1
|
Acevedo KL, Eaton E, Leite J, Zhao S, Chacon-Vargas K, McCarthy CM, Choi D, O’Donnell S, Gluck-Thaler E, Yu JH, Gibbons JG. Population Genomics of Aspergillus sojae is Shaped by the Food Environment. Genome Biol Evol 2025; 17:evaf067. [PMID: 40195023 PMCID: PMC12014904 DOI: 10.1093/gbe/evaf067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/13/2025] [Accepted: 03/26/2025] [Indexed: 04/09/2025] Open
Abstract
Traditional fermented foods often contain specialized microorganisms adapted to their unique environments. For example, the filamentous mold Aspergillus oryzae, used in saké fermentation, has evolved to thrive in starch-rich conditions compared to its wild ancestor, Aspergillus flavus. Similarly, Aspergillus sojae, used in soybean-based fermentations like miso and shochu, is hypothesized to have been domesticated from Aspergillus parasiticus. Here, we examined the effects of long-term A. sojae use in soybean fermentation on population structure, genome variation, and phenotypic traits. We analyzed 17 A. sojae and 24 A. parasiticus genomes (23 of which were sequenced for this study), alongside phenotypic traits of 9 isolates. Aspergillus sojae formed a distinct, low-diversity population, suggesting a recent clonal expansion. Interestingly, a population of A. parasiticus was more closely related to A. sojae than other A. parasiticus populations. Genome comparisons revealed loss-of-function mutations in A. sojae, notably in biosynthetic gene clusters encoding secondary metabolites, including the aflatoxin cluster. Interestingly though, A. sojae harbored a partial duplication of a siderophore biosynthetic cluster. Phenotypic assays showed A. sojae lacked aflatoxin production, while it was variable in A. parasiticus isolates. Additionally, certain A. sojae strains exhibited larger colony diameters under miso-like salt conditions. These findings support the hypothesis that A. parasiticus is the progenitor of A. sojae and that domestication significantly reduced genetic diversity. Future research should explore how wild and food-associated strains influence sensory attributes and microbial community dynamics in fermented soy products.
Collapse
Affiliation(s)
- Kimberly L Acevedo
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Organismic & Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Elizabeth Eaton
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Julia Leite
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Shu Zhao
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Katherine Chacon-Vargas
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | - Colin M McCarthy
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Dasol Choi
- Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Samuel O’Donnell
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | - Emile Gluck-Thaler
- Department of Plant Pathology, University of Wisconsin, Madison, WI 53706, USA
| | - Jae-Hyuk Yu
- Department of Bacteriology, Food Research Institute, University of Wisconsin, Madison, WI 53706, USA
| | - John G Gibbons
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
- Organismic & Evolutionary Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Yang B, Wang H, Cao Z, Yan J, Dong Z, Ren F, Zhang W, Chen L. The Aroma, Taste Contributions, and Flavor Evaluation Based on GC-IMS, E-Nose, and E-Tongue in Soybean Pastes: A Comparative Study. Foods 2025; 14:1178. [PMID: 40238339 PMCID: PMC11988655 DOI: 10.3390/foods14071178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/17/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The objective of this study was to assess and compare the characteristics of different soybean pastes by using intelligent sensory analysis. In this study, color, flavor, texture, and taste were regarded as four factors affecting the sensory quality of soybean pastes and the sensory quality of four different soybean pastes was evaluated using fuzzy mathematics. The sensory evaluation scores of samples L, Z, and W were very similar and significantly higher than that of sample Y. Gas chromatography-ion mobility spectrometry (GC-IMS) detected 111 volatile flavor compounds, with acids, alcohol, and ketones having a significantly higher relative content than other compounds, indicating their vital role in the flavor formation process of soybean pastes. Furthermore, partial least squares discriminant analysis (PLS-DA) model analysis identified 41 marker compounds that could differentiate the four types of soybean pastes. The overall odor and flavor profile were detected by the E-nose and E-tongue. These fundamental results lay the groundwork for future research on the similarities and differences between the flavor characteristics of different brands of soybean paste.
