1
|
Melendez-Salcido CG, Ramirez-Emiliano J, Garcia-Ramirez JR, Gomez-García A, Perez-Vazquez V. Curcumin Modulates the Differential Effects of Fructose and High-fat Diet on Renal Damage, Inflammation, Fibrosis, and Lipid Metabolism. Curr Pharm Des 2025; 31:153-162. [PMID: 39411950 DOI: 10.2174/0113816128312406241010081032] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/10/2024] [Indexed: 02/18/2025]
Abstract
BACKGROUND Dyslipidemia and obesity hypercaloric diet-induced lead to kidney damage. We investigated the effect of curcumin on the expression of proteins related to inflammation, fibrosis, fatty acids metabolism, kidney damage, and morphological changes in the kidneys of mice hypercaloric diets-fed. METHODS Groups of 5-week-old C57BL/6 mice (n=6) were formed: Control (C), High-fructose diet (F), Highfructose diet and curcumin (F+Cur), High-fat diet (HFD), High-fat diet and curcumin (HFD+Cur), High-fat diet and fructose (HFD+F), High-fat diet, fructose and curcumin (HFD+F+Cur), treated for 16 weeks with 30% (w/v) fructose, 60% (w/w) fat and 0.75% (w/w) curcumin. Kidneys were obtained for histomorphological and Western blot analysis. RESULTS Curcumin prevented TNF-α overexpression in the F and HFD+F groups. VLCAD expression was higher in the F, HFD, and HFD+F groups. PPARγ expression was lower in the F+Cur, HFD+Cur, and HFD+F+Cur groups. Curcumin prevented overexpression of CPT1 and KIM1 in the HFD+F and HFD groups. Curcumin prevented morphological lesions, fibrosis, and lipid deposition that were hypercaloric diet-induced. CONCLUSION Chronic consumption of hypercaloric diets causes inflammation, fibrosis, and lipid deposition in the kidney. It is suggested that curcumin prevents renal structural damage, limits tissue lipid deposition, and differentially modulates renal injury depending on diet composition in mice fed high-fat and/or high-fructose diets.
Collapse
Affiliation(s)
| | | | - Juana Rosalba Garcia-Ramirez
- Departamento de Medicina y Nutrición, División de Ciencias de la Salud, Universidad de Guanajuato, Campus León, León, Gto., México
- Departamento de Patología, Hospital General de León, León, Gto., México
| | - Anel Gomez-García
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Morelia, Michoacán, México
| | | |
Collapse
|
2
|
Brahma D, Dutta D. Evaluating β-cryptoxanthin antioxidant properties against ROS-induced macromolecular damages and determining its photo-stability and in-vitro SPF. World J Microbiol Biotechnol 2023; 39:310. [PMID: 37715879 DOI: 10.1007/s11274-023-03747-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/29/2023] [Indexed: 09/18/2023]
Abstract
Natural antioxidants have become vital to minimize macromolecular damage caused by Reactive Oxygen Species (ROS). This study investigated the antioxidant property of β-cryptoxanthin (β-CRX) extracted from Kocuria marina DAGII and its protective effect against macromolecular damages by generating ROS via two models: UV radiation and the Fenton reaction. β-cryptoxanthin exhibited the highest scavenging activity towards hydrogen peroxide radicals with an IC50 value of 38.30 ± 1.13 μg/ml, favoring the hydrogen atom transfer mechanism. The total antioxidant capacity value of 872.0101 ± 1.84 μg BHT/mg β-CRX indicated the cumulative ROS scavenging ability of β-cryptoxanthin. β-cryptoxanthin could protect against ROS-induced lipid peroxidation, protein oxidation, and DNA damage. The highest lipid peroxidation and protein oxidation inhibition values of β-cryptoxanthin against ROS were 99.371 ± 0.51% and 78.19 ± 0.15%, respectively. β-cryptoxanthin also showed a protective effect in maintaining DNA intactness against ROS-mediated DNA damage. Allium cepa test showed the non-genotoxic nature of β-cryptoxanthin and its protective effect against ROS genotoxic effects. A photo-stability study of β-cryptoxanthin toward UVA and UVB radiation showed a rapid bleaching result of UVB obeying pseudo-zero order kinetics with an average R2 value of 0.9897 and a higher k value (-6.3 × 10-11 ± 0.2 M/s) than UVA (k value -3.1 × 10-11 ± 0.17 M/s), signifying that UVB is more potent toward photo-degradation. The good SPF value of 23.1737 ± 0.15 showed the UV protection capability of β-cryptoxanthin. Thus, the present study suggests that β-cryptoxanthin could be a valuable antioxidant to protect against ROS-induced various macromolecular damages and act as a good UV protectant.
