX-4) in kidney tissue were performed to confirm the findings of the in vivo experiments. Furthermore, in vivo pattern recognition of SF-SBM metabolites, identified through GC-MS metabolomics, and in-silico docking analysis of major metabolites in plasma were conducted to gain further insights. RESULT Phytochemical analysis using HPTLC, TLC-bioautography, and UPLC-MS revealed the presence of several bioactive constituents in SF-SBM, including ferulic acid, gallic acid (GA), ellagic acid, quercetin, and apigenin. These compounds exhibit diverse pharmacological properties. In vitro studies demonstrated the protective effect of SF-SBM on HEK-293 cell line against nephrotoxicity. The acute toxicity study of SF-SBM at a dose of 2000 mg/kg showed no mortality or signs of toxicity throughout the 14-day observation period. In the in vivo studies, administration of NaF resulted in significant elevation (P < 0.001) of biochemical and urine parameters, indicating oxidative, inflammatory, and apoptotic stress. Histopathological examination revealed severe depletion of Bowman's capsule, and immunohistochemistry demonstrated negative immunostaining for caspase-3 and reduced NOX-4 reactions. Pre-treatment with SF-SBM significantly attenuated the elevated biochemical and urine markers, restored the antioxidant enzyme levels (such as SOD, CAT, GSH, GPx and NO), and regulated the expression of inflammatory cytokines (TNF-α, IL-1β, CASP-3) in kidney tissue at doses of SF-SBM-MD (64.2 mg/kg) and SF-SBM-HD (128.4 mg/kg), showing comparable results to those of α-Ketoanalogue. Histopathological assessment demonstrated improvements in tissue damage. Pattern recognition analysis of SF-SBM identified the presence of 56 metabolites at different time intervals. Additionally, in-silico studies revealed strong interactions of SF-SBM with a binding energy of -6.5 and -5.6 kcal for 4C2N. CONCLUSION The phytoconstituents present in SF-SBM play a crucial role in its nephroprotective action by acting as potent antioxidants and reducing proinflammatory and apoptotic damage in rat cells. This indicates that SF-SBM has promising potential for the treatment of nephrotoxicity.
Collapse
Affiliation(s)
- Mohammad Umar Khan
- Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), Jamia Hamdard, New Delhi, 110062, India; Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Food Technology, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi, 110062, India
| | - Parakh Basist
- Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), Jamia Hamdard, New Delhi, 110062, India; Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Gaurav
- Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), Jamia Hamdard, New Delhi, 110062, India; Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; IIMT College of Medical Sciences, IIMT University, O Pocket Ganga Nagar Meerut, Uttar Pradesh, 250001, India
| | - Sultan Zahiruddin
- Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), Jamia Hamdard, New Delhi, 110062, India; Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Naveen Reddy Penumallu
- Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), Jamia Hamdard, New Delhi, 110062, India; Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sayeed Ahmad
- Centre of Excellence in Unani Medicine (Pharmacognosy & Pharmacology), Jamia Hamdard, New Delhi, 110062, India; Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India; Department of Food Technology, School of Interdisciplinary Science and Technology, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
10
|
Badibostan H, Eizadi-Mood N, Hayes AW, Karimi G. Protective effects of natural compounds against paraquat-induced pulmonary toxicity: the role of the Nrf2/ARE signaling pathway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:611-624. [PMID: 36682065 DOI: 10.1080/09603123.2022.2163985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Paraquat (PQ) is a toxic herbicide to humans. Once absorbed, it accumulates in the lungs. PQ has been well documented that the generation of reactive oxygen species (ROS) is the main mechanism of its toxicity. Oxidative damage of PQ in lungs is represented as generation of cytotoxic and fibrotic mediators, interruption of epithelial and endothelial barriers, and inflammatory cell infiltration. No effective treatment for PQ toxicity is currently available. Several studies have shown that natural compounds (NCs) have the potential to alleviate PQ-induced pulmonary toxicity, due to their antioxidant and anti-inflammatory effects. NCs function as protective agents through stimulation of nuclear factor erythroid 2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathways. Elevation of Nrf2 levels leads to the expression of its downstream enzymes such as SOD, CAT, and HO-1. The hypothesized role of the Nrf2/ARE signaling pathway as the protective mechanism of NCs against PQ-induced pulmonary toxicity is reviewed.