Collapse
Affiliation(s)
- Bing Yang
- Food Laboratory of Zhong Yuan, Luohe 462300, China
| | - Heng Wang
- Food Laboratory of Zhong Yuan, Luohe 462300, China
| | - Zhenxia Cao
- Food Laboratory of Zhong Yuan, Luohe 462300, China
| | - Jing Yan
- Food Laboratory of Zhong Yuan, Luohe 462300, China
| | - Zijie Dong
- Food Laboratory of Zhong Yuan, Luohe 462300, China
| | - Fazheng Ren
- Food Laboratory of Zhong Yuan, Luohe 462300, China
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Wanli Zhang
- Food Laboratory of Zhong Yuan, Luohe 462300, China
| | - Lishui Chen
- Food Laboratory of Zhong Yuan, Luohe 462300, China
| |
Collapse
|
3
|
Niu J, Li B, Zhang Q, Chen G, Papadaki A. Exploring the traditional Chinese diet and its association with health status-a systematic review. Nutr Rev 2025; 83:e237-e256. [PMID: 38452296 PMCID: PMC11723156 DOI: 10.1093/nutrit/nuae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
CONTEXT Increased adherence to a traditional Chinese diet (TCD) could reduce the increasing prevalence of noncommunicable diseases. Currently, there is no consistent definition of the TCD in the literature, and its associations with health outcomes have not yet been identified. OBJECTIVE This systematic review aimed to assess the definition of the TCD, in the literature, and to evaluate whether the TCD, as described, is associated with health outcomes. DATA SOURCES Fourteen databases were searched up to April 25, 2022. DATA EXTRACTION Three reviewers (in pairs) independently screened and extracted data. A modified risk-of-bias tool was used to assess the quality of the studies assessing the TCD definition; the Newcastle-Ottawa Scale and the Cochrane Risk-of-Bias tool were used to assess the quality of the observational studies and randomized controlled trials assessing associations between the TCD and health outcomes. DATA ANALYSIS Ninety-nine studies were identified that assessed the TCD definition. In at least 75% of the studies, rice and leafy vegetables were consistently reported as food groups that characterize the TCD; the most frequently cited food items were white rice, spinach, bokchoy, and cabbage. Fish and seafood, pork, and pork products were consistently reported in studies exclusively referring to the TCD consumed in southern China (n = 21 studies), whereas wheat and wheat products were commonly reported in studies focusing on northern China (n = 14 studies). Fifteen studies reported on the quantities of food groups that are characteristic of the TCD, but their findings were inconsistent. Of the 99 studies, 54 assessed associations with health outcomes. The TCD was overall inversely associated with obesity risk and weight gain, while relationships between the TCD and other health outcomes were inconsistent. CONCLUSION Further studies are needed to determine the quantities of foods consumed in the TCD and to establish a consistent definition for further exploration of the TCD's potential role in preventing non-communicable diseases.
Collapse
Affiliation(s)
- Jizhao Niu
- Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK
| | - Bai Li
- Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK
| | - Qing Zhang
- School of Psychological Science, University of Bristol, Bristol, UK
| | - Ge Chen
- Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK
- Bristol Dental School, University of Bristol, Bristol, UK
| | - Angeliki Papadaki
- Centre for Exercise, Nutrition and Health Sciences, School for Policy Studies, University of Bristol, Bristol, UK
| |
Collapse
|
4
|
Mulaw G, Gebregziabher T, Tesfay T. A review on the microbiology of Ethiopian traditional fermented beverage products. Front Nutr 2025; 12:1519547. [PMID: 39980675 PMCID: PMC11841419 DOI: 10.3389/fnut.2025.1519547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Traditional fermented beverages are drinks produced locally on the basis of ethnic knowledge and consumed nearby the locality of production. Ethiopia is a country where a wide variety of traditional fermented beverages are prepared and consumed. Tella, borde, shamita, korefe, cheka, tej, booka, grawa, areki, and keribo are among the traditional fermented beverages in Ethiopia. This review paper highlights the fermentation process and nutritional value of traditional fermented beverages, microorganisms involved in the traditionally ferreted beverages, the nutritional value and shelf-life of fermented beverages, as well as the bioavailability and safety by collecting recent research articles. These traditional fermented beverages significantly enhance health due to the presence of bioactive compounds and their nutritional value relatively greater than those of nonfermented beverages. The fermentation byproducts of yeast and Lactic Acid Bacteria (LAB) increase the acidity of beverages and are crucial for maintaining the quality and characteristics of fermented beverages. It also helps to reduce the amount of toxins and pathogens in food. Similarly, fermented foods contain probiotics, which are beneficial bacteria that help the body to digest food and absorb nutrients. The fermented foods and beverages are important in preventing non-communicable diseases such as cardiovascular diseases, gastrointestinal tissues, immune disorders, and cancer. Overall, the paper provides a comprehensive overview of the current knowledge and tradition on Ethiopian fermented beverages.