Collapse
Affiliation(s)
- Daiji Brahma
- Department of Biotechnology, National Institute of Technology, Durgapur, WB, 713209, India
| | - Debjani Dutta
- Department of Biotechnology, National Institute of Technology, Durgapur, WB, 713209, India.
| |
Collapse
|
3
|
Hameed A, Galli M, Adamska-Patruno E, Krętowski A, Ciborowski M. Select Polyphenol-Rich Berry Consumption to Defer or Deter Diabetes and Diabetes-Related Complications. Nutrients 2020; 12:E2538. [PMID: 32825710 PMCID: PMC7551116 DOI: 10.3390/nu12092538] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Berries are considered "promising functional fruits" due to their distinct and ubiquitous therapeutic contents of anthocyanins, proanthocyanidins, phenolic acids, flavonoids, flavanols, alkaloids, polysaccharides, hydroxycinnamic, ellagic acid derivatives, and organic acids. These polyphenols are part of berries and the human diet, and evidence suggests that their intake is associated with a reduced risk or the reversal of metabolic pathophysiologies related to diabetes, obesity, oxidative stress, inflammation, and hypertension. This work reviewed and summarized both clinical and non-clinical findings that the consumption of berries, berry extracts, purified compounds, juices, jams, jellies, and other berry byproducts aided in the prevention and or otherwise management of type 2 diabetes mellitus (T2DM) and related complications. The integration of berries and berries-derived byproducts into high-carbohydrate (HCD) and high-fat (HFD) diets, also reversed/reduced the HCD/HFD-induced alterations in glucose metabolism-related pathways, and markers of oxidative stress, inflammation, and lipid oxidation in healthy/obese/diabetic subjects. The berry polyphenols also modulate the intestinal microflora ecology by opposing the diabetic and obesity rendered symbolic reduction of Bacteroidetes/Firmicutes ratio, intestinal mucosal barrier dysfunction-restoring bacteria, short-chain fatty acids, and organic acid producing microflora. All studies proposed a number of potential mechanisms of action of respective berry bioactive compounds, although further mechanistic and molecular studies are warranted. The metabolic profiling of each berry is also included to provide up-to-date information regarding the potential anti-oxidative/antidiabetic constituents of each berry.
Collapse
Affiliation(s)
- Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
- Department of Endocrinology, Diabetology, and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| |
Collapse
|
4
|
Sandoval-Salazar C, Oviedo-Solís CI, Lozoya-Gloria E, Aguilar-Zavala H, Solís-Ortiz MS, Pérez-Vázquez V, Balcón-Pacheco CD, Ramírez-Emiliano J. Strawberry Intake Ameliorates Oxidative Stress and Decreases GABA Levels Induced by High-Fat Diet in Frontal Cortex of Rats. Antioxidants (Basel) 2019; 8:E70. [PMID: 30897746 PMCID: PMC6466532 DOI: 10.3390/antiox8030070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/05/2019] [Accepted: 03/12/2019] [Indexed: 01/14/2023] Open
Abstract
It has been proposed that there is a correlation between high-fat diet (HFD), oxidative stress and decreased γ-aminobutyric acid (GABA) levels, but this has not been thoroughly demonstrated. In the present study, we determined the effects of strawberry extract intake on the oxidative stress and GABA levels in the frontal cortex (FC) of obese rats. We observed that an HFD increased lipid and protein oxidation, and decreased GABA levels. Moreover, UV-irradiated strawberry extract (UViSE) decreased lipid peroxidation but not protein oxidation, whereas non-irradiated strawberry extract (NSE) reduced protein oxidation but not lipid peroxidation. Interestingly, NSE increased GABA concentration, whereas UViSE was not as effective. In conclusion, our results suggest that an HFD increases oxidative damage in the FC, whereas strawberry extract intake may ameliorate the disturbances associated with HFD-induced oxidative damage.
Collapse
Affiliation(s)
- Cuauhtémoc Sandoval-Salazar
- Departamento de Enfermería y Obstetricia, División de Ciencias de Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico.
| | | | - Edmundo Lozoya-Gloria
- Laboratorio de Bioquímica y Biología Molecular de Productos Naturales de Plantas, CINVESTAV, Irapuato 36821, Mexico.
| | - Herlinda Aguilar-Zavala
- Departamento de Enfermería y Obstetricia, División de Ciencias de Salud e Ingenierías, Campus Celaya-Salvatierra, Universidad de Guanajuato, Celaya 38060, Mexico.
| | - Martha S Solís-Ortiz
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, México.
| | - Victoriano Pérez-Vázquez
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, México.
| | - Cristina D Balcón-Pacheco
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, México.
| | - Joel Ramírez-Emiliano
- Departamento de Ciencias Médicas, División de Ciencias de la Salud, Campus León, Universidad de Guanajuato, León 37320, México.