Collapse
Affiliation(s)
- Hasan Badibostan
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nastaran Eizadi-Mood
- Isfahan Clinical Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, MI, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Renu K, Mukherjee AG, Gopalakrishnan AV, Wanjari UR, Kannampuzha S, Murali R, Veeraraghavan VP, Vinayagam S, Paz-Montelongo S, George A, Vellingiri B, Madhyastha H. Protective effects of macromolecular polyphenols, metals (zinc, selenium, and copper) - Polyphenol complexes, and different organs with an emphasis on arsenic poisoning: A review. Int J Biol Macromol 2023; 253:126715. [PMID: 37673136 DOI: 10.1016/j.ijbiomac.2023.126715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/28/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
For the potential health benefits and nutritional value, polyphenols are one of the secondary metabolites of plants that have received extensive research. It has anti-inflammatory and cytotoxicity-reducing properties in addition to a high antioxidant content. Macromolecular polyphenols and polysaccharides are biologically active natural polymers with antioxidant and anti-inflammatory potential. Arsenic is an ecologically toxic metalloid. Arsenic in drinking water is the most common way people come into contact with this metalloid. While arsenic is known to cause cancer, it is also used to treat acute promyelocytic leukemia (APL). The treatment's effectiveness is hampered by the adverse effects it can cause on the body. Oxidative stress, inflammation, and the inability to regulate cell death cause the most adverse effects. Polyphenols and other macromolecules like polysaccharides act as neuroprotectants by mitigating free radical damage, inhibiting nitric oxide (NO) production, lowering A42 fibril formation, boosting antioxidant levels, and controlling apoptosis and inflammation. To prevent the harmful effects of toxins, polyphenols and pectin lower oxidative stress, boost antioxidant levels, improve mitochondrial function, control apoptosis, and suppress inflammation. Therefore, it prevents damage to the heart, liver, kidneys, and reproductive system. This review aims to identify the effects of the polyphenols in conjugation with polysaccharides as an ameliorative strategy for arsenic-induced toxicity in various organs.
Collapse
Affiliation(s)
- Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Reshma Murali
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| | - Vishnu Priya Veeraraghavan
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Sathishkumar Vinayagam
- Department of Biotechnology, Periyar University, Centre for Postgraduate and Research Studies, Dharmapuri 635205, Tamil Nadu, India.
| | - Soraya Paz-Montelongo
- Area de Toxicologia, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain; Grupo interuniversitario de Toxicología Alimentaria y Ambiental, Universidad de La Laguna, 38071 La Laguna, Tenerife, Islas Canarias, Spain.
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, Kerala, India.
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India.
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 889 1692, Japan.
| |
Collapse
|
12
|
Cao P, Yue M, Cheng Y, Sullivan MA, Chen W, Yu H, Li F, Wu S, Lv Y, Zhai X, Zhang Y. Naringenin prevents non-alcoholic steatohepatitis by modulating the host metabolome and intestinal microbiome in MCD diet-fed mice. Food Sci Nutr 2023; 11:7826-7840. [PMID: 38107095 PMCID: PMC10724642 DOI: 10.1002/fsn3.3700] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 12/19/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe inflammatory phase of the non-alcoholic fatty liver disease (NAFLD) spectrum and can progress to advanced stages of NAFLD if left untreated. This study uses multi-omics data to elucidate the underlying mechanism of naringenin's reported benefit in alleviating (NASH). Male mice were fed a NASH-inducing (methionine-choline-deficient) MCD diet with or without naringenin supplementation for 6 weeks. Naringenin prevented NASH-induced histopathological liver damage and reversed the abnormal levels of hepatic triglyceride (TG)/total cholesterol (TC), serum TG/TC, serum alanine aminotransferase/aspartate transaminase, and hepatic malondialdehyde and glutathione. Importantly, naringenin intervention significantly modulated the relative abundance of gut microbiota and the host metabolomic profile. We detected more than 700 metabolites in the serum and found that the gut genus levels of Anaeroplasma and the [Eubacterium] nodatum group were closely associated with xanthine, 2-picoline, and securinine, respectively. Tuzzerella alterations showed the highest number of associations with host endogenous metabolites such as FAHFA (8:0/10:0), FFA (20:2), carnitine C8:1, tridecanedioic acid, securinine, acetylvaline, DL-O-tyrosine, and Phe-Asn. This study indicates that the interplay between host serum metabolites and gut microbiota may contribute to the therapeutic effect of naringenin against NASH.