Collapse
Affiliation(s)
| | | | - Teklemichael Tesfay
- Department of Biology, College of Natural and Computational Sciences, Aksum University, Aksum, Ethiopia
| |
Collapse
|
5
|
B S, C VT, S K, B S, M I. Advancing Fermented Food Products: Exploring Bioprocess Technologies and Overcoming Challenges. FOOD BIOPROCESS TECH 2024; 17:3461-3482. [DOI: 10.1007/s11947-023-03287-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/04/2023] [Indexed: 01/11/2025]
|
6
|
Rowaiye A, Ibeanu GC, Bur D, Nnadi S, Mgbeke OE, Morikwe U. Gut microbiota alteration - Cancer relationships and synbiotic roles in cancer therapies. THE MICROBE 2024; 4:100096. [DOI: 10.1016/j.microb.2024.100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
7
|
Akamatsu F, Oda K, Fujita A, Igi Y, Isogai A. Carbon stable isotopes of glucose during the degradation of rice by the koji fungus Aspergillus oryzae. Heliyon 2024; 10:e33664. [PMID: 39040413 PMCID: PMC11261792 DOI: 10.1016/j.heliyon.2024.e33664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Glucose, a key component of traditional Japanese fermented foods, is derived from rice starch via saccharification by hydrolytic enzymes produced by Aspergillus oryzae. The δ 13C value of glucose reflects that of its rice source. However, the influence of saccharification parameters (glucose concentration, degradation temperature, and reaction time) on glucose δ 13C values is unclear. Here, we investigated the influence of saccharification on the δ 13C value of glucose. Our experiments showed a significant difference in the δ 1³C value of glucose (-27.0 ± 0.1 ‰) obtained from saccharification compared to the ingredient rice (-27.1 ± 0.1 ‰) and remaining solid residue (-27.1 ± 0.1 ‰); however, it did not differ significantly from those of rice koji (-27.0 ± 0.1 ‰) and steamed rice (-27.1 ± 0.1 ‰), despite all values being within 0.1 ‰. Notably, glucose concentration, degradation temperature, and reaction time did not significantly affect glucose δ 13C values. These findings demonstrate the remarkable preservation of glucose δ 13C values. The δ 13C values remain aligned with the original δ 13C value of the rice, even with up to 60 % degradation during A. oryzae saccharification. This persistence of the δ 13C value throughout the process offers a potential tool for authenticating the origin of rice-fermented beverages based on the δ 13C value of their glucose component.