| |
Collapse
|
5
|
Lafarga T, Colás-Medà P, Abadías M, Aguiló-Aguayo I, Bobo G, Viñas I. Strategies to reduce microbial risk and improve quality of fresh and processed strawberries: A review. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
6
|
Areiza-Mazo N, Robles J, Zamudio-Rodriguez JA, Giraldez L, Echeverria V, Barrera-Bailon B, Aliev G, Sahebkar A, Ashraf GM, Barreto GE. Extracts of Physalis peruviana Protect Astrocytic Cells Under Oxidative Stress With Rotenone. Front Chem 2018; 6:276. [PMID: 30175092 PMCID: PMC6108337 DOI: 10.3389/fchem.2018.00276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
The use of medicinal plants to counteract the oxidative damage in neurodegenerative diseases has steadily increased over the last few years. However, the rationale for using these natural compounds and their therapeutic benefit are not well explored. In this study, we evaluated the effect of different Physalis peruviana extracts on astrocytic cells (T98G) subjected to oxidative damage induced by rotenone. Extracts of fresh and dehydrated fruits of the plant with different polarities were prepared and tested in vitro. Our results demonstrated that the ethanolic extract of fresh fruits (EF) and acetone-dehydrated fruit extract (AD) increased cell viability, reduced the formation of reactive oxygen species (ROS) and preserved mitochondrial membrane potential. In contrast, we observed a significant reduction in mitochondrial mass when rotenone-treated cells were co-treated with EF and AD. These effects were accompanied by a reduction in the percentage of cells with fragmented/condensed nuclei and increased expression of endogenous antioxidant defense survival proteins such as ERK1/2. In conclusion, our findings suggest that ethanolic and acetone extracts from P. peruviana are potential medicinal plant extracts to overcome oxidative damage induced by neurotoxic compounds.
Collapse
Affiliation(s)
- Natalia Areiza-Mazo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jorge Robles
- Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Jairo A Zamudio-Rodriguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Lisandro Giraldez
- Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia, Jequié, Brazil
| | - Valentina Echeverria
- Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Bay Pines VA Healthcare System, Research and Development, Bay Pines, FL, United States
| | - Biviana Barrera-Bailon
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Russia.,GALLY International Biomedical Research Consulting LLC., San Antonio, TX, United States.,School of Health Science and Healthcare Administration, University of Atlanta, Johns Creek, GA, United States
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - George E Barreto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
7
|
Oviedo-Solís CI, Sandoval-Salazar C, Lozoya-Gloria E, Maldonado-Aguilera GA, Aguilar-Zavala H, Beltrán-Campos V, Pérez-Vázquez V, Ramírez-Emiliano J. Ultraviolet light-C increases antioxidant capacity of the strawberry ( Fragaria x ananassa) in vitro and in high-fat diet-induced obese rats. Food Sci Nutr 2017; 5:1004-1014. [PMID: 28948018 PMCID: PMC5608977 DOI: 10.1002/fsn3.487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 12/15/2022] Open
Abstract
Flavonoids and polyphenols from the strawberry and other fruits have been proposed to reduce the oxidative stress produced by the obesity and her complications. Moreover, it has been proposed that irradiation with UV-C to strawberry may increase the antioxidant capacity of this fruit. The aim of the present study was to explore the effects of the UV-C on antioxidant capacity of strawberry in vitro and in vivo. Strawberry slices were irradiated with ultraviolet light-C (UV-C) at 1.2 W/m2/16.5 min; then, the power antioxidant was isolated from the nonirradiated and irradiated strawberry slices into an organic phase, which was lyophilized to finally producing a nonirradiated strawberry extract (NSE) and UV-irradiated strawberry extract (UViSE) powder. After the antioxidant capacity of both extracts were determined in vitro using the Trolox equivalent antioxidant capacity (TEAC) assay and in vivo using high-fat diet-induced obese rats. Our results demonstrated that irradiation with UV-C to strawberry slices increased the antioxidants content, which was corroborated in vitro, where the antioxidant capacity of UViSE was higher than the NSE. However, in obese rats, the reduction in the oxidative damage by the UViSE and NSE were similar in peripheral tissues. Interestingly, the UViSE was better than the NSE to reduce the oxidative damage in brain. In conclusion, UV-irradiation increases the antioxidants content of strawberry that is correlated with an increased antioxidant capacity in vitro, but in rats, this antioxidant capacity may be more effective in brain than in peripheral tissues.
Collapse
Affiliation(s)
| | - Cuauhtémoc Sandoval-Salazar
- División de Ciencias de Salud e Ingenierías Departamento de Enfermería y Obstetricia Universidad de Guanajuato Celaya Gto. México
| | - Edmundo Lozoya-Gloria
- Laboratorio de Bioquímica y Biología Molecular de Productos Naturales de Plantas CINVESTAV Irapuato, Gto México
| | - Genaro A Maldonado-Aguilera
- División de Ciencias de Salud e Ingenierías Departamento de Enfermería y Obstetricia Universidad de Guanajuato Celaya Gto. México
| | - Herlinda Aguilar-Zavala
- División de Ciencias de Salud e Ingenierías Departamento de Enfermería Clínica Universidad de Guanajuato Celaya Gto. México
| | - Vicente Beltrán-Campos
- División de Ciencias de Salud e Ingenierías Departamento de Enfermería Clínica Universidad de Guanajuato Celaya Gto. México
| | - Victoriano Pérez-Vázquez
- División de Ciencias de la Salud Departamento de Ciencias Médicas Campus León Universidad de Guanajuato León México
| | - Joel Ramírez-Emiliano
- División de Ciencias de la Salud Departamento de Ciencias Médicas Campus León Universidad de Guanajuato León México
| |
Collapse
|