Collapse
Affiliation(s)
- Peng Cao
- Department of Pharmacy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Clinical Research Center for Precision Medicine for Critical IllnessWuhanChina
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical SciencesHubei University of MedicineShiyanChina
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Ming Yue
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical SciencesHubei University of MedicineShiyanChina
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuanlei Cheng
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical SciencesHubei University of MedicineShiyanChina
- Department of Pharmacy, The Central Hospital of Wuhan, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Mitchell A. Sullivan
- Glycation and Diabetes, Mater Research Institute – The University of QueenslandTranslational Research InstituteBrisbaneQueenslandAustralia
| | - Wen Chen
- Department of Pharmacy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Clinical Research Center for Precision Medicine for Critical IllnessWuhanChina
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical SciencesHubei University of MedicineShiyanChina
| | - Fei Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, School of Pharmaceutical SciencesHubei University of MedicineShiyanChina
| | - Sanlan Wu
- Department of Pharmacy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Clinical Research Center for Precision Medicine for Critical IllnessWuhanChina
| | - Yongning Lv
- Department of Pharmacy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Clinical Research Center for Precision Medicine for Critical IllnessWuhanChina
| | - Xuejia Zhai
- Department of Pharmacy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Clinical Research Center for Precision Medicine for Critical IllnessWuhanChina
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Province Clinical Research Center for Precision Medicine for Critical IllnessWuhanChina
| |
Collapse
|
13
|
Uyumlu AB, Satılmış B, Atıcı B, Taşlıdere A. Phenethyl isothiocyanate protects against cyclophosphamide-induced nephrotoxicity via nuclear factor E2-related factor 2 pathway in rats. Exp Biol Med (Maywood) 2023; 248:157-164. [PMID: 36598044 PMCID: PMC10041055 DOI: 10.1177/15353702221139206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/06/2022] [Indexed: 01/05/2023] Open
Abstract
Phenethyl isothiocyanate (PEITC), a secondary metabolite in Cruciferous plants, exerts chemopreventive and antioxidant effects. However, its therapeutic potential in cyclophosphamide (CP)-induced nephrotoxicity is not clear. So, we focused to research on the effect of PEITC against renal toxicity caused by CP and its relationship to the Nrf2 signaling mechanism. Thirty female Wistar albino rats were allocated to three groups: control (n = 10), CP (n = 10), and PEITC-pretreated group (150 µmol/kg b.w. orally; n = 10). The antioxidant enzyme activities and levels of malondialdehyde (MDA), sirtuin 1 (SIRT1), glutathione-S-transferase (GST), nuclear factor E2-related factor 2 (Nrf2), nuclear factor kappa B (NF-κB), serum urea, and creatinine (Cr) were measured. In the CP group, serum urea and Cr, MDA, and NF-κB levels have risen, and the activities of antioxidant enzymes and SIRT1, Nrf2, and GST levels have reduced significantly (P < 0.05). PEITC diminished levels of Cr, urea, MDA, and NF-κB while it enhanced antioxidant enzyme activities and GST, Nrf2, and SIRT1 levels significantly (P < 0.05). Pretreatment with PEITC ameliorated kidney tissue injury. The renal protective effect of the PEITC was supported by the histological analysis of the kidney. PEITC prevented CP-induced nephrotoxicity by decreasing oxidative damage through Nrf2 and SIRT1 activation and NF-κB inhibition. Therefore, we have suggested that PEITC may be a useful agent for protection against CP-induced renal injury.
Collapse
Affiliation(s)
| | - Basri Satılmış
- Hepatology Research Laboratory, Liver Transplantation Institute, İnönü University, 44280 Malatya, Turkey
| | - Buğrahan Atıcı
- Department of Biochemistry, İnönü University, 44280 Malatya, Turkey
| | - Aslı Taşlıdere
- Department of Histology and Embryology, İnönü University, 44280 Malatya, Turkey
| |
Collapse
|
14
|
Rahmani S, Naraki K, Roohbakhsh A, Hayes AW, Karimi G. The protective effects of rutin on the liver, kidneys, and heart by counteracting organ toxicity caused by synthetic and natural compounds. Food Sci Nutr 2023; 11:39-56. [PMID: 36655104 PMCID: PMC9834893 DOI: 10.1002/fsn3.3041] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/21/2022] [Accepted: 08/25/2022] [Indexed: 01/21/2023] Open
Abstract
Rutin is a flavonoid present in many plant species. Because of its antioxidant, anti-inflammatory, and antiapoptotic properties, rutin is of interest for its potential protective effects against toxic agents. The hepatoprotective, renoprotective, and cardioprotective effects of rutin are reviewed. The antioxidant effects of rutin are elicited by enhancing antioxidant enzymes such as GST, GGT, CAT, GPx, SOD, and GR, activating the Nrf2/HO-1 pathway, elevating GSH content, and the reduction in MDA. The anti-inflammatory effects of rutin are mediated by the inhibition of IL-1β, IL-6, TGF-β1, COX-2, iNOS, TLR4, and XO. Rutin exerted its antiapoptotic effects by inhibition of free radicals, caspase-3/-7/-9, hsp70, HMGB1, and p53, and the elevation of the antiapoptotic protein Bcl-2. Rutin has potential therapeutic effectiveness against several toxicants, and its beneficial effects are more than likely mediated by its antioxidant, anti-inflammatory, and/or antiapoptotic property.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Karim Naraki