Collapse
Affiliation(s)
- Fumikazu Akamatsu
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Ken Oda
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Akiko Fujita
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Yukari Igi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| | - Atsuko Isogai
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-0046, Japan
| |
Collapse
|
8
|
Kothe CI, Rasmussen JA, Mak SST, Gilbert MTP, Evans J. Exploring the microbial diversity of novel misos with metagenomics. Food Microbiol 2024; 117:104372. [PMID: 37919016 DOI: 10.1016/j.fm.2023.104372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 11/04/2023]
Abstract
Interest in fermented foods, especially plant-based ones, has increased considerably in the last decade. Miso-a Japanese paste traditionally fermented with soybeans, salt, and kōji (Aspergillus oryzae grown on grains or beans)-has gained attention among chefs for its rich flavour and versatility. Some chefs have even been experimenting with making novel misos with untraditional substrates to create new flavours. Such novel fermented foods also offer new scientific opportunities. To explore the microbial diversity of these new traditional foods, we sampled six misos made by the team at a leading restaurant called Noma in Copenhagen (Denmark), using yellow peas (including a nixtamalised treatment), lupin seeds, Swedish Vreta peas, grey peas, and Gotland lentils as substrates. All misos were made with the same recipe and fermented for 3 months at 28 °C. Samples were collected at the end of fermentation for subsequent shotgun metagenomic sequencing and a genome-resolved metagenomic analysis. The taxonomic profile of the samples revealed the presence of kōji mould (A. oryzae) and Bacillus amyloliquefaciens in all misos. Various species of the genera Latilactobacillus, Lactiplantibacillus, Pediococcus and Staphylococcus were also detected. The Metagenome-Assembled Genomes (MAGs) revealed genomic sequences belonging to 12 different species and functional analyses of these MAGs were performed. Notably, we detected the presence of Exiguobacterium-the first reported instance of the genus in miso-and Average Nucleotide Identity (ANI) analyses suggest a potentially new species. We hope these results will improve the scientific literature on misos and contribute to developing novel fermented plant-based foods.
Collapse
Affiliation(s)
- Caroline Isabel Kothe
- Sustainable Food Innovation Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| | - Jacob Agerbo Rasmussen
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Denmark
| | - Sarah S T Mak
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Denmark; University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Joshua Evans
- Sustainable Food Innovation Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Denmark.
| |
Collapse
|
9
|
Shah AB, Baiseitova A, Zahoor M, Ahmad I, Ikram M, Bakhsh A, Shah MA, Ali I, Idress M, Ullah R, Nasr FA, Al-Zharani M. Probiotic significance of Lactobacillus strains: a comprehensive review on health impacts, research gaps, and future prospects. Gut Microbes 2024; 16:2431643. [PMID: 39582101 PMCID: PMC11591481 DOI: 10.1080/19490976.2024.2431643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/23/2024] [Accepted: 11/14/2024] [Indexed: 11/26/2024] Open
Abstract
A rising corpus of research has shown the beneficial effects of probiotic Lactobacilli on human health, contributing to the growing popularity of these microorganisms in recent decades. The gastrointestinal and urinary tracts are home to these bacteria, which play a vital role in the microbial flora of both humans and animals. The Lactobacillus probiotic, i.e, Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus acidophilus, Lactobacillus casei, Lactobacillus rhamnosus, Lactobacillus crispatus, Lactobacillus gasseri, Lactobacillus reuteri, and Lactobacillus bulgaricus, are highly recognized for their remarkable probiotic qualities. The current study aims to highlight the beneficial effects of probiotics in different health conditions, point out the research gap, and highlight the future directives for the safe use of these probiotics in several health issues. Most importantly, we have added the most recent literature related to the characteristics and usage of these probiotics in clinical and pre-clinical settings. Based on the above statement, we believe that this is the first report on the application of probiotics in human diseases. By providing a deeper knowledge of the complex functions these probiotics play in both human and animal health, our analysis will direct future studies and developments in this rapidly developing field.
Collapse
Affiliation(s)
- Abdul Bari Shah
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Aizhamal Baiseitova
- Division of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Muhammad Zahoor
- Department of Biochemistry, University of Malakand, Chakdara, Pakistan
| | - Ishaq Ahmad
- Department of Marine Environmental Engineering, Gyeongsang National University, Gyeongsangnam-do, Republic of Korea
| | - Muhammad Ikram
- Institute of Pharmaceutical Sciences, Khyber Medical University, Peshawar, Hayatabad, Pakistan
- Department of Oral and Maxillofacial Surgery, University of Texas Health Science Center, San Antonio, TX, USA
| | - Allah Bakhsh
- Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Murad Ali Shah
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Imdad Ali
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Bellaterra, Spain
- Department of Plant Biotechnology, Faculty of Pharmacy, University of Barcelona (UB), Barcelona, Catalonia, Spain
| | - Muhammad Idress
- Division of Applied Life Science (BK21 Four), IALS, Gyeongsang National University, Jinju, Republic of Korea
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahd A. Nasr
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Mohammed Al-Zharani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| |
Collapse
|