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
| | - A. Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public HealthUniversity of South FloridaTampaFloridaUSA
- Institute for Integrative ToxicologyMichigan State UniversityEast LansingMichiganUSA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
15
|
Dhakal R, Dihingia A, Ahmed RS, Gupta DD, Sahu RK, Dutta P, Bharali P, Manna P, Sastry GN, Kalita J. Prophylactic and therapeutic potential of active phytoconstituents from
Amomum subulatum
Roxb. FOOD FRONTIERS 2022. [DOI: 10.1002/fft2.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Richa Dhakal
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Anjum Dihingia
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
| | - Ruksana Sultana Ahmed
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Dipanneeta Das Gupta
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Ravi Kumar Sahu
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Prachurjya Dutta
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
| | - Pankaj Bharali
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Prasenjit Manna
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - G. Narahari Sastry
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| | - Jatin Kalita
- Center for Infectious Diseases CSIR–North East Institute of Science and Technology Jorhat Assam India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India
| |
Collapse
|
16
|
Zhan C, Cao X, Zhang T, Guo J, Xu G, Wang H, Yang W, Yang L, Che D, Lu W, Ma X. Melatonin protects porcine oocyte from copper exposure potentially by reducing oxidative stress potentially through the Nrf2 pathway. Theriogenology 2022; 193:1-10. [PMID: 36115287 DOI: 10.1016/j.theriogenology.2022.09.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 10/31/2022]
Abstract
Copper is widely used as a feeding additive to promote livestock growth. However, excessive copper can be excreted with feces, causing heavy metal pollution and aggravating environmental problems. At the same time, studies have found that excess copper can cause damage to reproductive function and reduce gamete quality. Here, we explored the effects of adding different concentrations of copper to the culture medium on porcine oocytes. First polar body extrusion rate, embryo development, and intracellular levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP) ΔΨm, adenosine triphosphate(ATP) content, and acetylation of lysine 9 on histone H3 protein subunit (H3K9ac) were assessed. Results demonstrated that Cu exposure causes abnormalities in mitochondrial function and epigenetic modification, resulting in increased oxidative stress and levels of ROS, ultimately leading to a decreased porcine oocyte quality. In addition, we found melatonin can protect porcine oocytes from those damages. Notably, Nrf2 protein expression was significantly increased by copper exposure, meanwhile, Nrf2 signaling pathway inhibitor ML385 significantly attenuated the protective role of melatonin on oxidative stress induced by copper exposure. In summary, our study demonstrates that copper activates the Nrf2 pathway and impairs oocyte maturation by inducing oxidative stress, leading to poor quality of porcine oocytes, and the changes can be reversed by melatonin.
Collapse
Affiliation(s)
- Chenglin Zhan
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Xu Cao
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Tianrui Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Jing Guo
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Gaoqing Xu
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Hongyan Wang
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin Jilin, 132109, China
| | - Wenyan Yang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Lianyu Yang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Dongsheng Che
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China
| | - Wenfa Lu
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| | - Xin Ma
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China; Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
17
|
Molaei A, Molaei E, Sadeghnia H, Hayes AW, Karimi G. LKB1: An emerging therapeutic target for cardiovascular diseases. Life Sci 2022; 306:120844. [PMID: 35907495 DOI: 10.1016/j.lfs.2022.120844] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 10/16/2022]
Abstract
Cardiovascular diseases (CVDs) are currently the most common cause of morbidity and mortality worldwide. Experimental studies suggest that liver kinase B1 (LKB1) plays an important role in the heart. Several studies have shown that cardiomyocyte-specific LKB1 deletion leads to hypertrophic cardiomyopathy, left ventricular contractile dysfunction, and an increased risk of atrial fibrillation. In addition, the cardioprotective effects of several medicines and natural compounds, including metformin, empagliflozin, bexarotene, and resveratrol, have been reported to be associated with LKB1 activity. LKB1 limits the size of the damaged myocardial area by modifying cellular metabolism, enhancing the antioxidant system, suppressing hypertrophic signals, and inducing mild autophagy, which are all primarily mediated by the AMP-activated protein kinase (AMPK) energy sensor. LKB1 also improves myocardial efficiency by modulating the function of contractile proteins, regulating the expression of electrical channels, and increasing vascular dilatation. Considering these properties, stimulation of LKB1 signaling offers a promising approach in the prevention and treatment of heart diseases.
Collapse
Affiliation(s)
- Ali Molaei
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hamidreza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- University of South Florida College of Public Health, Tampa, FL, USA
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmacodynamics and Toxicology, Faculty of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
18
|
Mahdiani S, Omidkhoda N, Heidari S, Hayes AW, Karimi G. Protective effect of luteolin against chemical and natural toxicants by targeting NF-κB pathway. Biofactors 2022; 48:744-762. [PMID: 35861671 DOI: 10.1002/biof.1876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 12/20/2022]
Abstract
Humans are continuously exposed to environmental, occupational, consumer and household products, food, and pharmaceutical substances. Luteolin, a flavone from the flavonoids family of compounds, is found in different fruits and vegetables. LUT is a strong anti-inflammatory (via inhibition of NF-κB, ERK1/2, MAPK, JNK, IL-6, IL-8, and TNF-α) and antioxidant agent (reducing ROS and enhancement of endogenous antioxidants). LUT can chelate transition metal ions responsible for ROS generation and consequently repress lipoxygenase. It has been proven that NF-κB, as a commom cellular pathway plays a considerable role in the progression of inflammatory process and stimulates the expression of genes encoding inducible pro-inflammatory enzymes (iNOS and COX-2) and cytokines including IL-1β, IL-6, and TNF-α. This review summarizes the available literature discussing LUT and its potential protective role against pharmaceuticals-, metals-, and environmental compounds-induced toxicities. Furthermore, the review explains the involved protective mechanisms, especially inhibition of the NF-κB pathway.
Collapse
Affiliation(s)
- Sina Mahdiani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Navid Omidkhoda
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shadi Heidari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Michigan State University, East Lansing, Michigan, USA
- University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Amini N, Maleki M, Badavi M. Nephroprotective activity of naringin against chemical-induced toxicity and renal ischemia/reperfusion injury: A review. AVICENNA JOURNAL OF PHYTOMEDICINE 2022; 12:357-370. [PMID: 35782769 PMCID: PMC9121258 DOI: 10.22038/ajp.2022.19620] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/02/2022] [Accepted: 01/03/2022] [Indexed: 11/28/2022]
Abstract
Objective The kidney is well-known as the vital organ which is responsible for maintaining body homeostasis and secretion of toxic metabolites. Renal injury is accompanied by oxidative stress which results in cellular apoptosis, lipid peroxidation, and reduction of antioxidant levels. Plant extracts and their phytoconstituents, owing to free radical scavenging properties, seem to be valuable against modern synthetic and chemical drugs. Naringin is a flavonoid present in citrus fruits with pharmacologic effects including antioxidant, anti-inflammatory, and anti-apoptotic properties. This review summarizes the renoprotective effects of naringin and discusses mechanisms of its action against renal injury. Materials and Methods For this paper, original subject-related articles published up to October 2020 have been reviewed in the databases, including PubMed, Scopus, and Web of Science, and Google Scholar. Results Naringin increases antioxidant enzyme activity, and glutathione content, reduces lipid peroxidation and inhibits inflammatory cytokines. In the molecular investigation, naringin activates the Nrf-2 signaling, prevents apoptosis signaling, and inhibits the autophagy pathway. Besides, naringin could protect the kidney through modulating microRNA-10a in the kidney tissue in an acute kidney injury model. Conclusion This review recommends that naringin can be considered a promising candidate to treat kidney dysfunction induced by oxidative stress in the future.
Collapse
Affiliation(s)
- Negin Amini
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Maleki
- Department of Physiology, School of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Mohammad Badavi
- Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
20
|
Datta S, Ghosh S, Bishayee A, Sinha D. Flexion of Nrf2 by tea phytochemicals: A review on the chemopreventive and chemotherapeutic implications. Pharmacol Res 2022; 182:106319. [PMID: 35732198 DOI: 10.1016/j.phrs.2022.106319] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 01/11/2023]
Abstract
Nuclear factor erythroid 2 [NF-E2]-related factor 2 (Nrf2), the redox-sensitive transcription factor, plays a key role in stress-defense and detoxification. Nrf2 is tightly controlled by its negative regulator cum sensor Kelch-[ECH]-associated protein 1 (Keap1). Nrf2 is well known for its dual nature owing to its cancer preventive and cancer promoting abilities. Modulation of this biphasic nature of Nrf2 signaling by phytochemicals may be a potential cancer preventive and anticancer therapeutic strategy. Phytocompounds may either act as Nrf2-activator or Nrf2-inhibitor depending on their differential concentration and varied cellular environment. Tea is not just the most popular global beverage with innumerable health-benefits but has well-established chemopreventive and chemotherapeutic effects. Various types of tea infusions contain a wide range of bioactive compounds, such as polyphenolic catechins and flavonols, which are endowed with potent antioxidant properties. Despite of their rapid biotransformation and poor bioavailability, regular tea consumption is risk-reductive for several cancer forms. Tea catechins show their dual Nrf2-modulatory effect by directly acting on Nrf2-Keap1 or their upstream regulators and downstream effectors in a highly case-specific manner. In this review, we have tried to present a comprehensive evaluation of the Nrf2-mediated chemopreventive and chemotherapeutic applications of tea in various preclinical cancer models, the Nrf2-modulatory mechanisms, and the limitations which need to be addressed in future research.
Collapse
Affiliation(s)
- Suchisnigdha Datta
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata - 700 026, West Bengal, India
| | - Sukanya Ghosh
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata - 700 026, West Bengal, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA.
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata - 700 026, West Bengal, India.
| |
Collapse
|
21
|
Mousa AM, Allemailem KS, Alhumaydhi FA, Alrumaihi F, Almatroudi A, Aljasir M, Alwashmi ASS, Al Rugaie O, Soliman KEA, Aljohani ASM, Al Abdulmonem W, Ahmed AA, Khan A, Khan MA, AlSuhaymi N, Alsugoor MH, Al-Megrin WA, Elsayed AM. Cytoprotective Antioxidant, Anti-Inflammatory, and Antifibrotic Impact of Celery Seed Oil and Manuka Honey Against Cyclophosphamide-Induced Cystitis in Rabbits. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:2863023. [PMID: 35341158 PMCID: PMC8947928 DOI: 10.1155/2022/2863023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 01/11/2023]
Abstract
Patients treated with cyclophosphamide (CP) usually suffer from severe hemorrhagic cystitis (HC). Our previous study exhibited that mesna + celery cotherapy partially ameliorated HC. Therefore, there is a substantial need to seek alternative regimens to get complete protection against CP-induced HC. The current study investigated the effects of mesna + celery seed oil (MCSO) or mesna + manuka honey (MMH) cotherapy against CP-induced HC in adult male rabbits. The forty rabbits were divided into four equal groups and treated for three weeks. The control group (G1) received distilled water and the second group (G2) received CP (50 mg/kg/week). The third group (G3) received CP + MCSO (CPMCSO regimen), and the fourth group (G4) received CP + MMH (CPMMH regimen). The urinary bladder (UB) specimens were processed to evaluate UB changes through histopathological, immunohistochemical, ultrastructural, and biochemical investigations. In G2, CP provoked HC features (urothelial necrosis, ulceration, and sloughing), UB fibrosis, and TNF-α immunoexpression. Besides, CP reduced the activity of antioxidant enzymes (GPx1, SOD3, and CAT) and elevated the serum levels of NF-κB, TNF-α, IL-1B, and IL-6 cytokines in G2 rabbits. In contrast, the CPMMH regimen caused significant increments of UB protection against HC in G4 rabbits compared to the partial protection by the CPMCSO regimen in G3. Therefore, our study indicated for the first time that the novel CPMMH regimen resulted in complete UB protection against CP-induced HC via combined antioxidant, anti-inflammatory, and antifibrotic properties.
Collapse
Affiliation(s)
- Ayman M. Mousa
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| | - Khaled S. Allemailem
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mohammad Aljasir
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah 51452, Saudi Arabia
| | - Khaled E. A. Soliman
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah 51452, Saudi Arabia
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Sohag University, Sohag 82524, Egypt
| | - Abdullah S. M. Aljohani
- Department of Veterinary Medicine, College of Agricultural and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ahmed A. Ahmed
- Research Center, College of Medicine, Qassim University, Buraidah 51452, Saudi Arabia
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Masood A. Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Naif AlSuhaymi
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia
| | - Mahdi H. Alsugoor
- Department of Emergency Medical Services, Faculty of Health Sciences, AlQunfudah, Umm Al-Qura University, Makkah 21912, Saudi Arabia
| | - Wafa Abdullah Al-Megrin
- Department of Biology, Faculty of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Abulmaaty M. Elsayed
- Department of Anatomy and Histology, Faculty of Medicine, Mutah University, Mutah, Jordan
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt
| |
Collapse
|
22
|
Bashandy, PhD MM, Saeed HE, Ahmed WMS, Ibrahim MA, Shehata O. OUP accepted manuscript. Toxicol Res (Camb) 2022; 11:339-347. [PMID: 35510236 PMCID: PMC9052319 DOI: 10.1093/toxres/tfac009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/18/2022] [Accepted: 02/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background Cadmium (Cd) is a highly toxic heavy metal that adversely affects both human and animal health. Chronic cadmium exposure causes serious kidney damage. The current study investigated the protective role of cerium oxide nanoparticles (CeO2NPs) against cadmium chloride (CdCl2)-induced renal injury. Method One hundred and twenty male albino rats were divided into 6 equal groups. Group (C): considered as control group which was given distilled water orally. Group (NC.1 and NC.5): rats were injected i.p. with nanoceria at a dose of (0.1 and 0.5 mg/kg b.wt), respectively, twice a week for 2 weeks starting at the 15th day of the study. Group (Cd): rats were received CdCl2 orally (10 mg/kg b.wt) daily for 28 days. Groups (Cd + NC.1 and Cd + NC.5): rats were given CdCl2 orally (10 mg/kg b.wt) for 28 days and CeO2NPs by i.p. injection at a dose of (0.1 and 0.5 mg/kg b.wt), respectively, twice a week for 2 weeks started at the 15th day of the experiment. Results The Cd group exhibited a significant increase in the serum levels of IL-1β, KIM-1, Cys-C, and β2-MG, downregulation of the antioxidant initiator genes such as Nrf-2, and up-regulation of apoptosis markers such as nibrin gene (NBN). Urine examination showed a high level of microalbuminuria, abnormal physical, chemical, and microscopical changes in comparison with control groups. Conculsion Remarkably, posttreatment with CeO2NPs showed significant improvement in kidney histopathological picture and relieved the alterations in kidney biomarkers, inflammatory markers, urine abnormalities, and expressions of different genes as Nrf-2 and NBN.
Collapse
Affiliation(s)
- Mostafa M Bashandy, PhD
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Hanan E Saeed
- Corresponding author: Hanan E. Saeed, Department of Clinical Pathology, Faculty of Veterinary Medicine, BeniSuef University, Beni-Suef 62511, Egypt. and
| | - Walaa M S Ahmed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Olfat Shehata
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| |
Collapse
|
23
|
The Cytotoxicity and Nephroprotective Activity of the Ethanol Extracts of Angelica keiskei Koidzumi Stems and Leaves against the NAPQI-Induced Human Embryonic Kidney (HEK293) Cell Line. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6458265. [PMID: 34858509 PMCID: PMC8632470 DOI: 10.1155/2021/6458265] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/24/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
Materials and Methods A. keiskei Koidzumi plant was collected from Mount Rinjani, Lombok, Indonesia, and was identified at the School of Biology Sciences and Technology, Bandung Institute of Technology, Indonesia. Extraction of the stems (ASE) and leaves (ALE) was performed by employing ethanol 70% for 3 × 24 h at 26°C. The cytotoxicity study of the extracts was assessed using the water-soluble tetrazolium salt-8 (WST-8) reagent on the HEK293 cell line, while the nephroprotective activity assay was determined on the NAPQI-induced HEK293 cell line. Results The WST-8 assay showed that the cytotoxicity IC50 of ASE = 2322 μg/mL and IC50 of ALE = 2283 μg/mL. The nephroprotective activity assay revealed that ASE possesses nephroprotective activity against the NAPQI-induced HEK293 cell line at 1161 μg/mL, while ALE does not show the nephroprotective activity. Conclusion Taken together, lower concentrations of ASE and ALE (<2000 μg/mL) are not toxic to the HEK293 cell line, and only ASE indicates the activity to protect the HEK293 cell line against NAPQI damage. This Japanese celery could be further explored for its potential as a plant-based nephroprotective drug.
Collapse
|
24
|
Liao MT, Wu CC, Wu SFV, Lee MC, Hu WC, Tsai KW, Yang CH, Lu CL, Chiu SK, Lu KC. Resveratrol as an Adjunctive Therapy for Excessive Oxidative Stress in Aging COVID-19 Patients. Antioxidants (Basel) 2021; 10:1440. [PMID: 34573071 PMCID: PMC8471532 DOI: 10.3390/antiox10091440] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic continues to burden healthcare systems worldwide. COVID-19 symptoms are highly heterogeneous, and the patient may be asymptomatic or may present with mild to severe or fatal symptoms. Factors, such as age, sex, and comorbidities, are key determinants of illness severity and progression. Aging is accompanied by multiple deficiencies in interferon production by dendritic cells or macrophages in response to viral infections, resulting in dysregulation of inflammatory immune responses and excess oxidative stress. Age-related dysregulation of immune function may cause a more obvious pathophysiological response to SARS-CoV-2 infection in elderly patients and may accelerate the risk of biological aging, even after recovery. For more favorable treatment outcomes, inhibiting viral replication and dampening inflammatory and oxidative responses before induction of an overt cytokine storm is crucial. Resveratrol is a potent antioxidant with antiviral activity. Herein, we describe the reasons for impaired interferon production, owing to aging, and the impact of aging on innate and adaptive immune responses to infection, which leads to inflammation distress and immunosuppression, thereby causing fulminant disease. Additionally, the molecular mechanism by which resveratrol could reverse a state of excessive basal inflammatory and oxidative stress and low antiviral immunity is discussed.
Collapse
Affiliation(s)
- Min-Tser Liao
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; (M.-T.L.); (C.-H.Y.)
- Department of Pediatrics, Taoyuan Armed Forces General Hospital Hsinchu Branch, Hsinchu City 300, Taiwan
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Chao Wu
- Department of Internal Medicine, Division of Nephrology, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan;
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| | - Shu-Fang Vivienne Wu
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan; (S.-F.V.W.); (M.-C.L.)
| | - Mei-Chen Lee
- School of Nursing, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan; (S.-F.V.W.); (M.-C.L.)
| | - Wan-Chung Hu
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (W.-C.H.); (K.-W.T.)
| | - Kuo-Wang Tsai
- Department of Medical Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan; (W.-C.H.); (K.-W.T.)
| | - Chung-Hsiang Yang
- Department of Pediatrics, Taoyuan Armed Forces General Hospital, Taoyuan City 325, Taiwan; (M.-T.L.); (C.-H.Y.)
| | - Chien-Lin Lu
- Division of Nephrology, Department of Medicine, Fu Jen Catholic University Hospital, School of Medicine, Fu Jen Catholic University, New Taipei 24352, Taiwan;
| | - Sheng-Kang Chiu
- Division of Infectious Diseases, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
- Division of Infectious Diseases, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| |
Collapse
|
25
|
Chao T, Hsieh C, Kuo Y, Yu Y, Wan C, Hsieh S. Bracteanolide A abrogates oxidative stress-induced cellular damage and protects against hepatic ischemia and reperfusion injury in rats. Food Sci Nutr 2021; 9:4758-4769. [PMID: 34531989 PMCID: PMC8441430 DOI: 10.1002/fsn3.2374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 12/13/2022] Open
Abstract
Liver diseases, including viral hepatitis, liver cirrhosis, and liver cancer, mostly remain silent until the late stages and pose a continuing threat to millions of people worldwide. Liver transplantation is the most appropriate solution in the case of liver failure, but it is associated with hepatic ischemia and reperfusion (I/R) injury which severely reduces the prognosis of the patients. In order to ameliorate I/R injury, we investigated the potential of bracteanolide A, from the herb Tradescantia albiflora Kunth in protecting the liver from I/R injury. We first determined the protective effect of bracteanolide A against oxidative stress and DNA damage using HepG2 hepatocyte cell line and then assessed the levels of inflammatory cytokines and antioxidant proteins in response to hepatic insult using an animal model of hepatic I/R injury. The results showed bracteanolide A greatly enhanced cell survival and decreased reactive oxygen species (ROS) production under H2O2 induction. It also upregulated the expression of nuclear factor (erythroid-derived 2)-like2 (Nrf2) and its downstream cytoprotective proteins NAD(P)H quinone oxidoreductase 1 (NQO1) and heme oxygenase-1 (HO-1). Bracteanolide A effectively reduced the severity of liver lesions in I/R-injured rats revealed by histological analysis and significantly decreased the levels of alanine transaminase (ALT), aspartate transaminase (AST), cyclooxygenase-2, and inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Bracteanolide A preconditioning effectively protected the liver from I/R damage in the animal model, and this easily applied procedure may provide a new means to ameliorate hepatic I/R injury during liver surgeries.
Collapse
Affiliation(s)
- Ting‐Yu Chao
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Cheng‐Chu Hsieh
- Biologics DivisionAnimal Health Research InstituteCouncil of AgricultureExecutive Yuan, New Taipei CityTaiwan
| | - Yueh‐Hsiung Kuo
- Department of ChemistryNational Taiwan UniversityTaipeiTaiwan
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine ResourcesChina Medical UniversityTaichungTaiwan
- Department of BiotechnologyAsia UniversityTaichungTaiwan
- Chinese Medicine Research CenterChina Medical UniversityTaichungTaiwan
| | - Ya‐Ju Yu
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| | - Cho‐Hua Wan
- Graduate Institute of Molecular and Comparative PathobiologySchool of Veterinary MedicineNational Taiwan UniversityTaipeiTaiwan
| | - Shu‐Chen Hsieh
- Institute of Food Science and TechnologyNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|